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PREFACE

The subject of Applied Mechanics is one which covers a very wide field,

and it would not be possible adequately to cover the ground in a single

volume. In the present work the author has attempted to cohipl-ess into

one volume of moderate dimensions sufficient material for a two years’

course in the subject. To carry out this object the author hasr endea-

voured to be as clear and concise as possible, and he has written the text

on the assumption that the student will spend a considerable time in

working out the numerous exercises which are given.

The illustrations, which are very numerous, have all been specially

prepared for this work, they have been made as small as possible

consistent with clearness, and they have been set up with the text in

such a manner as to be in close connection with it and to economise

space as much as possible.

A special feature has been made of the exercises, which will be found

in groups in the various chapters. Of the 780 exercises given, 600 are

original, and the author has given as much attention to these as to the

text. The remaining 180 exercises have been selected with great care

from the examination papers of various examining bodies. Many of the

exercises will be found to amplify the text, and thus add to the scope of

the book.

The author would here desire to impress upon the student the great

importance of working a large number of exercises. A student may

imagine, after hearing a lecture, or after reading the text on a part of

the subject, that he knows it thoroughly, and that he may therefore

leave it, but he will generally find, if he proceeds to apply his knowdedge

to a practical example, that some important point has escaped his

attention or has not been thoroughly understood. This applies to the

clever student as wmll as to the student of ordinary ability. Besides, the

working of exercises is essential for thoroughly impressing the subject on

his mind. Another matter of very great importance to the student is

the cultivation of neatness and accuracy and the systematic arrangement

of his work.

The majority of the exercises given involve numerical answers, and

these will be found at the end of the, book. Some teachers who may use

this book in their classes may object to their students having the answers

’ .4 '
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PREFACEvi

to tlie exercises beforehand, but such teachers may, if they cJioose, make
simple alterations in the data of the exercises before giving them to their

students, and thus in an easy way have their own set of good exercises.

The answers given at the end of the book •will, how^ever, be useful to

students -^vho may be studying privately, and also to conscientious and
industrious students who may desire to get thoroughly familiar with the

subject by working examples.

The three chapters on the design of structures have been written and
illustrated, on lines suggested by the author, by Mr. E. H. Salmon, B.Sc.

(Loud.), A.M.Inst.G.E., and the author feels that these chapters will add
very considerably to any merit w'hich the other chapters may give to the

book.

To Mr. J. W. Barrett the author is deeply indebted for the great care,

intelligence, and skill which he has bestow'ed on the preparation of the

illustrations from the author’s pencil drawings and sketches.

A good and enthusiastic teacher interested in his subject does not as

a rule follow strictly any particular text-book, not even if he has written

it himself, and many of the best teachers seldom refer to any te.xt-book

iu their lectures. It is, however, very important that a student should

form as good a library of his own as he can afford, and. the author of this

book hopes that it will not be unworthy of a place in such a library,

especially in the initial stages of its formation.

B.'A. L.

East London College (University of London)

September 1909.
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APPLIED MECHANICS

1 Definitions Eelating to Divisions of Subject.—Newton used the

mechanics for “the science of niaclunes_ and the tirt of nmking

them ” but the term has been used by most writers since Newton s Hme

for the science which treats of the laws of motion and force. This

includes (1) JcinemaUcs, the science of motion without reference to its

cause • (2) statics, the science of forces which balance one another
;
and

(3) kinetics, the science of unbalanced forces, or the relations ^between

motion and force. Many modern writers use the term dynamics in tho

same sense as that of mechanics as just defined, but the most logical

writers restrict the term dynamics to statics and kinetics, and consider

kinematics as a branch of pure mathematics. Writers who use the term

mechanics in place of dynamics generally apply the latter term to what

has been defined above as kinetics.
^

« .

In statics the forces considered may act at a point, or on a solid, a

liquid or a gas. That branch of statics which considers the relations

between forces acting on a liquid at rest is called hydrostatics, and that

branch which considers the equilibrium of a gas is called ;^eimatics. In

hydrodynamics the relations between motion and force in fluids is con-

sidered. EyclrauUcs relates to the application of the principles of hydro-

statics and hydrodynamics to engineering. ...
2. Values of Vatious Constants.—Except where otherwise given,

the values of ' the more common constants required in working the

exercises in this book should be taken as given below. Various useful

functions of V are also given.
, o i i e

Batio of the circumference of a, circle to its diameter <= t >= 3- 1 4 1 b.

^r»«3-l‘0063. Jtt- 1*7725. 57r«l-4646.

0*03225.

0*40715.

Accelerating effect of gravity« <7 -32-2 feet per second per second.

Weight of 1 cubic foot of water* 62*3 lbs.

1 gallon of water at 62" F, weighs 10 lbs.
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3. The 0. O'. S. System of Units—This is the system of units

recominencled, for scientific purposes, by a coimnittoe of the British

Association. The eenthJiGtre is the unit of lengthy the granuiie is the

unit of ymss, and the second is the unit of Ume.

TliQixnitoiareai'&thGsqiiareceniimetre.

ThQ xxxxxi oi volume is cubic ceniivietre.

The unit of velocity is a velocity of a centmiefre yer second.

The unit of momentum is the momentum of a gramme moving with

a velocity of a centimetre yer smond.

The unit oiforce is that force which generates a unit of momentum
in a second, and is tlxerefore that force which, acting on a gramme for

one second, generates a velocity of a centimetre per second. This unit

of force is called the dyne.

The xinit of work is the work done by a force of a dyne acting through

a distance of a centimetre. This unit of work is called the erg.

4, Equivalents of Ordinary British and 0 G-. S. Units. ,

1 foot = 30’4 79 centimetres.

1 centimetre = 0‘0.328 foot.

1 square inch = 6 ‘451 scpiare centimetres.

1 square foot = 928 -997 square centimetres.

1 square centimetre = O'155 square inch = 0*001076 square foot.

1 cubic inch =16 '386 cubic centimetres.

1 cubic foot = 283 15 '3 cubic centimetres.

1 cubic centimetre = 0'061 027 cubic inch =* 0’00003532 cubic foot.

1 lb. avoirdupois = 453-593 grammes.

1 gramme = 0'0022 lb. avoirdupois.

1 foot per second= 30‘479 centimetres per second.

1 mile per hour = 44*703 centimetres per second.

1 centimetre per second = 0*0328 foot per second = 0*02237 mile

per hour.

1 lb, per cubic foot = 0*01 602 grammes per cubic centimetre.

1 gramme per cubic centimetre = 62*4245 Ihs. per cubic foot.

Accelerating effect of gravity = 32*2 feet per second per second

= 981*44 centimetres per second per second.

In the equivalents below g is taken = 981 centimetres per second

per second.

1 lb. avoirdupois = 444974 dynes.

1 gramme=981 dynefs.

1 footpound =13562570 ergs.

1 kilogrammetre = 98100000 ergs.

1 lb. per square inch = 68974 dynes per square centimetre.

1 lb. pel* square foot = 478*98 dyne,s per square centimetre.

1 kilogramme per square centimetre = 981000 dynes per square

centimefare.
.

5. Algebraical Pormulae.—
Quadratic ‘ equatkm.—If a:® + ouj + 6 = 0, then x = - ±

The roots of an equation are the values of x which satisfy the equation.

If a and /? are the roots of the equation a:® + a* + & = 0, then a 4- yS = ~a,
and a/5 = b.
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Cubic + tw; + h = 0, then Cardan’s solution gives

’'”\"2’*'\/r7+47 *\"2 V 27LI
The equation + iw;" + + ?•= 0 may be reduced to the form

+ ax + ft == 0 by substituting as - 1
for « in the given equation.

Aritlimetiml proqrcsdon.

The terms a, (a + 6), (a + 2ft). («+ 3ft), etc., are in arithmetical pro-

gression. The term from the beginning is a+ (ra - l)ft.

The sum of n terms = 1 2(i + (» - 1 •

If M, A, and N are in arithmetical progression, then A-= and

A is the arA/ime/'ft'rt? 7/iena of M and N.

Geometrical pro/jression.

The terms a, ar, nr-, etc., arc in geometrical progreBSion-

The term from the beginning is

The sum of n term= -

—

^-1— -y—~ .

r:~ 1 l.-.'r.,

If r is less tlnin 1, the sura of an infinite number of terms is

If M, G, and N are in geometrical progression, then G= >

Qe m tliQ geomefneal mean of M And "iS.

Miscellaneous »e7He». S.„= sum of terms.

S«=^l + 2 + 3 + . .... . . . + =

s„=i=H-a=+3=+

S„=r> + 2» + 3“ +

Binomiai theorem, (a + «)'’ =

+*"•

,
w(«-1){7J-2) , .

The (r+ 1)^’* term of {a + x) = '

|r

where {r, rand fadorlal ?*, = 1.2.3 r.

Exponential and logarithmic series,

^
A2.f2 AV

, ,

a* = I + Aa: -
1
-

-jy + -| 3
' +

'

1

4

+

where A= logu-, and 6 = base of mpierian system of logarithms.

e = 2*71828.
. ^

log/l +
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Logairitlinis.-~~ii — then is the logarithm of ,N to the base «.

In the common sj/stem of logarithms the base is 1 0. In the Ncqner'ian

sysfem of logarithms the base is e~ 2’7 1828. . . . Napierian logarithms

are also called natural and also logarithms.

log (A X B X C) -log A +-iog B + log G.

log
g
= log A - log B. log A" ^ 71 log A. log "/A = i log A.

If a® — then iC log a — log /*, and ar = .

"riie foregoing rules are true whatever be the system of logarithms

used. A
If a; = logjjWi, and y = log^vw, then y= x log,,n = A

.

If » = logjfjjn, and
'^
= log^m, then y - a; log.lO =— — .

logioS

log,,l 0 = 2-3026 nearly, and logj^,/!== 0*4343 nearly.

6. Trigonometrical Pormulse.

—

sin A cos A
sin A 1 cos A i

tan — ^ ^ Cot ^ ^
sin-^ A + CO.S" A = 1,

sec'-^ A = 1 + tan^ A. cosec^ A = 1 + cot®A
.sin (A + B) = sin-A cos B + cos A sin B.

sin (A - B) = sin A cos B - cos A sin B.

cos fA + B) = cos A CO.S B - sin A .sin B.

cos (A - B) = cos A CO.S B + sin A .sin B.

tan (A - B) -
j tan A 'fan B

‘

sin 2A = 2 .sin A co.s A.

cos 2A = co.s‘- A - sin® A = 2 cos® A - 1 = 1 - 2 .sin® A.

, . 2 tan A
1 - tan® A

. - . 2 tan A
sin 2A = i------.j-r •

1 4- tan® A
_

1 - tan® A
"
i + tan® A*

sin 3A <« 3 .sin A - 4 sin® A.

cos 3A = 4 cos®A - 3 cos A.

1-3 tan® A



I^UELIMINATIY"

sill (A + 1)) sill (A - B) = sin^ A - siu^ B = cos- B - (.‘os" A..

.'OS (A + B) cos (A - B) c<>s‘“A - siii'“ B = oos^ B ~ sin^ A-

A
_

sin A
‘2 "

1 +COS
A*

± + sin A.+ cos

sin A + sin B = 2 sin

A + B
. .

A-B
cos A + cos B — 2 cos

A + B
si..

7. Formulae for Triangles.

—

a, Zi, and r. arc the sides of

and A, B, and C are the opposite angles.

rt + ?; + c = 2s.
' A + B + a = 180°.

.

~
. a~h cos C + c cos B.

sin A sin B sin C)

^3 = [fi + c“ - 2bc. cos A.

Area of triangle =A
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li. ---- I'culiu.-i (if tlio f'irciunsmbiug drele of a triuiiglo.

/' — raiUus of lilt.' iiisfi'iVieti circle.

K,=
a

2 sin xV

aht:

4A‘

2A A , .. A
= — ~

... (,s> - a) tan .

a •+ ?> + c 8 2

8. Differential and Integral Oaiculus.—The curve APB (Fig. I) is

the graph of the equation y == 20,^ - Let x and y be the co-ordinates

of the point P on tlie curve. Take another point Q on the curve near

to Pj and let its co-ordinates be a; -f- 8a: and y -f ^y. Then for P,

2/ ~ 20a: - 2a;®, and foi Q
?/ -I-

^

20 (a:+ 8a;) -- 2 (a: -f 8a;)3

= 20a; -P 2GSa: - 2a:® - 6.c28.» - 6a;(8a:)2 -- 2(S.r)^

therefore Sy ~ 208a: - Qx‘^8x - 6a:(8a;)® -• 2{8.v;)®,

and 20 - G.c2 - 6;r8a; - 2(8a;)®.m .

*

Now let Q approach nearer

and nearer to P so that 8x and
Sy get siaaller and smaller,

then the terms 6.^83; and 2(8.r)2

will get smaller and smaller,

and the value of^ api)roaohes

nearer and nearer to 20 - QxK
In the limit when Q is inde-

finitely near to P the ratio

is written and is equal
8a? • tix

to 20 - Qx\

m1 mHI
ilB mInmm mPPmB B Bmm

mm aNm\ m PI |L TsjB' 1

0 05 1*0 1*5 2*0

FlO. 1.

The ratio is evidently a mea.sure of the slope of the curve or

tangent at any point whose co-ordinates are x and y. Also, is a
dx

measure of the rate of inerease of y with respect to a;.

The ratio is called the differeniial coeffidmt of y with respect

to'x .

"

At the highest point B of the curve APB, y has its maximum value,

and the slope of the tangent CB is zero. Hence where y is a maximum,
dv /20

^ = 20 - Ga:® = 0, or a;

»^ -g-
«= 1*826 nearly, and the maximum value

of y is 20 X 1*826 - 2 X 1*8268= 24*34 nearly.

The process of finding a differential coefficient is called differentiation.

Now let w=s~^as20'-6# be plotted as shown by the curve

in Fig. L llien, when 8a; and, % are very small, w= very nearly,

and uBx^Sy very nearly. : But uSx is the area of the shaded strip very
nearly when Sx is very small, and when Sx is indefinitely small udx = dy.



PilELIMINAEY 7

Ni'xl. su[)|i(iS(,i lli(' tiguro HJ'FK'L to be divided into an iufiuite

imniiM'i' of irubiliiiitely narrow vertical strips, each of width dx and

variable lieight v. J ad the ordinates of J and Iv 1)0 denoted by and

respectively
;
also let tlie abscissa) of these points be denoted by and

respectively. Tlie sum of the areas of the strips into which the figure

a;., p’a .

HJ'P'IFL is supposed to be divided is written 5)^ ."wd.r or
|

udx, where

S is the Greek letter sigma, arid / is the old English letter S. The

expression
j

udx is read, “ the sum of successive values of udx between

:

‘’;ri

the limits and a)

binee for each strip tuJx — dy, it is obvious that the surii of the areas

of the strips is But yg = 20;r2- 2ir„, and '2x\,

therefore

1 udx == 20(;K2 - a'j) ~ 2{xl ~ xl).Xi
In Fig. 1 and 1̂

2
= 1 '5, and inserting these values in the

expression 20(ir2"-’irj)~ 2(»a --ajf), the area of the figure IIJT'K'L is

found to be 13*5, where the unit of area is a rectangle 'whose base is

1 inch and height 0 ’05 inch.

The expression
j

udx is called the defiyiite integral of uda,, and the

expression judx where no limits are specified is called the indefinite

integral of udx, or the indefinite integral of u with respect to x.

The process of finding an integral is called integration, and / is the

symbol of integration.

In the foregoing example judx~jdy~y — 2Qx-2x^ is the indefinite

integral of udx or (20 - 6x^)dx.

The process of integration is seen to be the reverse of that of

differentiation.

d7/
If y is a function of x, then fudx = y are equations 'which

follow, the one from the other.

In the process of integration expressed by Judx~y, y has to

be found, and u must first be recognised as the differential coefficient

of some function of x, and that function of a: being known, y is

found.

Cemstant of integration.—Suppose the example already discussed in
which y = 20.i: - 2a;8 to be altered so that y ~ 20a? - 2x^ + 10. It is easy

to show, by the method already used, that = 20 - Oa:® the same as
dx

before. Hence in integrating (20 - ^x^)dx the result, to be- quite
general, should be written /(20 ~ 6a;2)cfo; = 20a: - 2a:8 ^ C, where C is a
constant of integration which has to be determined from other con-
ditions. For example, it may be known that when a?-=0, y = 0, then C
must equal 0. .

The following table contains the differential coefficients and integrals
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likely to be required in ordinary engineering; problems. Those in the

iirsfc and second lines occur most frequently.

The differeyiiial coefficient of a constant is zero.

The differential coefficient of the mm of a number of functions is the

sum of the differential coefficients of the functions.

Thus, if y.= u + v + where u, w, and to are functions of x, then

dx dx dx dx'

The differential coefficient of the product of a number offunctions is

found by multiplying the differential coefficient of each factor by all the

other factors and adding the products thus formed. Thus, if y =

where v, and to are functions of x, then
dx dx dx. dx

The differential coefficient of thx (quotient of tivo functions is found
as follows: From the product of the denominator and the differential

coefficient of the numerator subtract the product of the numerator and
the differential coefficient of the denominator, and divide the result by

the square of the denominator. Thus, if y =*= -
,
where u and v are

functiong of ^ . ? ?
?

I

'

^

Function ofd y is a fuuciion'of % and w is a function

of .r, then example, let Ja-\-bx-\-cx“. Put

2/
= U ^^0

dx

u=0
1
udx = V,x

1/ dx
•M=a*“ ludx= ~ xrh

J 4" 1

(except when - 1)

y = a
«*• as

Jti,dx=a logjc

y~ad‘^
dx

u=ad'‘‘ judx =

ys^asmhx cos hx
dx

u=a cos hx j'udx = - sin bx

y=sa cos bx ^—-ahmnbx
dx

U'~a sin hx
1
udx 3s - 5 cos hx

J 0

jr=satan6» srfflii sec*'* hx
dx ii~asecrbx I'udx ~ ~ tan hx

y = a cot hx - ah coacd^x
dx

u-a cosoc® hx jndx -
J
cot hx
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a + hj' + (v;“, then
//
= = <«! and =: i-jd' ‘ - 4%"* =- -.r--,-^^

d'M ^
yJ ^Va + /«H

Also, - - = 4+-2<‘.j:’, therefore - c,
-

,dx 2yfi + 6a; + «2*

Hw'vam.vH If y is a function of and u'here
ax

u is also a function of x, then ^^-~ v, where v; is another function of x.
ax

du
lienee, =

’ dx

d*^'^ I

= dx, and this is written
,l?y

"dx‘^~

Th^ integral of the sum of a tmmher of functions is equal to the
sum of the integrals of the functions. Thus,

|(cw’ + 4-

where C is the constunt of integration.

9. Circle of Ourvature.—APB (Fig. 2) is any curve,

two points on this curve, on opposite sides of the

point P. A circle may be drawn through the three

points M, P, and N. If the points M and N be
moved nearer to P, then when Af and N are inde-

finitely near to P, the circle becomes the ch'cle of
curvature of the curve APB at P. The centre

and radius of the circle of curvature are called

the centre of curvature and mdim of curvature

respectively.

Let OPD be the circle of curvature of the

curve APB at P. Let X and Y be the co-ordinates

of the point P, considered as a point on the circle CPD.
iX~af + {Y-~ljf = W.

dY

Then,

Differentiating once, (X ~ a) + (Y - — 0.

Differentiating again, 1 -f ~

Let X and ?/ be the co-ordinates of the point P, considered as a point
on the curve APB. Then X =a;, and Y = y. Also, since the circle CPD
and the curve APB have the same tangent at P, ^ and ~ denote

dX dx

Lastly, since the circlethe slope of this tangent, therefore
" dX V dx . .

CPD and the curve APB have the same curvature at P, and since
curvature is measured by the rate of change of the slope of the tangent

5^
*= ^ « -t- (;//

- « 0, and 1 +

Therefore, y^h~ - 'HI
fy"
ch^

and A*- a*

. A*Ml



which is the equation, to the parabola referred to the axis of the

parabola and the tangent the the axis being the axis of and
the tangent the axis of it. .

If tlie axis of 0 be moved parallel to itself until it is at a distance
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Substituting, tlieso values in the equation (X — a)’’^ + (Y - b)“ — the

result R- is obtained.

dx-

The sign to be taken in the nuxnerator of tlie right-hand side of this

last expression should bo tlie same as that of the denominator, so as to

make the value of R positive.

If the curvature of a curve is very small, and the inclination 6 of the

tangexxt at any point is small (.Rig. 3), then ~ — tan 0

is also small. In this case the expression just found

for R becomes 1.1 = nearly or

dx“

is sufllciently accurate for the curves into which beams and struts

deflect.

L_

Fig. 3.

10. Construction of Parabola.—A problem of very frequent occur-

renco is, given the vertex A (Big. 4), axis

AB, and double ordinate UBI) of a para-

bola, to construct the curve. Complete the

rectangle CDEAF. Divide AE into any
convenient number of equal parts, and
divide ED into the same number of equal

parts. Join, the points of division on ED
with A. Lines through the points of

division on AE parallel to AB to meet
the former lines as shown determine points

on one half of the curve. Points on
the other half of the curve are found in a similar manner.

11. Equations to Parabola.—OK (Fig. 5) is a fixed straight line,

and F is a fixed point. P is a point which moves in the plane of F and
OK, so that its distance from B’ is always equal to its distance from
OK. The path of P is a parabola^ whose axis is the line through I’

perpendicular to OK. The line OK is called the directnx, and the

point F the focm of the parabola. The curve cuts the axis at A, the

vertex of the parabola. FA is equal to AO.
Dmw PK perpendicular to OK, and PN perpendicular to the axis.

Draw the tangent to the parabola at A, and lot it meet PK at K'. The
tangent at A is obviously perpendicular to the axis of the parabola.

Let FA - a, PN a*, and PK' = y.

'rheii PN2 + FN3^PF2=.ON2
That is, a;2 + {y -• {y + a)K
Therefore 9i^ = \ay (1)
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h frf»m the vertex (Fig. 6), then y in (1) will become y + h, and the

new equation will be

= 4a(y + ?>) = 4 a?/ + 4ai . . .
. (2)

If the axis of y be moved parallel to itself until it is at a distance c

Fia. 5. Fio. 6. Fig. 7.

from the axis of the parabola (Fig. 7), then x in (2) will becomes 4' c,

and the now equation will be

(a; + c)2 = 4a(2^4-i) (3)

In the foregoing equations y is po.sitive or negative according as it is

measured above or below the axis of x, and x is positive or negative

according as it is measured to the right or left of the axis of y,

12. Cycloidal Curves.—If a circle be made to roll along a line, and
remain in the same plane with the line, a point on the circumference of

the rolling circle will describe a cycloidal airve. The line upon which
the circle rolls is called a base line, a directing line, or a director. If the

base line is a straight line, the curve described is called a cycloid. If

the base line is a circle, the curve described is called an epicycloid or a
hypocycloid, according as the generating circle rolls on the outside or

inside of the directing circle.

The hypocycloid becomes a straight line passing through the centre
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The most convenient method of drawing any of the cycloidal curves

is the transparent templet method. Let AB (Fig. 11) be the directing

line or circle, and GDP the rolling circle. The directing line or circle is

to be drawn on the drawing paper, and the rolling circle is to be drawn

on a piece of tracing paper or thin transparent celluloid. Mark the

tracing point P by a short radial line cutting the circle, and also by a

small needle hole. Place the tracing paper

on the drawing paper so that the directing

line and the rolling circle torudi one another

at P. Place a needle through the tracing

paper and into the drawing paper at P.

Turn the tracing paper round until the

I’olling circle cuts the directing line at a

near point Q^. Transfer the needle from

P to Qp and turn the tracing paper until

the rolling circle touches the directing

line at Qj^. The tracing point will now have moved from P to P^^.

Mark the drawing paper at Pj with a needle-pointed pencil. Again
turn the tracing ])aper until the rolling circle cuts the directing line at

another near point Q._,. Transfer the needle from Qj to Q^, and turn the

tracing paper until the rolling circle touches the directing line at Q^.
The tracing point will now have moved to Pg. !Mark the drawing paper

at Pg. Continuing the process, any number of points on the required

curve may be obtained, and the.se points may then be joined by a fair

curve.

13. Scalar and Vector Quantities.—Certain quantities, such as the

weight of a body, the volume of a body, a sum of money, the energy

stored in a moving body, can be denoted by numbers representing their

magnitudes in terms of suitable units. For example, a body may weigh
5 lbs,, the energy of a moving body may be 205 foot-pounds. All such

quantities are called scalar quantities.

Other magnitudes, such as velocity, acceleration, force, involve the

idea of direction as well as magnitude, and they cannot be completely

defined by numbers. There must also bo descriptions defining their

directions. For example, a velocity may be 10 feet per second in a

direction from south to north. All such quantities are called vectm'

quantities.

A vector qmrntity may be represented by a straight line, w^hich is

called a vector. The length of the vector represents the

magnitude of the quantity, and the direction of the line

represents the direction of the quantity., A line AB (Fig. 1 2)
represents a vector quantity whose nmgnitudc is the length

AB, measured with a certain . scale, and whose direction is

parallel to AB. It is necessary to distinguish between the

direction AB and the direction BA, the one
. being opposite to that

of the other. This distinction is the seme of the direction, and may
be given by the order in which the letters on the line are mentioned
in referring to the lin6. :Axii arrow-head j,>laced on the vector is

the best way of showing' ,;the sense of the direction. A vector

with an arrow-head on it may be referred to by using a single letter,

as p.
.

: ,

.

'

Fio. 12.
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14. Addition of Vectors. A nuinbw of vei*lors, r, Q, K, a.url S,

.sliowit to tli(‘ left ill Fig. 13, are added

tugetlicr as follows: .Draw i\Ji parallel and

equal to P, BCJ parallel and equal to Q,
CJI) ])arallel and equallo K, and I)E parallel

and equal to S, then the vector AE equal to

T is the .sum of the vector.s P, Q, 11, and

The sum will be the same whatever be the

order in which the vector.s are taken in per-

forming the addition. The vector T is also

called the remdUmt vector. The polygon ABCDEA is called a vector

polygon.
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CHAPTER II

MOTION AND FORCE

16. Best and Motion.~One point A is said to be fixed or to be at

rest in relation to another point. B wlien the straight line AB does not

alter in length or direction. If the straight line AB changes in length

or direction, then A is said to wove or have motimi in relation to B, If

the straight line AB change.s in length but not in direction, A has

reetilinear motion in rGlHtif)n to B, and if AB changes its direction but

not its length, A has atujular or rotary motion in relation to B, If AB
change.s both in length and direction, then A has both rectilinear and
angular motion in relation to B, Motion is therefore change of position,

but since position can only bo defined in relation to points or bodies

which are fixed of^mlTenhlition’s'' af6 'ne^ectcd,' glLmaHoii is relative

A point is said to have plane motion when, while it changes its

position, it remains in the same plane. Of the many problems on
motion which the engineer has to consider, those on plane motion are by
far the most common. In an ordinary steam-engine, for example, ad the

points in the piston, piston-rod, cross-head, connecting-rod, crank, crank

shaft, fly-w'heel, eccentric, eccentric-rod, and valve have i»lane motion.

The points in the piston, piston-rod, and cros.s-head have rectilinear

motion
;
the points in the crank, crank shaft, and ily-wheel have angular

motion
;
and the points in the connecting-rod have both rectilinear and

angular motions.

17. Velocity.—^The rate of motion, or rate of change of position of a

point or body, is called the veloeMy of the point or body. When the

changes in position are the same in equal intervals of time, however
short those intervals may be, the point or b(idy has uniform velocity.

When the changes in position are not equal in all equal intervals of

time, the point or body has variable velocity. At any instant the velocity

of a moving p(nnt is completely known when (1) the direction iri which
the point is luoving, (2) the rate at which it i.s moving in that direction,

and (3) the sense, are known. For example, a point may be moving (1)
in a direction perpendicular to the surface of still water, (2) at a rate of

so many feet per second, (3) in an upward direction. The statements

(1), (2), and (3) are required to completely specify the velocity of a
point. The statement (2) is called tlie speed of the point, or the magni-
tude of the velocity. The term Velocity is often used in the same sense
as speed, but modern writers incline to using the term speed as defined

above.
. A

'

'

:

A velocity may be completely represented by a straight line. The
direction of the line is the direction * of the veloei;^, 'tfie/Ien^^ of the
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lino is tlu' iiia^iiiUulo of tlio vt?looit,y or speed, and an arrow-liead placed

on the line sho-ws the sense of the velocity. The sense, may also he

given hy jdacing letters, say, A and B, one at each end of the line, and

stating that the velocity is AB for one sense, and BA for the opposite sense.

Linear velocity is measured in units of distance per unit of time, as,

feet per second, feet per minute, or miles per hour. A knot is a linear

velocity of one nautical mile (6080 feet) per hour.

If V denote the linear velocity or speed of a point or body, and s the

space or distance through which it moves in time then s = vt. The
unit of distance used in measuring v must be the same as that used in

measurings, and the unit of time used in measuring v must be the same
as that used in measuring For example, if v is in feet per second,

s must be in feet, and t in seconds.

Angular velocity is measured in radians * per second, revolutions per

second, or revolutions per minute. The Greek letter w is generally used

to denote angular velocity in radians per second. If a point moves in a

circle of radius r feet with a linear vdocity of v feet per second, and if the

point makes n revolutions per second or N revolutions per minute, then

18. Acceleration.—When a velocity is not uniform, its rate of change

is called acceleration. Acceleration is positive or negative according

as the velocity is increasing or decreasing. Negative acceleration is

frequently called retardation. Linear arceleraiion is rate of change of

linear velocity, and is generally measured in feet ])er second per second.

Angular acceleration is rate of chaiige of angular velocity, and is generally

measured in radians per second per second. The symbols / and a will

be used to denote linear acceleration and angular acceleration respec-

tively. The linear acceleration due to gravity is denoted by the symbol

g. The value of g will be taken as 32 ‘2 feet per second per second.

Acceleration, like velocity, is a vector quantity, and may bo completely

represented by a straight line.

19. Kinematical Equations.—Let or Wj denote the velocity of a

point or body at a given instant, and lot v or w denote the velocity after the

lapse of t seconds, the acceleration being uniform and denoted by /or a.

Then tt = -P,/?, and w ~ Wj -t-

During the interval of t seconds the mean velocity is

+- y) = -P \ft for linear velocity, and
-p (u) = Wj -p \at for angular velocity.

If is the linear distance moved, or 6 the angle described in the

interval of t seconds, then

8 = Kyi + v)/ « v\i -p \fi\ and 9«
Eliminating f, it follows that

-P'2/8, and -p2a0.

If ^1 «,<? and coji ss 0,
then

V s^//*, § « apd y® == 2/8,

also, CD a^, 0 and w® = 2aQ.

* A radian is the angle suhtencled at? the centre of a circle by an arc of that
circle equal in length to the radwa ^enoe the number of radians in an angle
or the circular mcamre of an angle subtended at the centre of a circle of radius

r by an arc of length a is equal to n/r.
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20. Composition and Eesolittion ofVelocities and Accelerations.

-

Two or inort'. velodtios may he; roducwl to a single velocity, and two or

more accelerations may Ijo rechiced to a .single acceleration by {composition,

exactly as for forces. Also, conversely, a single velocity maybe resolved

into two or more velocities, and a .single acceleratimi may be resolved

into two or more acccilerations, exactly as for forces! For the composi-

tion and resolution of forces, see Chapter IV.

21. Badial Acceleration of a Point moving in a Circle witli

Uniform Velocity.—Let a point A (Fig. 14) be moving with a uniform

velocity v along the circtimference of the circle,

who.se contra i.s 0 and radius (.bV — Let A do- Pi <-

scribe the small arc Ali in the time /. The
velocity of the point when at A is in the direction ^

of the tangent to the circle at A or perpendicular

to CA, and the direction of the velocity of the \ \
point when at B is in the direction of the tangent \ \
to the circle at B or perpendicular to CB. Draw \

OP perjiendicular t(j CA and equal to y; also draw C] ^ ^
1

OQ perpendicular to CB and equal to r, and join
24 ,

PQ. The change in the velocity of the point in

moving from A to B is rejircsented by PQ = m. If ACB is a very small

angle, the difference between the chord AB and the arc AB may be

neglected, and AC!B and POQ. are then similar triangles.

.Hence - - -v-, that is, => - or
^

. But-=/

is the rate of change of velocity of the point moving in the circle,

therefore/= Also, when the angle AOB is indefinitely small the direc-

tion of u is perpendicular to that of and is therefore at any instant in

the direction of the radius of the circle from the moving point at that

instant. Therefore if a point moves with a uniform velocity in a circle of

radius r, there is a constant acceleration /"= - - towards the centre o'f the

circle. If v is in feet per second, and / in feet per second per second, then

r must be in feet. If w is the angular velocity of A about C in radians

per second, then w = - and /’= w-v'.

22.

Instantaneous or Virtual Centre.—Let A and B (Fig. 15) be
two definite [>oint.s in a rigid body which has plane motion, the plane of

the paper beung the plitrie of motion of the points

A and B. Suppose that at the instant that the ^
body i.s in the position shown the point A is /
moving in the direction Aa, and that the point

B is moving in the direction Bf^. Draw AC and ^

BD perpendicular to Aa and B6 respectively, and j
lot AC and BD meet at 0. Just for an instant ^
the jioint A can be made to revolve about any V —
point in AC without altering the direction of its Fig. 15, ' ^

motion. Also, just for an instant the point B
can be made to revolve about any point in BD mthout altering the
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diKictiou of its molioii, IhMU'it if just for aii instant tlir wliul(' Imdy

i)t‘ miido to revolvn nlxMit <), the dirtviiom of tins niotioiis of A mid .!’>

will be unaltered.

Again, since A and H are definite points on a rigid body, they must
remain at the fixed distance AB from one another. Hence the com-

ponents of the velocities of A and B along AB must be equal, that is,

Yj^ cos a~ Vjj <^^03 jtl, where and Vj. are the velocities of A and B
respectively in the directions in which they are actually moving. An
inspection of Pig. 15 shows that cos sin OAB, and cos jS = sin OBA,
therefore Ya = OILVj ‘rr

V, sin DBA , . , . , ^ OA
Vb sin OAB OB

But if the body be made to revolve for an in,stant about 0, then
Vb OB

Hence, for the instant, tlie motions of A and B are unaltered by making
the body revolve about the point 0.

The point 0 is called the indantaneous centre or virtual centre of the

body for the position shown. The instantaneous centre is continually

changing, except fur a body which has rotary motion only. The locus of

the instantaneous centre is called a cenlrode. A line through the instan-

taneous centre perpendicular to the plane of motion is an imtnnia,neons

axis, and the locus of the instantaneous axis is a surface called an axocle.

23. Force.

—

Force is any cause which tends to move a body which is

at rest, or which tends to change the motion of a moving body.

A force is completely specified wdien its magnitude, its direction, and
a point in its line of action are given.

A force may be completely specified graphically on paper. Thus, a

line ah (Fig. 16) has a length which, measured with a certain scale,

represents the magnitude of the force, the direction of this line re-

presents the direction of the force, and a point

O is given as a point in the line of action of the

force! The line, along which the force acts will

obviously be the line OX drawn through O parallel

to ad). The force may act from O to X or from X
• to 0, and this maybe fixed by an arrow-head placed

on the line ah. The arrow-head determines the

sense of the force. The sense may also be fixed by
the order in which the letters a and h at the extremities of the lino are

stated ; tlms a force ah would be a force acting in the direction ah from

a to b, while a force ha would be one acting in the direction ha from
b to (i.

24. Mass and Weight.—The mms of a body is the quantity of

matter which it contains. The weight of a body is the force of attraction

which the earth exerts on it. The mass of a body is j)roportional to its

weight. The wevjht of a body is, however, slightly different at different

parts of the earth’s surface.

25. Engineer’s Units of Force and Mass.—In engineering calcula-

tions the unit of force- is the' attrhotion which the earth exerts, in the

latitude of London On a c«jrtaxn standard piece of platinum, and the unit

is called i\\Q pound or pound might The unit of mass is taken as the

Fio. IG.
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muss of lUiiUor wcvigfiing
//

[Hninds, so tliat if W is tlie weight of a l.xKly

in pounds, its mass is M .

26. Momentum.—Tim <immtUy of motion bv movmnti(>m, oi a

moving body is measured by the product of its mass and velocity.

Momentum = Mv

27. Newton’s First Law of Motion .—Every hody continues in its

state of rest or of uniform motion in a straujht line, e^ccept in sofar as it

may he compelled by force to change that state.

28. Newton’s Second Law of l&o\iovi.-~--Rate of cJiange of momentum,

is pnportional to the impressed force, and takes place in the direction of
the straight line in which the force acts.

Rate of change of momentum is equal to mass multiplied by rate of

change of velocity or acceleration. Hence if P denotes the impressed

force, M the mass of the body, and/ the acceleration, Po=M/. If the

unit of force bo such as will give unit mass unit acceleration, then P = M/,

W P f
Using engineer’s units, P = y/ or .

29. Impulse.—If a constant force P acts on a mass M for ^ seconds,

then, since P »» M/, it follows that Pif = Mft = M'«, where v is the change in

the velocity of the body in the time t due to the action of the force P,

The product Pi is called the imptdse of the force P. The impulse of

a force is therefore equal to the change in the momentum which the

force produces in the body on which it acts.

If the force is not constant the above equations are only true if t is

indefinitely small, or if P is the average value of the force during the

time i.

The equation Pi = Mv also shows that equal forces acting on different

masses will in the same time produce in these masses equal amounts of

momentum. For example, when a projectile is fired from a gun, the

forward momentum of the projectile is equal to the backward momentum
of tiie gun.

30. Newton’s Third Law of Motion.
—

'To every action there is always

an equal and opposHe reactio’n. P’or example, a body is attracted to the

earth by the force of gravity, but it is equally true that the earth is

attracted to the body by an equal force. Again, a body resting on a

table exerts a pressure on the table, but the table exerts an equal pressure

on the body.

31. Centrifugal Force.—^When a point moves in a circle of radius r
feet with a uniform velocity v feet per second, or an angular velocity of

(0 radians per second, it has been .shown (Art. 21) that the point has a

radial acceleration / equal to vfr or (u®r. If the point he replaced by a

small body of weight w Ihs., then a radial force P must he applied to the

body to constrain it to move in the circle, the magnitude of F, in lbs., being

Pore described, the force F is called the deviaimq
9 <jr g
force or the centripetal force. Tlie body in moving in the circle will

evidently exert an equal radial force
,
F acting outwards from the centre,

and this force is called the cerdrifugalfor.ee. Of these two forces, the centri-

petal and the centrifugal, one may, be said to be Ibe reaction of the other.
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therefore

hence

32. Eesultant Centrifugal Force of Two Small Revolving Masses.
-—Lob A and l> (Kig. If) l>e two .small ma..s.ses of weight //, iuid

re.spectively, .revolving In tlie .same

plane with uiiiforiu angular velocity co

about the centre O. The centrifugal

force of A is F, t in the direc-

'K
tion OA. The centrifugal force of

B is lA in the direction OB.
^ {f

Make 00 = and di'aw CD parallel to

OB and ecjual to hb. Join OD, then OD will be the direction and
magnitude of P, tire re.sultaut centrifugal force of A and P>. Join AB,
cutting OD at E. Draw EH. perjiondicular to OA, EK perpendicular to

OB, and EL parallel to CD or OB, Since E is a point in the resultant

of the forces Fj and F.j, the moment of about E must be equal to the

moment of F^ about E,

tf <)

?*g • EK area of triangle OBE _ BE
rtky iq • Eli area of iTianglc C)A.Fj AE *

Therefore E is tlie centre <rf gravity of A and B.

. . OL BE ft', „ ,,, %r,
.Agtun, ~ ttt >

therefore O I j = - -"-r—.
® OA BA w, + w./ etf, +

Also
+ +

•
’ oe"ol''"'

~
fVi

" wj'
‘

then F = ^"’i±3K?’. That is, the

resultant centrifugal force of the two masses A and B is the centrifugal

force of the sum of the masses concentrated at their centre of gravity,

33. Centrifugal Force of a Thin Plate revolving about an Axis
Perpendicular to its Plane.—If the plate be divided into a large

number of small parts of weights ?,Cg, etc., then by the preceding

Article the resultant centrifugal force of the parts and is the .same

as if these parts were concentrated at their centre of gravity. Again,
the resultant centrifugal force of and (at their centre of gravity)

and will be the same as if «?,, Wgj % were concentrated at their

centre of gravity. Proceeding in this way until all the masses have been
included, it is evident that the centrifugal force of the whole plate will

be the same as the centrifugal force of the whole mass concentrated at

its centre of gravity.

34. Extension of the Poregoii^ to Certain Solids.—If a solid can

be built up of a number of thin plates, the centres of gravity of which
all lie on a line parallel to the axis of revolution, then it is easy to see

that the centrifugal force ‘of tlje w^hole solid is the same as if the whole
mass were concentrated at its eehfere of gravity.

35. Moment of a Force.'i-'jChe of a force about a point, or

about an axis perjjendicular to.| is the product of the magnitude of

the force and its perpendi'bdlliT distance from the point or axis. This

moment is called a torqim. If, the distance is measured in inche.s and

But OD-F, and if OE =
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the force in pounds, the torque is measured in inch-pounds. Other units

of torque are—the inch-ton, the foot-pound, and the foot-ton.

36. Rotational . Inertia—Moment of Inertia.—Consider a small

Ixidy A (Fig. 1(S), whose inass is revolving about an axis 0 under

the action of a force P, vvhf)se line of action is tan-

gential to the path of A. If / is the linear accele-

ration produced in A by P, then (Art. 28) V — mf,
^

If a is the angular acceleration, then f^m; therefore

P = jnm, and Py — or T = Ia, where T is the ^
torque causing rotation, and I is called the wmymwif

of ineHia of the body A about the axis O. 13 ^

If a large body, revolving about an axi.s, be

divided into small parts, whose masse.s are ni^, etc., and whose

distances from the axis are J’j’ Agi t’sn etc., respectively, then T = (7?ip‘j

•f + 7n3?*3 -
1
- etc.)a = la, where T is the torque causing the rotation of

the body, and I = -f in.y\ -f otc. is the moment of inertia of

tho body.

If the whole raa.ss M of the body be placed at a distance k from the

axis without altering its moment of inertia, then I = and k is caUed

the rcuUus of gyration of the body,

37. Moment of Momentum—Angular Momentum.—Referring to

the small body A of the preceding Article and Fig. 18, if v is its linear

velocity and w its angular velocity, then its linear momentum is

nw-mrm. The moment of this momentum about the axis O is

=s lo). This moment of momentum of the body about the axis 0
is also called the angular momentum of the body about that axis.

For a large body made up of small parts, whose masses are 77q,

Wg, etc., and whose distances from the axis about which the body is

rotating are '/g, etc., respectively, tho total linear moynentum is

evidently (77q7q-fTO./2-l-?7Jg7 3 + etc.)co, and the sum of the moments of

momenta, or the total angular momentum, is

(wpq -f mfl -f \ -f etc.)o) = Iw,

where I is the moment of inet tia of the whole body.

Since T = Ia, it follows that if the torqne T acts on the body for

t seconds, IV = lat = Iw, w’here w is the increase in the angular velocity in

the time and I« is tho increase in the angular momentum in that time.

Hence, equal torques acting during equal times will produce equal

amounts of angular momentum.

Exercises II.

Take l iri6tre=3'28r feet.

1. Express the following velocitie.s in feet per second ; 46 miles per hour,
225 feet per mimxfc, llj knots, and 160 metres per mimile.

2. Express the following velocities in feet per minute : 3*6 feet per second,
18 miles per hoin% 18 knots, and 16 metres per second,

3. Express the following velocities in miles per hour ; 33 feet per second,
3080 feet per minute, 16| khot-s, and 48 kilometres per hour.

4. Express the following velocities in radians per second; 5 revolutions, per
second, 270 revolutions per minute, ’ ?

6. Convert a velocity of 03 radians per second into revolutions per mijiulc.

6. What is the angular velocity, in radians per second, of a train when
running round a curve of 18 chains radius at the rate of 83 miles ii(;r hour?
1 chain 22 yards.

- ,1
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7. A traction engine travels at 6 miles per hoar
;
the road wheels are (3 feet

in diameter, and ar<! driven through 5 to 1 gearing. Find the angular velocity
in radians per Kticond of the liy-wheel on the engine shaft.

[
B.F.'l

8. Tiui speed of a train increases at a, uniform rate from 20 to SO mile.s pcjr

hour in 1 minute 20 seconds. What is the acceleration in fe(!t per .second pen-

second ?

9. A rotating wheel increases its speed from 100 to 250 revolutions per
minute in 35 seconds. What is the mean angular acceleral ion in radians per
.second per second ?

10. A body starts from rest and its velocity increases at the uniform rate of

8 feet per second per second. How long will it take to travel 144 feet ?

11. A moving body has its velocity reduced 2 feet per .second in each second
while it moves a distance of 45 feet, and its velocity is then 4 feet per second.
What was the initial velocity of the body ?

12. A stone is dropped into a well, and after the lapse of 2*5 seconds the sound
of' the splash is heard. Taking the velocity of sound as 1100 feet per second,
calculate the depth to the water in the well.

13. At the instant that the brakes are put on, a train has a speed of 40 miles
an hour and it is brought to rest, covering a distance of 220 yards during the
time of application of l.he brakes. Assuming the retardation to be uniform, find

the time of action of the brakes,

14. The speed of a motor car is determined by observing tlie times of passing
a number of posts placed 500 feet ai)art. The time of traversing the distance
between the finst and second poHt.s was 20 seconds, and between the second and
third 19 seconds. If the acceleration of the oar is constant, find its magnitude
in feet per second per second, and also the velocity in miles per hour at the
instant it passes the first post. [Inst.C.E.]

16

,

A rotating wheel has ii,s speed reduced 50 revolutions per minute in each
second while it makes 300 revolutions, and its speed is then 60 revolutions per
minute. What was the initial speed of the wheel in revolutions per minute 2

Also, what was the time occupied iu making the. above reduction in speed 2

16 . The wheels of a motor car are 30 inches in diameter, what is their

angular velocity in revolutions per minute and in radians per second when the
speed of the car is 20 miles per hour 2 If the car is brought to rest in a distance
of 60 yards under a uniform retardation, what is the angular retardation of the
wheels in radians per second per second 2

17 . Determine the apparent velocity and direction of rain-drops falling

vertically with a velocity of 20 feet per second with reference to a bicyclist

moving at the rate of 12 miles an hour. [Inst.C.E,]

18 . A cyclist is riding due west at a speed of 12 miles per hour, and the
•wind is at the time blowing from the south-east with a speed of miles per
hovu'. If the cyclist carries a small flag, in. what direction will this flag fly 2

At what speed would the cyclist require to ride if the flag is to fly due north 2

:

[B.E.]

19 . A man standing on a train which is moving with a speed of 36 miles per
hour shoots at an obiect tunning away from the railway at right angles at a
speed of 12 miles per hour. If the bullet, which is supposed to move in a
horizontal straight line, has a velocity of 880 feet per second, and if the line

connecting man and object makes an angle of 45“ with the train when he fires,

find at what angle to the train he must aim in order to hit the object.

, [Inst.0.E.]

20. A and B are two points in a rigid body. A and B are moving in a
vertical plane, and when AB is inclined at 80” to the
horizontal A is moving in a horizontal direction with
a velocity of 10 feet per second. At the same instant
the point B is moving in a vertioal direction. Find
the velocity of the point B,

21. AC and BD (Fig. 19) are twn cranks which
oscillate about fixed axes at ,A and B. These cranks
are connected by a link or coupling-rod CD. Tho
axis of the link CD outs the linq P. Show
that the ratio of the angular veloaity of AC to the
angular velocity of BD is equal to the ratio' of BP to Al’.

22. A rigid body has plane motion. Three points on lim body A, B, and C,
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in tho. same plann, arc such ihat AB = 3 feet, BC=2 feet, and AC= 2‘6 feet. At
a cerlaiu instant it is known that the point A has a velocity of 4 feet per second

ill the directiun from A to (J, and that the point B is moving in the direction

from O to B. yiiow how the velocity of any other point on the body may be
obtained, grapliically or otherwise, and determine the values for the velocities

of B and the point midway between A and B.

23. A force P acting on a body weighing 250 lbs. for 10 seconds changes
the velocity of the body from 8 to 24 feet per second. Pincl the magnitude
of P.

24. Two men, cacli exert ing a const ant force of 60 lbs., set a waggon weighing

5 tons in motion. The frictional resistances amount to 10 lbs. per ton. Find
the distance through which the waggon is moved from rest in 1minute,

26. A locomotive draws a train of 100 toms with a uniform acceleration such
that a speed of (iO miles per liour is attained in 4 minutes on the level. If the

frictional resistances are 10 lbs. per ton and the resistance of the air, which
varies as the square of the speed, is 120 lbs. at 20 miles per ,hour, find the pull

exerted by the locomotive at 30 and at 00 miles iier hour. [Inst.O.E.]

26. Assuming that a train may bo accelerated by the application of a force

equal to one-fortieth of its gross weiglit, and be braked with a force equal to

one-tenth of its gross weight, find the least time in which it may run from one

to another of two stopping stations 5000 feet apart. What is the greatest speed

during the run? [Inst.O.E.]

27- In an electric railway the average di.stance between stations is J mile,

the running time from start to stop 1| minutes, and the constant speed between
the end of acceleration and beginning of retardation 25 miles an hour. If the

acceleration and retardation be taken as uniform and numerically equal, find

their values; and, if the weight of the train be 160 tons and the frictional

resistance 11 lbs, per ton, find the tractive force necessary to start on the level.

[InBt.C.E.]

28. A projectile weighing 100 lbs. is fired from a gun weighing 5 tons with

a velocity of 1000 feet per second. What is the velocity of free recoil of the

gun?-
29. A weight of 10 lbs. is suspendo<l from a balloon by a cord. What is the

tension in the cord when the balloon is ascending with an acceleration of 3 feet

per second per second 1

30. A weight of 5 lbs. hangs from the hook of a spring balance suspended
within the car of a balloon. What is the vertical acceleration of the balloon

when the spring balance indicates 5*6 lbs. ?

31. A cage weighing 1000 lbs. is being lowered down a mine by a cable.

Find the tension in the cable { 1 )
when the speed is increasing at the rate of 6

feet per second per second, (2) when the speed is uniform, (3) when the speed is

. diminishing at the rate of 6 feet per second per second. The weight of the
cable itself may be neglected. [Inst.C.B.]

32. Two masses weighing \V and w lbs. respectively are connected by a fine

string passing over a frictionless pulley, as shown iii Fig. 20,

2Ww
Show that the tension in the string is • lbs., and that tho

” W +
W-w

acceleration is ef pulley neglected.

33. A, lononiol ive weighing fiO ton.s runs on a horizontal track
of 1000 feet radhus at a speed of 15 miles per hour. What is

the horizontal thru.st exerl ed on tho outer rati ?

34. Keferring to Fig. 20, W and w arc weights of 1000 lbs,

and 800 lbs. respectively. The pulley over •which the rope
passes which connects W and w is 2 feet in diameter, measured
to the centre of the rope, its weight is 80 lbs., and its radius of
gyration is 10 inches. Assuming that the rope is flexible, and
acglecting friction, find the torque which must be applied to the pxrlley to raise
W and lower w with an acceleration of 5 feet per second per second.



CHAPTER III

WORK AND ENERGY

38. Work.'—When a force acting on a body causes that body to

move, the force is said to do work. Also, if a body is, moved against a
resistance, work is done in overcoming the resistance. The amount of

work done depends on the magnitude of the force and also on the distance

through which it acts.

In measuring work the unit whicli is generally used by engineers is

the work done when a for<ie of one pound acts through a distance of one
foot, this unit being called a foot-iiouml

.

If the unit taken bo the work
done when a force of one ton acts through a distance of one font, it is

called a foot-ion. The foot-ton is used in measurijig large quantities of

work. For measuring small quantities of work the inch-pound^ or the

work done when a force of one jjound acts through a distance of one inch,

is frequently used.

The work done by a force is found by multiplying the magnitude of

the force by the distance through which it acts.

39. Work by an Oblique Force.—If a force acting on a body acts in

a direction inclined to that of the body’s motion the force may be resolved

into two components, as explained in Chapter IV., one
acting in the direction of the body’s motion, and the

other perpendicular to tliat direction. The latter com-
ponent does no work, and tlie work done by the former

is its magnitude multiplied by the distance through

which the body moves. For example, if a body A
(Fig. .21) is dragged along a horizontal plane by a force P vjhose line

of action is inclined at an angle B to the horizontal, the horizontal com-
ponent of P is P cos 6 and the w^ork done is S x P cos B, w^here S is the

distance through which A is moved.

40. Work in Raising a System of Weights.—When a number of

weights are raised through different heights, or when all the parts of one

weight are not raised through the same height, the amount of work done
is obtained by multiplying the total weight lifted by the distance through

which the centre of gravity , of the system is raised. The jiroof of the

foregoing rule is as follows ;—lat eog, etc., be the weights of the

parts of a system of weights,' or the weights of the parts of a single body.

Let 7ig, etc., be the heists of these above a fixed horizontal plane

before they are lifted, and lot /r.j, etc,, be their hoight.s above the

fixed horizontal plane after they are lifted. Also, lot H and K be the

heights of the centre qf gi'avity of the system above tlie fixed horizontal

plane before and after -lifting resptkttivoly, and let W = the total weiglit

of the system + v\ P Jfg + etc, • -

Fig. 21.
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Work (lone = w-^{k^ - - h^) + }r.JJc^ ~ h^) + etc.

~ + 10Jc,) + (3tc. ... -{ui-Jii + 4- W/'j,/?g + etc. , , .)

-- WK -WH hy a {iroperty of the centre of gravity

41. Diagram of Work.—If a- .straight line 00 (Fig. "J,2) represents

to scale the distance f:! through which a body moves under the action of

a force, and if OB drawn at right angles to 00
repre.sents to scale the magnitude P of the force, then

the area of the rectangle BO will represent to scale

the work done by P in acting through the distance

B. For, let the linear scale be 1 inch to m feet, and
22

the force scale 1 inch to w lbs,; also let 00 be ^

inches, and let OB be h inches long. Then the magnitude P of the force

is hn lbs., and the distance S is Irn feet. Work done = PS = Tinlm — hhnn
— Aran, where A i.s the area of the rectangle BO in square inches.

If the body moves along the horizontal path represented to scale by
OC (Fig. 23) under the action of a force which varies in magnitude, and

if the magnitude of the force at each point of the path is represented to

scale by the height of the diagram BC at that point, then the area of the

diagram will still represent to scale the work done. Consider the work
done from E to F, two points near to one another, and let the dimensions

of the diagram be in inches, and let the linear and

force scales bo the same as before. AtE the magnitude

of the force is ED x n lbs., and at F the magnitude of

the force is FH x » lbs., and since E and F are near to

one another DH may be considered to be a straight line,

and the mean magnitude of the force betw'een E and F
is J(ED 4- FH) X n lbs. The work done between E and

F is |(ED 4- FH) X X EF X m foot-pounds. But the area of EDIIF
is |(E1.)4- FH) xEF square inches, therefore the work done from E to

F if. equal to the area of the vertical strij) DF in square inches multiplied

by m and by n. Hence dividing the whole diagram BC into vertical

narrow strips, it follows that the work done in moving the body through

the distance represented by OC is equal to Amn, where A is the area

of the diagram BC in square inches.

42. Turning Moment—Work in Turning.—When a force P acting

on a body causes that body to rotate about a fixed axis, the line of action

of tlie force being in a plane perpendicular to that axis, the product of P,

the magnitude of the force, and the perpendicular distance K of its line

of action frmn the axi.s is called the turning moment or torque of the driving

force P. If P i.s in pounds and E is in feet, the turning moment PE is

in poand-feeJ or foot-pounds
;
but if P is in pounds and E is in inches, PE

is in pound-inch ('s or inc'h-pounds. If the line of action of P is not in a

plane perpendicular to the axis of rotation, but makes an angle 0 with
that plane, then the turning moment is PE cos &.

If R, the leverage of P, remains constant during the rotation of the

body, and if the magnitude of P is also constant, then if w is the angle in

radians through which the body turns, the distance through which P acts

is (dR, and the work done by P is PwR, or Tw,- whtere T is the turning

moment. If the leverage R or the force' P, or both, should vary, then if

T is the mean turning immmt the work done is Pwi

ii-* v. ii'ki C" i -f -Ltiils'
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If llir launiuii (if tiimiiig is givoii as n nivdlutiniis, tluai tlai distaiict^

tbrdUgh wliicli J’ ads is 23rlte, aud tin*, wiirk done is 27r.l*H//, or 27rT//,

43. Bate of Work—Horse power.—Phii working power of any
agent depends on the amount of irorU wliicdi it ean do in a glean time.

Watt found that a good Avorking horse could do 33,000 foot-pounds of

work in one minute, and he introduced this as the unit for measuring

the working piower of steam-engines. A steam-engine or any working

agent is said to he of one liorse-power when it can do 33,000 foot-pounds

of work in one minute, or 650 foot-pounds in one second.

Evidently the simple rule for finding the horse-power of any working

agent or the horse-power transmitted by any piece of macliinery is to

divide the number of foot-pounds of w^ork done or transmitted per minute

hy 33,000, or horse-power equals work per second divided by 660.

Horse-power is a measure of the rate of doing or transmitting

work.

44. Electrical Units and their Mechanical Equivalents,—The
electromotive force, or electric pressure of an electric current, is measured
in Volts, and the strength of the current, or the rate of flow of the

electricity across a section of the conductor, is measured in amperes. The
fower of a current of 1 ampere at an electrical pressure of 1 volt is called a

watt. Volts X amperes = watts. 1 horse-power == 746 watts. 1 kilowatt

= 1000 watts. 1 electrical unit or 1 Board of Trade unit = 1 000 watt-hours.

45. Machines.—For the purp<.)8es of this Article a machine may be

defined as a contrivance for overcoming a force ai)plied at one point by
means of another force applied at another point. In books on mechanics

it used to bo the practice to call the former force the weight and the

latter force the powei\ but since the force to be overcome is not necessarily

that of gravity, it is better to call it the resistance, and since the term

power is used in connection with rate of work, it is better to use the term

effort instead of power when referring to the driving force in a machine.

In this Article the effort wull be denoted by P, and the resistance by W.
The points at which the effort and re-

sistance act may he called the driving point

and working point respectively.

In machines when the driving point

moves through a definite distance, say a,

the working point moves through, another

definite distance, say h, and in many ma-
chines the ratio of a to h is constant. In other

machines the ratio of a to h is different for

different positions of the driving and working
points. In a simple wheel and axle (Fig. 24),

for example, the displacement of P will bear a constant ratio to the
displacement of W, whereas in a toggle joint (Fig. 26) the ratio of the

displacement of P to that of W will ho different for different positions

of the parts of the machine.

In a machine in which the displacement of the driving point hears a
constant ratio to the displacement of the working point, this ratio (a/6)

is called the velocity txdio of machine. In a machine in which this

ratio is variable, the velocity ratio of the machine for any given positions

of its paris is tlie ratio of the displacement of the driving point to the
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(lispl.KM'mciit ul' llu! working point wlien these di«pla(3euieut« are in

(leliiiilely small.

'rile ratio of W to 1’ is ealled the ini'fhaniml adaintagc of the

machine.

In all machines a certain amount of work is wasted in overcoming

friction, and the result is that Pa, the work done by the effort in a given

time, which may be called the total rom'k or the work put into the

machine, is greater than the work done on the resistance in the same

time, which may be called the meful work or the work got out of the

machine, and the difference between these two quantitie.s of work is the

lost work. •

Tlie ratio of tlie useful work to the total work i.s called the ejkiency

of the machine. The efliciency must evidently be always less than unity.

The reciprocal of the efficiency is called the coimter efficiency. If the

maohiue be reversed so that W becomes the effort and P the resistance,

the efficiency under this C(jndition i.s called the reversed effiicumcy.

Let E = efficiency, M = mechanical advantage, and V = velocity ratio,

a W 'Wh M
then V = M = p, E == * The lost work is Pa-W^ and

assuming that the lost woik i.s the same when the machine is reversed

under the action of W as the effort, W/^ must be greater than Pa - W&,
Wh

or must be greater than A machine will therefore not reverse

under the action of the resistance W unless its efficiency is greater than

60 per cent.

46. Usual Eelation between the Effort and Eesistance in a
Machine.—If ex]jeriments are made with a machine by varying the

useful resistance W and finding the corresponding values of the effort P,

it is found that if the results are plotted on squared paper the points

thus obtained generally lie very nearly in a straight line, and if the

straight line which most nearly contains all

the points be drawn, the equation to this line

is P f^mW + c, where m and c are constants

for the particular machine.

In Fig. 26 the dots represent points

plotted a.s de.scribed above, the values of W
being measured horizontally from the vertical

axis OY, and the values of P vertically from
the hoj-izontal axis OX. AB is the .straight

line which most nearly contains the points.

Take any jjoint Q in AR, draw QM parallel to OX to meet OY at M, and
QN parallel to OY to meet OX at N. Then QM and QN represent corre-

sponding value.s ofW and P respectively. Draw AL parallel to OX to meet
QN at L. It is evident th<at wherever Q may bo taken in AB the ratio

QL-:-AL will be the same. Let QL-^ALi=jre, and let OA = c, tlien

QL QN - LN P - c ,, . ,,, ,ni = 7 = . - therefore P = niW + c.

AL AL W
In plotting it is not necessary that the scale for P be the same as

that for W, but in determining the value of m care must be taken to

measure QL and OA with the scale for P, and AL with the scale for W.
The relation between P and W is sometimes called the law of the
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mac'liine. Whun the law of a machine is known to lie a h'w hur

it is evident that .since a line is fixed when tw(» jioiiits in it arc known,
the law of the machine can be found from two values of "iV and the two

corre.spoiiding vahie.s of P.

Tlie c{uantity c i.s evidently the magnitude of the efibrt reijnired to

drive the niachine unloaded.

The effort to overcome a resistance W when the machine is friction-

le.ss is P' = W’ 4- V, "where V is the velocity ratio of the machine. The
efficiency is obviously equal to the ratio of the effort witliout friction to

the effort with friction, hence

,
• F W 1

E =

P Y(mW + c)

W
AsW increases the term diminishes, and by making W large enough

will become so small that it may be neglc<.*.ted ; hence the limit to the

efficiency of the machine is
,
assuming of course that the law of the

machine, P — mW+'c, remains true with the increased value of W.
The mechanical advantage

P mW+ .

w
and reasoning as for tlie maximum efficiency, it follow.s that the maximum

mechanical advantage is m
Since M==EV, it follows that if an efficiency curve be drawn this

curve will also represent the mechanical advantage, but to a scale who.se

unit is 1/V of the unit of the efficiency scale.

Exercises Ilia.

1. A man raises a weight o£ 25 kilogrammes to a height of 22 metre.s. A
small steam-engine ranges a weight of 98 lbs. to a height of h feet, and does the

same amount of work as the man. Find A, having given that 1 kilogramme
?!:2'2046 lbs. and 1 metre=39‘371 inches.

• 2. A block of stone is pulled along level ground at a uniforiu velocity over a
distance of 6 yards by a force of 45t) lbs. acting on a rope attached to the stone

and inclined at 45° to the ground. How many foot-pounds of work have been
'•done''?'

3. A cylindrical column of granite, 2 feet in diameter and 5 feet long, stands

with one end on the ground. If the weight of the stone is 170 lbs. per cubic

foot, how many foot-pounds of work are done in tipping it over into the position

from which it is about to fall over into a horiaontal position ?

4, A wire rope 250 feet long, and weighing 1 lb. per foot, hangs from the

drum of a winding-engine, and carries a weight of 15 cwt. at its lower end.

Find the work done in foot-pounds in winding up the first 200 feet of the rope.

6. A rectangular tank, T feet broad, 8 feet long, and 6 feet deep, is half full of

water weighing 62*3 lbs, per cubic foot. How many foot-pounds of work will

be required to raise all the water over the top of the tank 1

6. 250 cubic feet of water are pump^irom a rectangular tank, wfoose base is

6 feet square, into a cylindrical tank, 'whose base is 6 feet in diameter. The
bottom of the cylindrical tank is 20 feet above the bottom of the other. Find
the work done in foot-pounds, taking the weight of a cubic foot of water {is

62-3 lbs.
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7. A wiiight of I 11)., hanging at rest on the hook of a spring-balance, has

stretched the spring one-tenth of an inch. How many foot-pounds of work must
be done in stretching the spring 1^ inches farther?

8. A weight of 50 lbs, is lifted 30 inches. The forCe which does this work

acts through’ a spring-balance, which at the beginning registers zero and at the

end 50 Ihst The sti.tines.s of the spring is such that a weight of 20 lbs. gradually

applied stretches tlie spring 1 inch.'' Determine the work done by the lifting

force.

9. Find the hor.sc-power of a steam-pump which can raise 1100 gallons of

water to a height of 90 feet in 5 minutes.

10. What weight will an engine of 8 horse-power raise to a height of 90 feet

in f minute ?

11. Coal i.s raised froni a mine 060 yards deep. The cage and its load weigh

r> tons, and the rope weighs 24- lb.s. per fathom. Find the horse-power of the

winding-engine if the load is raised from the tiottom to the surface in 65 seconds.

12. How many gallons of water may be raised per hour frorri a depth of

140 feet by an engine of 200 indicated horse-power, the efficiency of the engine

and pump being 80 per cent. ?

13. An electrioaliy driven overhead crane raises a weight of 6 tons at the rate

of 90 feet per minute. What is the horse-power? Convert this into watts. T'he

motor drives the lifting machinery, whose eiiiciency is 70 per cent. How many
amp6re.s of current must bo supplied to the motor if the voltage is 220 and the

efficiency of the motor is 87 per cent. ? If the current is supplied by a company
which charges at the rate of 2)^d. per Board of .Trade unit for power purposes,

what is the cost of lifting in pence per foot-ton ? [B.E.]

14. Electric current is supplied to a certain motor plant at 220 volts, and
150 amperes are taken. What II. P. does this represent? How much would it

cost if used for an average of 6-5 hours per day for a whole year of 313 days?
The power is supplied at 2-24(1. per H.Jb hour (i.c. 3d. per B.T.U.). [B.E.]

16.

A machine is concealed from sight, except that there are two vertical

ropes
;
when one of these is palled downwards the other rises. If the falling of

a weight A on one causes a weight B on the other to bo steadily lifted, first

when A is 12 lbs. and B 700 lbs., second when A is 7-6 lbs. and B is 300 lbs.,

what is A likely to be when B is 520 lbs. ? If B rises 1 inch when A falls

70 inches, what is the efficiency of this lifting machine in each of the three
cases? [B.E.]

16. In a lifting machine an effort of 2G*6 lbs. just raised a load of 2260 lbs.

;

what is the numhanical advantage? If the efficiency is 0-766, what is the
velocity ratio? If on this same machine an effort of 11’8 lbs. raised a load
of. 580 lbs., what is now the efficiency? What is i)robably the effort required
to raise a load of 1000 lbs., and what would the efliciency be? Explain why,
when the efficiency is somewhat less than 0-5, a lifting machine does not
overhaul. [B.E.]

17. The law of a machine is P=0'03W-1-1, and its velocity ratio is 210.
What is the mechanical advantage, and what is the efficiency when W=300 lbs. ?

What is the maximum mechanical advantage, and what is the maximum
efficiency? Denoting that part of the effort which is used in overcoming the
friction of the machine by F, find F when W=300 lbs., and determine the
relation between F and W for any value of W. Plot the effort, friction, and
efficiency, on the resistance a.s a base, fromW =0 to W= .TOO lbs. Scales.—Effort
and friction, 1 imh to 2 lbs.

; resistance, 1 inch to 50 lbs.
;
efficiency, 1 inch to

4'per cent. •

'

18. Kefevring to the machine of the preceding exercise, if Q is the effort to
reverse the machine, or lower the load W, find the relation between Q and W.

19. If B be the B.H.P. of a certain gas-engine and I the corresponding
I.H.P., and the rc.sults (if two tests gave 13=67 corresponding to 1= 73, and
B = 117 corresponding to 1=139, what would the B.H.P. be if the I.H.P. were
35? Assuuio the law
B=a:[ -j-?/, whereas and

y are tsonstauts.

fInsfc.O.E.j

20. Experiments
were made with a
Weston differential pulley tackle having a velocity ratio of 16, and the results
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hero tabulated wore obtained, W being the load and P th() efbu-t, botli in Ibp.

Plot these results. Draw tlie straight line whudi niosi. nearly represents tiie

relation between P and W, and iiiid its equation in the I’orra P = )/AV + f. Draw
the fitlioienoy curve, and <5alculate the raaxiravun efficiency.

21. A cnine requires tbe expenditure of 30 foot-Lon.s of work per .second to

lift 10 tons at the rat(i of 2 feet per second, and 20 foot-t ons per second Lo lift

3 tons at the rate, of 4 feet per setjoud. A,ssnmiug tliat tlie law connecting Die

rate at wliicli work is done on the crane (A) with t;lio rate at which the crane

does work (B) is of the form A + 7, where jp and q are constants, find the

values of p and q, and use the expression to calculate the efficiency of the crane

for a load of 5 tons lifted at the rate of 2 feet per second.

47. Energy.—In meolianics the tonii energij inetuis capacity for

doing work.

FotenMid Energy ia energy duo to tlie relative position of one body to

another, or of one part of a body to another jtart when the two bodies

or the parts of the same body are under the action of a force or forces

tending to alter their relative positions. For example, a body which is

allowed to fall towards the oartli may be made to do work
;
hence before

it begins to fall it posse.ssf).s potential eni'rgy, or emu’gy due to its

position in relation to the earth. A comj ires,sod spiral sjn’ing has

potential energy, because if it is allowed to resume its unstrained form

it can be made to do work. Likewise compre.s.scd air possesses potential

energy. The energy stored in a piece of coal i.s pfiteritial energy, and
under favouralile conditions the atoms of the constituents of the coal and
the atoms of the oxygen of the air will rush together and produce heat

which may be converted into Avork.

Kitwiic, Energy is energy due to the motion of a body, A gallon of

water at rest at a height of 100 feet above the level of the sea possesses

1000 ft.-lbs, of potential energy, and if this water is allowed to fall

freely to the level of the sea, without doing work on the way, it will in

every position of its fall possess 1000 ft.-lbs. of energy, but as it

descends its potential energy will diminish, and the remainder of the

1000 ft.-lbs. will be stored in the water as kinetic energy. When, the

gallon of water has fallen 25 feet its potential energy will be reduced to

750 ft.-lbs,, and its kinetic energy will then he 250 ft.-lbs.

If a body of weight W lbs. falls freely from rest through a height of

Ti feet it will then have stored in it WA. foot-lbs. of kinetic energy, and its

velocity will then be J^gh feet per. second. Hence the kinetic

Wu®
energy WA is equal to - It is evident that the kinetic energy of a

body weighing "W lbs., and moving with a velocity of v feet per second,

will be the same, namely, ---
, whatever be the cause of the velocity,

whether, for example, the cause he the force of gravity, as in a falling

body, or the force of an explosion, as in a gun.

48. Kinetic Energy of a Eotating Body.—Tf an indefinitely small

body of weight %o lbs, be moving with a linear velocity v feet per second

in a circle of radius r feet, then its angular velocity w in radians per

second is equal to vj)\ and its kinetic energy is --
^

ft.-lbs.

If a body of weight W, rotating about a fixed axis witli an angular

velocity o>, be divided into indefinitely small psrl^s of ivoights w^,



energy due to its motion of translation is
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Avliose distances from the axis of rotation are rg, etc., respec-

tively, thou the kinetic energy of the whole body is

tu2
, , 2 2 ^

W(o2/,:3 10)2

2^
{w,r, + + wg?*;, + etc.) ^ ,

where k is the radius of gyration, and I the moment of inertia of the body

about the axis of rotation. If these expressions give the kinetic energy

in ft.-lbs., then W must be in lbs., k in feet, and I in lb. and foot units.

49.

Total Kinetic Energy of a Body.—If a body of weight W
rotates about an axis through its centre of gravity with an angular

velocity o, and if the radius of gyration of the body about that axis

W<i)2^2
is k, then its kinetic energy due to its rotary motion is — . If the

MJ
centre of gravity of this body has a linear velocity v, then its kinetic

kinds of motion simultaneously, then its total kinetic energy is

50. Mechanical Eanivalent of Heat.—Heat and work are mutually

convertible the one into the other. In a lieat engine the heat produced

by the combu.stion of the fuel used is converted into the work done by the

engine. When the brakes arc applied to the wheels of a moving train, in

order to bring it to rest, the kinetic energy of the train is converted into

heat at the rubbing surfaces of the brake block.s and wheels, or if the wheels

skid the heat is produced at the rubbing surface,s of the wheels and rails.

Careful experiments have shown that 778 ft.-lbs. of work are equiva-

lent to one British thermal unit (B.Th.U.) of heat, or the heat required to

raise the temperature of 1 lb. of water 1° Fahrenheit. The number 778

is called the meehanical equivalent of heat. In terms of the Ib.-degree

centigrade unit of heat the mechanical equivalent of heat is 1400 ft. -lbs.

51. Analogies of Linear and Angular Motions.—The student

would do well to study the analogies of linear and angular motions

exhibited in the following table :

—

Quantity. Linbak. Angular.

Time . . . t t

Distance or displacement . s 0

Velocity . . . . . 1? CO .

Acceleration .... /
Inertia . . . . . , . Mass, M—w/g

Force, P -=M/
Moment of inertia, I

Effort
. ... . Torque, T = la

Ulomentinn lb>

Impulse . , . , Pt=M«
1

Tt=Icoi

Work done =U .... TO
Space average of effort U-f«
Time average of effort lu~t
Kinetic energy .... ^Ico*

Kinematieal equations for uiii- f w = at

form acceleration from rest 4

in time t 1

e=iat^
<0^=200
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Exercises Illb.

1. A railway train has a speed of 80 miles per hour. How far will this train

travel, after steam is shut off, under a resistance of 15 lbs. per ton ? Also, what
additional resistance, in lbs. per ton, must be applied to stop the train in a

distance of 100 j'ards ?

2. Through what distance must a force of 71 lbs. act on a body 'weighing

20 lbs., in the direction of its motion, in order to change its velocity from 15 to

25 feet per second ?

8.

Whatmust be the magnitude of a force acting on a hody weighing 50 lbs.

through a distance of 10 feet, in the direction of its motion, whicli will double

the kinetic energy of the body, if the velocity when the force begins to act

is 200 feet per minute ?

4. To dniw a waggon weighing 10 tons up an incline 50 feet high requires

the expenditure of 580 foot-tons of work. If the waggon is liberated at the top of

the incline, what speed, in miles per hour, will it have when it reaches the

bottom? Assume that the frictional resistances are the same coming down as

going Tip the incline. .Further, if the brake is applied during the descent, and
the velocity acquired at the foot of the incline is 25 miles per hour, how many
foot-tons of work have been absorbed by the brake ?

6. How far will a train, moving at the rate of 40 miles per hour, run up an
incline of 1 in 150 after steam is shut off ? In addition to the resistance of

gravity tliere is a mean resistance of 12 lbs. per ton in the direction opposite to

that of the motion.
8. A vehicle weighing 4 tons is proceeding at the rate of 10 miles an hour

along a level road; the pull on it is suddenly stopped: supposing the whole
resistance equivalent to 500 lbs. applied to the rim of one of the wheels 4 feet

in diameter, calculate how far the vehicle will run before stopping. [Inst.C.B.]

7. A fly-wheel alters in speed from 99 to 101 revolutions per minute when
its kinetic energy alters by the amount of 500,000 ft.-lbs. What is its

moment of inertia ? What is its kinetic energ)’^ when making 1 revolution per
minute ? [Inst.O.B.]

8. A fly-wheel of a shearing machine has 150,000 ft. -lbs. of kinetic energy
stored in it when its speed is 250 revolutions per minute ; what energy does
it part with during a reduction of speed to" 200 revolutions per minute ? If

82 per cent, of this energy given out is imparted to the shears during a stroke of
2 inches, what Is the average force due to this on the blade of the shears ? [B.B.]

9. A fly-wheel when running at 90 revolutions per minute has a stored
energy of 8,000,000 ft.-lbs. .By reason of additional load it is slowed down to
80 revolutions per minute in two seconds. By how much will the stored energy
be reduced, and what is the average HP. produced by the slowing down of the
fly-wheel? [Inst.G.E.]

10. ,A machine is found to have 300,000 ft. -lbs. stored in it as kinetic energy
when its main shaft makes 100 revolutions per minute. A similar machine (that
is, made to the same drawings but on a different scale) is made of the same
material but witli all its dimensions 20 per cent, greater ; what will be its store
of kinetic energy at 70 revolutions per minute ? If when at 70 revolutions
per minute energy is being stored for a .short time at the rate of 1 horse-power,
how does the speed alter during this time ? [B.E.]

11. When the fly-wheel of a certain traction engine lessens in speed from
150 to 140 revolutions per minute there is a loss of kinetic energy (on th (3

motion of the whole engine as well as the fly-wheel) of 25,000 ft.-lbs. If
the speed is 160 revolutions per minute, how far will the engine travel up
an ascent of 1 in 100, before doming to rest, if engine and truck together weigh
30 tons, and there is a Oonstant frictional resistance on a level road of 20 lbs. to
the ton ?

_
[B.E.]

12. An electric tram-oar has a total weight of 10 tons. The driving axle and
driving wheeLs weigh 1050 lbs., alnd the other axle and its wheels weigh G50 lbs.
Each axle with its wheels, has a radius of gyration of 1 1 inches. The diameter
of the wheels at the tread is inches. What is the total kinetic energy of this
car in foot- tons when it is travelling at 1.5 miles per hour ? What fraction of
the total energy of the car is due to the rotation of the wheels and axles ?
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13. A projectile weighing 12 lbs. has a linear velocity of 2i'j0u feet per second
and an angular velocity about its axis of 500 revolutions per second. If its radius

of gyration is 0*7o inch, what is the total kinetic energy of the jn'ojectile?

14. Apply the principle of the conservation of energy to find the velocity of

a thin hollow circular cylinder after rolling a distanoe'of 12 feet down a plane

inclined at a slope of 1 vertical in 5 horizontal. [Inst.C.E.]

16,

A lly-wheel (Fig. 27) mounted on a horizontal spindle in bearings is

rotated by winding a cord on the spindle,

attaching a weight to the cord, and allowing

the weight to fall to the ground. In an
actual experiment the falling weight was 21

lbs., the total height of fall, 5 feet; the

height of fall of the weight for one revolu-

tion of the spindle was 5'05 inches ; the time

taken by the weight from starting from, rest

to reach the floor was 7'6 seconds, the

whole time of rotation of the fly-wheel

starting from rest was 70‘25 seconds, and
the total number of rotations of the fly-

wheel was 109'9. Find—(a) The energy

in inch-pounds in the falling weight at the

instant of striking the floor; {&) the energy

in inch-pounds per revoltttion lost in fric-

tion in the bearings of the spindle ; (c) the

moment of inertia of the fly-wheel. [B.E.]

16. Through what height must a weight
of 10 lbs. fall freely from rest so that its energy at the end of the fall is

.equivalent to the heat required to warm 10 lbs. of water 1“F. ?

17. Two cylindrical tanks, A and B, of, respectively, 4 square yards and

2 square yards horizontal cross section, stand on the same floor and are

connected near the bottom by a narrow pipe. A at first contains 8 cubic yards

of water, and B is empty. The water flows slowly into B, Find the amount of

heat which will have been generated when the water has ceased to flow and it

has all come to rest.
^ .

[Inst.C.E.]

18. Find the combined efficiency of a steam-engine and its boiler when the

coal used is lbs. per horse-power per hour, the calorific value of the coal being

12,600 B.Th.U.
19. The balls on the arms of a fly-press weigh 112 lbs. each, and they are

moving with a velocity of 12’ feet per second. How many ft.-jbs. of work

must be expended in bringing them to rest? If the die sinks .g*f_inch into the

metal while the balls are being brought to rest, find the mean resistance to the

motion of the die into the metal.

20. A hammer used for driving a nail weighs 2 lbs., and at the instant of

, striking the blow it is moving with a velocity of 16 feet per second ;
the blow

causes the nail to penetrate into the wood inch. Find the mean pressure on

the head of the nail.
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THR POLYGON OF FORCES

52. Composition and Eesolntion of Forces.—The single force

which -wouhi proiluco the same effect as a number of forces acting

together is called the remltant of these forces, and the forces are called

components of their resultant.

The single force which u'ill balance a number of forces acting together

is called the e</uiUl)rant of tltese force.s. The equilibrant has the same
magnitude as the resultant, and acts along the same line, but in the

opposite direction.

The process of finding the rc.sultant of a number of forces is called

the eomposition of forms, and the converse process of replacing a force

by two or more components is called the remhition of a force.

The resultant of a number of forces acting in the same straight line

is equal to the algebraical sum of the forces. If forces acting in one
direction along a straight line are positive ( + ), those acting in the

opposite direction are negative ( - ).
'

53. Parallelogram of Forces and Triangle of Forces.—If OP
and OQ (Pig. 28) represent in magni-

tude and direction two forces acting

at the point O, then the diagonal

OE of the parallologram OPRQ will

represent the magnitude and the

direction of their resultant. Con-
versely, if a parallelogram OPRQ be

described on OR as diagonal, OP and OQ will represent components of

the force represented by OR.
In applying the paraUelogram of forces OPRQ it should be noticed

that the forces OP and OQ must both act either from 0 towards P and

Q respectively, or towards O from P and Q respectively. Since the only

difference between the resultant and the equilibrant of two forces is that

the sense of the one is opposite to the sense of the other, the parallelo-

gram of forces may be applied to find the equilibrant of two forces.

If AB and BC be drawn parallel and equal to OP and OQ respec-

tively, and CA be joined, then it is obvious that the triangle ABC! is equal

in all respects to tbo triangle OPR, and therefore AC is equal and
pai*allcl to OR. Hence tho resultant or the equilibrant of two forces

OP and OQ may he detth'mined by drawing the triangle of forces A.BC.

If arrow-heads be placed on the sides of the triangle of forces to show
the sense of the forces, then, when two forces and their resultant are

represented, the arrow-head for the resultant will point in the opposite

direction round the triangle to that of the other two arrow-heads. But

R

Fig. 2d.
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when two forces and theirequiHbrantarerepresented,the threearrow-

hcruls will point", in the roiind the triangle,

llefurrhig to Fig. 2fc!, Oil- == OP+ OQ^ + 2QP * OQ cos POQ, also

AO^ - AP--^ 4- BC2 - 2AB • EC cos ABC.
54. Polygon of Forces.—If a number of forces OP, OQ, OR, and

OS act at a point O (Fig. 29), their resultant or their equilibrant may
be found by repeated

application of the b

paralhdogram or tri-

angle of force.s. The
j \ 's

parallelogram I’OQT \ ;
C '\ S—>—

E

determines OT, the V ; /
''qJ

,

resulbuit of OP and \ \ /jr ''Bf !
''

OQ. The i)aranel()- i > \ 1 / \r-
gram TORU deter-

\
, / ^

mines Oil, the re \
‘

sultant of OT and
OR, and therefore ^
the resultant of 0(\ Fio. 21).

OQ, and OR. The
parallelogram U(hSV determines OV, the resultant of OU arid OS, and
therefore the resnltant of OP, OQ, OR, and OS.

If AB be etjual and parallel to OP, and BC be equal and parallel to

OQ, then AG will bo equal and parallel to GT
j

if CD be equal and
parallel to OR, then AD will be equal and parallel to OU

;
and if DE be

equal and parallel to OS, then AE will be equal and parallel to OV.
Hence if a jKjlygmr ABODE be drawn, having its sides respectively

parallel and equal to tlie given force.s, the closing side AE will represent

in magnitude and direction the resultant of the given forces, and EA
will represent their equilibrant.

If arrow-heads be placed on the sides of the polygon of forces to show
the sense of the forces, then when the sides of tlie polygon represent the

given forces and their resulbint, the arrow-head for the resultant will

point in the opposite direction round the polygon to that of the other

arrow-heads. But
when the sides of the. J
polygon represent the 'Ci'\ •

given forces and their
p „ /i

equilibrant, all the \
j q

arrow-heads will point V
1 ^—^7\

iji the same direction \ 1

rcnind the polygon. \//
When ”

given I' b'
/ \ . /

.AE
forces do not all act \

^

at the same point, or o</ ' \ ‘

w’hen their lines of ' / V''"
action arc not concur- ^

rentand notall imrallel, ^ ‘

their resultant may still i .

be determined by re-
*

. -

peated application of the parallelogram of forces^ as shown in Fig. .‘10
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llio liacK of action of OP and OQ intersect at O, and the parallelogram

POQT determines OT, their resultant. The linos of action of OT and
0^.11 intersect at 0^, and being made equal to OT, the parallelo-

gram TjO|TlU determines Ojtr, the resultant of OT and OjR. The lines

of action of OjU and OgS intersect at O^, and O^Uj being made equal

to OjU, the parallelogram UjOgSV determines the resultant of

O^U and O^S, and therefore also the resultant of OP, OQ, 0,11, and
O^S. By this method the resultant of the given forces is completely

determined.

The polygon of forces ABODE may be drawn as before, and the

closing line AE will represent in magnitude and direction the resultant

of the given forces, but the line of action is undetermined. A point in

the line of action of the resultant may however be found by drawing

another polygon, called the fv,niiuilar polygon, which is discussed in the

next Article but one.

When the given forces are all parallel, the polygon of forces becomes

a straight line.

65. Lettering of Forces—Bow’s ITotation.—In Fig. 31 the diagram

(wi) shows the lines of action of a number of forces which act at a point

and which are in etiuilibrium. The
diagram (u) is the corrcs])onding poly-

gon of forces. In one system of letter-

ing, each force is denoted by a single

letter, as P. In Bow’s notation, each

force is denoted by two letters, which
,

are placed on oi)posite sides of the

line of action of the force in diagram

(wi), and at the angular points of the

polygon in diagram {n). In Bow’s
notation the force P is referred to as

the force AB. In like manner the force Q is referred to as the force BC.
The diagram. (7??.), which shows the lines of action of the forces, is called

the space diagram, and the diagram {n), which shows the polygon of forces,

is called the/orce diagram.
In this work, when Bow’s notation is used, capital letters will be

placed on the space diagram, and the corresponding small letters on the

. force diagram,

56. The Funicular Polygon.—Let P, Q, R, and S (Fig. 32) be four

forces which act on a rigid body, and which are balanced by a fifth force

T, which is at present unknown. Draw the polygon of forces ahede,

then from w^hat has already been shown the line ea which closes the

polygon will represent the magnitude and direction of the fifth force T.

Take any point o and join it to a, h, c, d, and e. Take any point 2 in

the line of action of P and draw the lino 2B3 parallel to oh to meet the

line of action of Q at 3. Draw 3C4 parallel to oc to meet the lino of

action of R at 4, Draw 4D6 parallel to od to meet the line of action

of S at 6. Draw 5El parallel to oe and 2A1 parallel to oa. The latter

two lines will meet at a point 1 on the line of action of T.

Conceive that the Hues A, 0, D, and E represent bars jointed to

one another at the points 1, 4, and 6. Then these bars may be
supposed to take the place of the rigid body upon which the five forces
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i’, (,j), 11, H, and '1' artf siqi^m.snd tu sn;t. In tlus uasii under coiiKuIeratiuii

(Fig. d2) it is ol.)viou.s that the })ars A, .15, 0, 1), and E are subjected to

tension. C'on.sider the point 2. Here there are three forces acting

whicli Ijalanco (Jiie another, viz. the force P and the tensions in the bars

A and J5, and these three forces are repre.seuted in magnitude and
direction by the tliree sides of the trianghi aho. Again, the three foretjs

aciting at the point d are represented }>y the sides of the triangle hi'o^ also

the three forces acting at the point 4 arc represented by the aides of the

triangle rthi, and the thrt'o forces at 5 by the sides of the triangle deo.

Now in order that the tensions in the bars E and A may be balanced liy

the force T, the force T must a(tt at the point of intersection of the bars

E and A. The point 1 is therefore a point, in the line of action of T.

The polygon 12345 is called tlm fuiiimlar poh/ijon, the Hnlc poliKfon

or the equ'dihrium jwlyijon of the forces P, Q, R, S, and with reference

to the point o, which is called the yole.

Since the pole o may have an infinite number of positions, there are

an infinite number of funicular polygons to any sy.stem of balanced forces.

If the diagrams (F) and (/) (Fig. 32) be compared it will be seen

tkit each line on the one is parallel to a corresponding line on the other.

Also, if a system of lines on the one meet at a point, the corresponding

lines on the other form a closed polygon. From these properties the

diagrams (F) and (/) are called reeepwm/ j/?(/wres.

No reference has yet been made to Fig. 33, but all that has been

said with referoneo to Fig. 32 will also apply to Fig, 33, where the given

forces are parallel to one another, except that the bars E and A are in

compression, the remaining bars B, C, and D being in tension.

An examination of Figs,' 32 and 33 will show that the simple rule to

be remembered in drawing the funicular polygon is, that any side of that

polygon has its extremities on the lines' of action of two of the forces,

ancl that that side is parallel to the line winch joins the pole to the point

of intersection of the lines which represent 'these two forces oii the polygon {

of forces.

Referring to Figs. 32 and 33, it may be noted that the eciuilibrant of
^



r and Q is repref!i;nted in magnitude and direction by r.a, and that the

]ioint of intersection of the sides A and 0 of the funicular ijolygon is n,

lifiint in the line of action of this efinilibraut. Also the e(i[uilibvaut of P,

tj, and Jt is rt'presented in magnitude and direction by da, and tlic point,

of intersection of the. sides A and D of the funic-ular jiolygon is a point

in the line of action of this equilibraut.

Having shown that the funicular polygon fcogesther with the polygon

of forces may be used to determine the equilibrant of a system of mjn-

eoncurrent forces, it is obvious that the same construction will also deter-

mine the resultant of that system of forces, since, tlui resultant acts along

tho same line and lias the same magnitude as the cipiilibraiit, but acts in

the opjKisite direction.

57. Examples of the use of the Funicular Polygon.—Two examples

will HOW' be worked out to further illustrate tho use of tho funicular polygon.

(1) Three vertical forces, AB, BC, and CD, act on a horizontal beam,

as shown in Fig. 34-, Tho beam rests on supports at its ends where there

are vertical reactions DF and EA. It is required to determine the

magnitudes of these reactions.

Since the forces are all ])arallcl tho polygon of forces will be a straight

line abedea, and the reactions will be represented by de and ea, the

position of the point e being as yet unknown.

Choose a pole o. Join oa, oh, oc, and od. Draw OA, OB, OC, and
OD parallel to oa, oh, oc, and od respectively as shown. Those four

lines, OA, OB, OC, and OD, will form four sides of the funicular polygon,

of which OE will be the closing side. Draw oe parallel to OE to meet
ad at e. This completes the solution. It will be found that DE— 1’48

tons, and EA= 1*27 tons,
i

(2) A horizontal beam AB (Fig. 35) is acted on by an inclined

force r=200 lbs,, a vertical, force Q= 150 lbs,, and an inclined force

R - 600 lbs., as shown. Thiere is also a vertical force T, whose magnitude
is unknown, acting at A^; and a force S acting at B, whose magnitude
and direction are bofih'ujikno;wpi. These forces being in equilibrimn, it is

required to determine T and .By .. .

By the polygon of ' forces the funicular polygon 1234 the line

of action 4^ of the resnlii-ht XT of the forces P, Q, and R is found.

Replacing P, Q, and R by XJ, there are now only three forces acting on



^rUH roLYUON OF FOKCFH

tlui beam AB, viz. T!", T, and 8, and since these forces are in equililjriuni

and are not parallel, their linos of action must nieet at a point vvliitdi

most he the point N ^\hcro the lines of action of U and T intersect.

This determine.s the line of action of S, and the polygon of forces being

coni])loted, the iuagnitnde.s of T and S are found to be, T “ 312’G lbs., and

S = 593‘3 11)3., and 9, the angle which the line of action of S makcvS with

the beam, is 26° 3'.

The forces T and S may, however, be found without the use of the

point N, as follows. Draw as much of the polygon of forces as the data

of the problem will permit. Choose a pole o and draw the funicular

polygon B5678, staHing at the 'point B, which is the only point in the

line of action of S which is slu yet known. 8B is the closing side of this

funicular polygon, and a line oc drawm parallel to 8B to meet that side

of the polygon of forces which is parallel to the line of action of T will

determine the- remaining angular jwint of the polygon of forces, and will

therefore fix the magnitude of T and also the direction and magnitude

of S.

58. Analytical Methods.—The following examples illustrate the

met])od.s of solving, by calculation, problems on forces acting in a plane

and at a point.

(1) TVo forces, P = 20 lbs., and Q = 10 lbs., act as shown at (a), Fig.

36, the angle between their lines of action

being 1 00°. It i.s required to find R, the P

resultant of P and Q. ^
Drawing the triangle of forces shown rQ (a) (o) '•J

at (b), the angle opposite to R is 5'iq. 3(j.

180° -100° = 80°.

Then, R‘^ = - 2PQ cos 80°

= 202 + 102 _ 2 X 20 X 10 X 0T7365= 430*54.

Therefore, R= J 430*64^ 20*75 lbs.

The angle $ which R makes with P is found,from the equation
,

>

sin 6 Q , _
‘
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Therefore,

a,nd

siu L - X 0-08481 = 0-4746,
20*75

^= 28° 20'.

(2) The linos of action of four forces, P, Q, B, and T, are as shown, at

(a), Pig. 37. The magnitudes of P and Q are 10 and 20 units respec-

tively, and the four forces are

in equilibrium. It is required

to find the magnitudes and
senses of S and 'P.

Drawing the polygon of

forces shown at {b), the senses

of S and T are seen at once.

Projecting the sides of

the polygon on to the hori-

zontal, it is evident that the

projection of T is equal to

the projection of S minus the projection of P plus the projection of Q,

or T cos 30° = S cos 45° - 10 cos 60° + 20 cos 30° . . . (i)

Projecting the sides of the polygon on to the vertical, it is evident

that the projection of T plus the projection of Q is equal to the projec-

tion of S plus the projection of P,

or T sin 30° + 20 sin 30° « B sin 45° + 1 0 sin 60° . , . (ii)

Fig. 37.

Solving the equations (i) and (ii),

T == 10 (2 4- v'S) = 37-32, and S = 20^2 = 28*28.

(3) PpPg.Pg, etc,, are forces acting at a

point O (Fig. .38), and their lines of action

are inclined to a horizontal axis OX at angles

^1, ^2, ^3, etc., respectively. Produce XO to

X^, and draw the vortical axis YOYj. Re-

solve each force into two components, one

along the horizontal axis and the other

along the vertical axis. The horizontal

components are, P^ cos 6>j, Pg cos Pg cos 0^,

etc.
;
and the vertical components are, P^ sin Pg sin 6^, Pg sin 0^^ etc.

The resultant of the horizontal components is,

cos ^2+ ^8 ^8 + • • • = 2(P cos 6).

The resultant of the vertical components is,

Pi sin ^i + Pg sin ^2 + ^8 ™ 613+ etc. . . ; = 5:(P sin 0),

If B is the resultant of all the forces, then

R2 = {2(P cos 0)}2 -f-|2(P sin 0)}^', and the line of action of R makes an

angle 6 with OX such that tan 0
® 2(P cos 6)

If the forces PjjPgjPg, etc., are in equilibrium, then R = 0, 2(P cos 6) = 0,

and 2(P sin 0) = 5 .

'

In applying the foregoing, equations- to numerical examples care must
be taken to give the proper fdg^braioal sign ( + or - ) to each quantity.



THE EOLYliON OF FOKCES 41

Exercises IV.

It in mtendccl that nil the following oxcreinrs should he worhed graphically, hut ?'n

addition the. student will find it advantageous to also mlcidnto the results.

1.

Belorraiiie the rcHultant of the forces shown at Ex, I, Fig. :}{), (1) l)y means
of the parallelogram of forces

; (2) by means of the polygon of forces, taking

In reproducing the above diagrams the sides of the small
squares are to be taken equal to half an inch.

the forces in the order given
;
and (3) by means of the polygon of forces, taking

the forces alternately, instead of in the order given.
2. By means of the polygon of forces determine the resultant of the forces

shown at Ex. 2, Fig. 39, Also, find the magnitudes of two forces, one acting
horizontally and the other vertically, which will balance the given forces.

3. Using a funicular polygon, determine the resultant of the forces shown
at Ex. 3, Fig. 39.

4. Using a funicular polygon, determine the resultant of the forces shown
at Ex. -1, Fig. 39.

6.

Find the resuffcant of the forces shown at Ex. 6, Fig. 39.
6. Find the resultant of the forces shown at Ex. 6, Fig. 39.
7. The forces shown at Ex. 7, Fig. 39, aro in equilibrium. Find the mag-

nitudes of P and Q.
8. A beam, loaded as shown at Ex. 8, Fig, 39, rests on supports at its ends.

Determine the magnitudes of the reactions Bj and Bg at the supports,
9. Determine the re,sultant of the forces shown at Ex, 9, Fig. 39.
10. The forces shown at Ex, 10, ITg, 39, are balanced by parallel forces acting

at A and B. Determine the forces at A and B.
11. F'ind the resultant of the forces shown at Ex. 11, Fig. 39.
12. The forces shown at Ex, 12, Fig. 39, are balanced by two forces, one of

which (P) acts along the vertical line through A, and the other (Q) acts in a
horizontal direction. Determine the forces P and Q.



CHAPTER V

moments AND CENTROIDS

59. Moment of a Force.—The moment of a force about a point or

axis, ])erpci)dic!u]ar to its line of action, is the pleasure of its turning

power rouml that point or axis. The magnitude of the moment

(mmerally called the moment) is the product of the magnitude of the

force and the perpendicular distance of its line of actmn f^o^ the point

or axis. For example, the moment of the force AB (Fig. 40) about the

point x\I is ei-iual to the magnitude of the force AB multiplied by MN,

the perpendicular distance of xM from the line AB. If the unit of force

is the pound, and the unit of distance is the inch, then the unit of

moment is the inch-pound or jmml-inNi. Other units of moment in

common use are the foot-pound or pound-foot, the foot-ton or ton-foot,

mA iwh-ton Qv ton-iwdi.
. x

The construction shown in Fig. 40 is a very convenient one for

determining graphically the moment

of a force about a point. AB is

the line of action of the force, and

M is the point. The construction

is as follows. Draw ab parallel to

AB, and make the length of db to

represent the magnitude of the force.

Through M draw a'Wb' parallel to

AB. Choose a pole o. Join oa and

oh. Take any point o' in AB. Draw i

o'of parallel to oa to meet a'Mb' at

of, and draw' o' &' parallel to o6 to
. ^ ^ -n i i.

meet a'lih' at h'. Then a'h' measured with a suitable scale will be the

magnitude of the moment of the force AB about the point M.
^

Draw oil perpendicular to ah, and o'hf perpendicular fo a'b . The

triangles oab and da'h' are obviously similar, and ab ; a'b'
; : oh \ o'h .

Hence ab y.o'h' -a'b' x oh. But a6 is the mapitude of the force AB,

and o'h', which is equal to MF, is the perpendicular distance of M from

AB. Therefore ab x o'h' is equal to the moment of AB about M, and

therefore a'b' x oh is equal to the moment of AB about M.

If oh is made equal to the linear unit, then a'b' measured with the

force scale will give the moment required. For example, if oh is 1 inch

and a'b' measures 20 lbs., on the force scale, then the required moment is

20 inah-pounds. It is,, not alwtuys convenient to make oh equal to the

unit of distance, bu| ‘it .aljotad be made a simple multiple or sub-

multiple of it,
,

The following is the dmple pile for determining the moment scale.

Let oh be m times the linear unit, arid let the force scale be n units of

\ 1

a.

N

K-
0*

B b'
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force per inch. Then the inoment scale will be m x 'w Units of moment
per inch. For example, let tlie linear unit be one foot^ and suppose that

vh, tmnwired with the Umar scale, is 4 feet. Let the force scale be

1 00 Ib.s. per inch, then the moment scale will be 100 x 4 = 400 foot-jmmds
per inch.

It may be pointed out that the figure is the funicular polygon

of the force AB with reference to the pole o.

60. Eesuitant Moment of a System of Forces.—The resultant

moment of a system of forces about a point is equal to the algebraical

sum of the moments of the separate forces about that point, and it is

obvious that this sum must bo equal to the moment of the resultant of

the system about the same point. Hence the graphical determination

of the resultant moment of a system of forces about a point resolves into

constructing the resultant of the system, and the determination of the

moment of this resultant about the given point by the construction of

the preceding Article. The two constructions may, however, be com-

bined in one, as shown in Figs, 41 and 42, AB, BC, and CD are three

given forces, and M is a given point. It is required to determine the

resultant moment of the given forces about the given point,

abeda is the force polygon
;
ad, the closing line, gives the magnitude

and direction of the resultant of the three given forces. A pole o is

taken at a perpendicular distance oh from ad, which is a simple multiple

or sub-multiple of the linear unit. The funicular polygon of the forces

with reference to the ])ole o is next drawn, and the intersection of the

closing sides OA and OD determines a point on the -line of action of the

resultant force AD. A line through M parallel to ad intersects the

closing sides OA and OD of the funicular polygon at a',and cZ'. The
moment required is equal to a'd' x oil. The triangle, o'afd' is obviously

^

similar to the triangle oati, and therefore, as shown in fJie preceding ;

Article, the moment of AD about M is equal to a'd' x ph.

I
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It Tiuiy bo observed that the moment of any one of the forces, say

BO, is obtained by dramng through M a parallel to BC to intersect the

sides of the funicular polygon which meet on BO at b' and c'
;
the product

of b'c and the perpendicular from o to &c is the moment of BG about M.
61. Principle of Moments.—^When a number of forces acting on

a rigid body are in equilibrium, then the moments of all the forces about

any given axis being taken, the sum of the moments of those forces

which tend to turn the body in one direction about the axis is equal to

the sum of the moments of those forces which tend to turn the body in

the oj>posite direction about the same axis.

62. Couples.—-A couple consists of two equal parallel forces acting in

opposite directions. The arm of a couple is the perpendicular distance

between the lines of action of the two forces. The moment of a couf)le

is the i^roduct of the magnitude of one of the forces and the arm of the

couple. A couple tends to cause a body to rotate.

Two couples will balance one another when (1) they are in the same
plane or in parallel planes, (2) they have equal moments, and (3) their

directions of rotation are opposite.

63. The Centre of Parallel Forces.—If a system of parallel forces

acts at fixed points, the resultant will act through another fixed point,

called the centre of the system. This centre is independent of the

direction of the forces so long as the sense of each in relation to the sense

of one of the forces is unaltered.

In Fig. 43, P, Q, R, and S are parallel forces acting at the fixed

points A, B, C, and I) respectively in a plane. By means of the force

and funicular polygons the line of action LK of the resultant is deter-

mined. Let the direction of the forces be changed so that they act as

shown by P', R', and S'. The line of action M.K of the resultant is

determined as before. The poirit where LK and MK intersect, is the-

centre of the parallel forces Pj -'Q, % and S acting at the points A, B, 0,
and D respectively. If the eonStruetion he repeated with the forces

acting in any other direction^, it' wBl he found that the new resultant

will act through the same poiht K. ' '

In Fig. 43 the forces P; Q, Rj' and S have all the same sense, and
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iliorororn 1.’', O', D', aiid S' iim.sl- have Ujc siuiie sense. But if the sense

(if 0 were opposite t(.) that of B, then the Sense of Q' would be opposite k)

that of F.
In applying the above method to the determination of the centre of a

system of parallel forces, it is usually most convenient to take the two

directions of the forces at right angles to one another.

In determining the centre of a system of parallel forces by calcula-

tion, it is most convenient to apply the principle of moments. Thus, let

P^, Pgj 1*3) ®^°‘) parallel forces in a plane acting at fixed points 1, 2, 3,

etc., in a rigid body
;
choose a point X in the plane of the forces, and let

the perpendicular distances of X from P^, Pg, Pg, etc., be x,^, x^, etc.,

respectively. Let B, be the resultant of the forces, and x the per-

pendicular distance of its line of action from X, then

Rx =- P^Xi + PgiCg + PgXg + etc., and x = .

Care must be taken to give the proper signs to the products PjXj, PgXg)

PgXg, etc. If one force tending to turn the body in one direction about

X be considered as having a positive moment, then another force tending

to turn the body in the opposite direction about the point X is to be

considered as having a negative moment. A line parallel to the direc-

tions of the forces and at a distance x from X will be the line of action

of R. Turning all the lines of action of all forces through the same

angle in the original plane, and repeating the calculation with reference

to the same point X, or any other point in the plane of the forces, a new
line of action of R is determined which intersects the first at the centre

of the given system of forces.

If the fixed points, and therefore the lines of action of the forces, are

not in the same plane, the procedure may be as follows. Select three axes,

X, Y, and Z, perpendicular to one another. Take the lines of action of

the forces in turn parallel to the axes Y, Z, and X, and in turn take

moments about the axes X, Y, and Z to determine z, and y the

distances from X, Y, and Z respectively of three planes parallel to

XY, YZ, and ZX respectively. The point of intersection of these three

planes is the centre required.

"

64. Centres of Gravity or Centroids.—The particles of which any

body is made up are attracted to the earth by forces which are propor-

tional to the masses of these particles. For all practical purposes these

forces may be considei’ed to be parallel, and their resultant will act

through the centre of these parallel forces. In this case the centre of the

parallel forces is called the centre- of gravity or centroid of the body, and

the determination of a centroid resolves into finding the centre of a

system of parallel forces.

The centre of gravity of a body may also be defined as that point

from which if the body is suspended it will balance in any position.

Wlien the term centre of gravity is applied to a line, the line is

supposed to be made of indefinitely thin wire
;
and when the centre of

^

gravity of a surface is spoken of, the surface is supposed to be made of

indefinitely thin substance.

The following results, which are not difficult to prove, .should be

noted
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Tlie cutitroid of a .straight lino i.s at its atiddle point.

The (Xiiiti-oid of a triaiiglo is at the iutersoction of its medians.

The centroid of a paralleiograiu is at the intersection of its diagonals.

If a plane figure is symmetrical about a straight line, the centroid of

the figure is in that straight lino.

65. Examples on the Determination of Centroids.—(1) ABC is

a triangle AB = BC==2| inches, AO = 3i inches. D is a point within

the triangle ABC 2} inches from A and 1 1 inches from B. Small bodies

are placed at the points A, B, C, and D, their masses being proportional

to the numbers .3, 3’5, 2*.o, and 5 respectively. It is required to find the

centre of gravity of the four bodies.

The graphic metlxod of working this example is fully explained in

Art. 63, and is illustrated by Fig. 43. The dimensions in Fig. 43 are,

however, not the same as given above. (If G be the required centre of

gravity, then AG — 1*94 inches, and BG= 1*21 inches.)

(2) A piece of wire of uniform thickness is bent to the form ABCD

(Fig. 44). The parts AB, CD, and DA are straight, and the part BC is

an arc of a circle whose centre is A. AB — 2^ inches, CD = 1 inch,

DA == 2 inches, and the arc BG subtends an angle of 60“ at A. It is

required to find the centre of gravity of the frame ABCD.
The arc BO is divided into four equal parts, and the centre of gravity

of each of these is assumed to be at its middle point. This assumption
only involves a small error, because the arcs are small compared with the

radius of the circle. It may also be assumed that the weights of these

small arcs of wire are proportional to the length of their chords. The
weights of the straight .sides are proportional to their lengths, and their

centres of gravity are at their middle points. The weight of each part
into which the frame is divided ' may be supposed to act at its centre of
gravity, and the problem becomes, similar to the preceding one. G is the
required centre of gravityr

.
•

, 'C' '
i

Scales to be uaed.-^For the frame,, full size. For the forces, 1 inch
equal to the weight of 2 inches of wire.
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removing from a triangle ABU
It is required to find the centroid

(3) A plane figure is formed

(Fig. 46) triangles ADE and FHK.
of the figure.

The centroids of the triangles ABC, ADE, and FHK are first deter-

mined by the intersections of their medians. Conceive that the triangle

ABC is made of very

thin sheet metal, and

that it is suspended

from its centre of

gravity by a string.

The tension R in the

string would be equal

to the weight (or area)

of the triangle. The
upward force E would

be balanced by the

downward forces W, P,

and Q, where W is the

weight (or area) of the

shaded figure acting at

its centre of gravity G (as yet unknown), P is the weight (or area) of

the triangle FHK acting at its centre of gravity, which is known, and

Q is the weight (or area) of the triangle ADE acting at its centre of
.

gravity, which is known. The parallel forces R, P, and Q are completely

known, and G, their centre, is the centroid required. The force and

funicular polygons for finding G are not shown.

To work this example by calculation proceed as follows :

—

R = area of ABC — |x4|x2j = ||- square inches.

P = area of FHK — | x 1^ x | = square inch.

Q = area of ADE = i
« = tV square inch.

W == shaded area = R - P - Q = f^ - jV “ tV— Tff square inches

Distance of centroid of ABC from BC = -5 x 4| = 1| inches.

Distance of centroid of FHK from BC = 4|-l|^-|xl| = 2 inches.

Distance of centroid of ADE from BC = 44-|x l|=r3| inches.

Distance of centroid G from BG = i».

Take forces parallel to BC, and take moments about B, then

X Ig ~ x 2 “i"

X

3^-f" Yw^. Hence 1^ inches.

Taking the forces parallel to AB, and taking moments about B, the

distance ^ of the. centroid G froifi AB is found to bo S inch.

Further examples on the determination of centroids will be found

later on in this chapter in connection with moments of inertia.

66. Centre of Pressure and Centre of Stress.—If a plane figure be

subjected to fluid pressure, the point in the plane of the figure at which

the resultant of the pressure acta is (^lled the centre of pressure. If

a plane figure be a section of a bar which i^ subjected to stress, the point

in the plane of the section at which -the resultant of the stress acts is

called the centre of stress. -
.

If the pressure or stress be unifbrm .over th0 figure, then the centre

of pressure or centre c
*
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A go.iioi'a.l coiisiructioii lV>r deterniiniug the (centre, of jiri'.ssurts or

coutru of stream of any plane figure wlieii the pressure or stress varies

uniformly in one direction is illustrated by Pig. 46. ABNODMA. is a

plane figure supposed to be vertical, and AB and CD are horizontal, AAj
is the altitude of the figure, and the pressure or stress is supposed to

vary uniformly from an amount represented by AP. at the level AB to an
amount represented by AjQ at the level CD. AP and A^Q are horizontal.

Join QP and produce it to meet A^A produced at O. Draw any
horizontal SliMlM to cut the given figure. Draw the horizontal OP, and
the verticals and NNj. Through IC, the middle point of 'MN, draw
the vertical KF. Join PM^ and PNj cutting MIST at m and w. If this

construction bo repeated at a sufficient number of levels, and all points

corresponding to m be joined, also all points corresponding to w, a figure

abnOhma is obtoincd, and the centroid of this 'figure will be the centre

of pressure or centre of stress of the original figure.

The proof is as follows. Suppose that the line MIST is the centre line

of a mry narrow horizontal strip of the original figure, and let the width

of this strip be denoted by w. The magnitude of the resultant pressure

or stress on this strip is equal to MN x w x RS, and it will act at K, the

middle point of MN.

Since SRMN is parallel to QA^DC,
: mn : ; OA^ : OB,

and, MN ; wn ; : A^Q : BS,
therefore MN:x'BS«=ww x AjQ,
and MN x w x RS = ww x x AjQ,

that is, the resultant of the pressure or stress on the strip of length mn
when subjected to a pre^ure or stress A^Q will have the same magnitude
as the i-esultant of the pressure pr stress on the strip of length MN when
subjected to a pressure or strees^ BS, and it will act at the same point K,
wMch is also the, middle point of rdn.

It follows that the resultant of the pressure or stress on the figure



MOMENTS AND OENTE.OIDS

abni-^Duni when suljjiHhi'd t<> a uniform pressure or stress AjQ will be
the same as the resultant of the varying pressure or stress ou the original

figure. But -when the pressure or stress on a plane figure is uniform, the

centre of pressure or centre of stress is at its centroid. Therefore the

centroid of the figure almOlJma is the centre of pressure or centre of

stress of the original figure.

Exercises Va.

The folloioing exercises may he worhed graphically , or by calculation, or ty a
combination of these methods.

1. ABOD is a square of feet side. A force P= 5tons acts from A to D, and
a force Q = 3'| tons acts from B to C. Determine the moment (in foot-tons) of

the resultant of P and Q about a point -within the square and 4 feet from AD.
la. vSame as preceding exercise, except that the force P acts from D to A

instead of from A to D.

lb. ABO is a triangle, AB= 1| inches, BC= 2J inches, and CA=2 inches.

A force P has a moment of - 12 inch-lbs. about A, a moment of -30 inch-lbs.

about B, and a moment of -i-20 iuoh-lbs. about C. Determine the magnitude
and line of action of the force P.

2. Six parallel forces, having the same sense, act at the angular points A, B,

0, D, E, and P of a regxilar hexagon of 2 inches side. The magnitudes of the

forces, taking them in the order A, B, 0, etc., are 2, 1|, 2J, 3, 1, and 1|. 3'ind

the centre of these parallel forces.

3. ABO is a right-angled triangle havingthe right angleat G. AB=2^ inches,

AO =!=1J'. inches. Determine the centroid of the three squares described on the

three sides of this triangle,

3a. Determine the centroid of the three equilateral triangles described on
the sides of the triangle given in the preceding exercise.

4. A wire is bent into the zig-zag form ABOD shown at Ex. 4, Fig. 47, and

Pia. 47.

In reproducing the above diagrams the sides of the small

squares are to be taken equal to half an inch.

is suspended by a string attached to the wire at the point A. Draw the direc-

tion of the string.

5. Determine the centroid of the figure sho-vra at Ex. 5, Pig. 47.

6. Determine the centroid of the figure shown at Ex. 6, Pig. 47.

7. The intensity of the load at any point of the beam AB, Ex. 7, Pig. 47, is

proportional to the height of the diagram above the beam at that point.
^

The

length of AB is 16 feet. Determine the position of the resultant load. J' j
v

8. Determine the centroid of the figure shown at Ex. 8, Pig. 47.

9. Determine the centroid of the figure shown at Ex. 9, Pig. 47.
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10. OAB is ii quadrant of a circle, the radii OA and OB being 2i inches long.

CD is a straight line cutting OB at C and OA at D. 00= 2 inches, OD=l|-
inohc.?. Determine the centroid of the figure ABCD.

11. The figure shown at B.x;. 11, Big. 47, is subjected to fluid pressure, which
varies uniformly from | lb. per square inch at the level AB to lbs. per square

iiich at the level CD. Detonniue the position of the centre of pressure of the

figure.

12. The figure shown at E.v. 12, Fig. 47, represents the section of a bar

which is subjected to tensile stress. The stress varies uniformly from nothing

at AB to 3 tons per square inch at CD. Determine the position of the centre of

stress of the section.

13. A vertical wall is 80 yards long and 42 feet high. The adjoining table

gives the pressures of the
wind on it, p pounds per

square foot,atvarious heights
Ji feet above the ground.

Draw a diagram showing
the relation between p and
h. Find the mean pressure

on the wall in lbs, per square
foot, and the total wind force on the wall in lbs. Find the line of action of

this force. Employ scales of 1 inch to 10 feet, and 1 inch to 10 lbs. per square

foot. [B.E.]

67. Moment of Inertia.—The sum of the products of the mass of

each elementary part of a body and the square of its distance from a

given axis is called the niomeni of inertia of the body about that axis.

Thus, if tn^, etc., be the masses of the parts of the body, and
rj, rg, rg, etc., be the distances of these parts respectively from the axis,

then the moment of inertia = \ +ete. . . . ='2mr\
The moment of inertia of an area and the mommt of inertia of a line

are defined in a similar manner by substituting area or Imgth for mass.

But since areas and lines have no inertia, they have, strictly speaking, no
moment of inertia.

The moment of inertia of a force about an axis perpendicular to the

line of action of the force is the product of its magnitude and the square

of the distance of its line of action from the axis.

The graphic method of determining the moment of inertia of a plane

area, or of a system of parallel forces, 'will be understood from the two
examples worked out in figs. 48 and 49.

Fig. 48 shows the application of the method to finding the moment
of inertia of a force AB about a point

M or about an axis through. M and
perpendicular to the plane of the paper.

Through M draw MY parallel to AB.
Draw MN perpendicular to AB. Ap-
plying the construction explained in

Art. 59, a'V x oh = AB X MN. Choose
a pole o' at a distance o*h' from a'h',

which is a simple multiple or sub-
multiple of the linear upit. From a
point »?/' .in..AB draw' parallel

to o''jai(;ahd parallel to Since
the’ ^Mangle is

Fth 4S
triangle it fqubwsthat a"&'' X o'A'

'

= a'h' X AfiV,and th^fore</6''' X o'-U X oh == a'h' x oh x MN. Buta'5' x oh

h 4 10 18 25 S3 42

V 9 12 lG-7 23-3
. i

23-6 26
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= i./>’ X i/A". l'b.yretV)ro a"h" > <>'h! x o1i =^AB x J/iV-== moment of inertia

of AB about M. a'h'n' and a'l/'n" are funicular polygons, of wMch the first

dotermiuesthemomentAB x MN,
and tlie second determines the

moment of this moment, namely,

(AB X ilN) X MN. The lengths

a'h' and a"
b" must be measured

withthe force scale,and thelengths

oh and o'A' with the linear scale.

Fig. 49 shows the application

of the method to the determina-

tion of the moment of inertia of

the shaded figure about an axis

a'
a"

in the plane of the figure.

The area is divided into parallel

strips, and parallel forces AB,

BC, CD, DE, and EF are sup-

posed to act at the centres of

gravity of these strips, the magni-

tudes of
,
the forces being pro-

portional to the areas of the

strips. The sum of the moments

of these forces about the given

axis is equal to a'/' x oh, and the yio.. 49.

sum of their moments of inertia

is equal to a"/" x oh' x oh. The lengths a'f and a"/" must be measured

with the area scale and the lengths oh and o'li -ndth the linear scale.
^

68. Moment of Inertia—Theorems.—A knowledge of certain

theorems, which will now be proved, will be found of great use in solving

problems on moment of inertia,
. x. 1

Theorem /.—If I* and are the moments of inertia of a plane

figure (Fig. 50) about axes OX and OY in its plane and perpendicular

to one another, and if I* is the moment of inertia

of the figure about an axis OZ perpendicular to

the plane XOY, then 1^— 1^ + 15,.

Consider a small element P of the figure,

whose distance from OY is x, whose distance

from OX is ?/, and whose distance from 0 is r,

and let a denote the area of this small element.

Then + y^, ar^ = ax^ + ay^,

== -1- Xa?/, therefore == + ly. Fig, 50.

Corollary 1.—If OZ is a fixed axis perpen-

dicular to tile plane of .the fi^re, and if OX and OY are any two

axes in that plane and perpendicular to one another, then I* -fly being

equal to I* is constant.
,

Corollary 2.—Since I* -fly is constant, it
,
follows that if \ is a

maximum, Ij, is a minimum.
^

Theorem II.—Let I~ the moment of inertia of a s

61 and 53) or a body IIK (Fig. 52) about £^n: axis XT'

its centre of gravity G
j
Ij = the moment of inertia ofJ

about an axis X^Xj^ parallel to XX and- at a distanced
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Miirfuitr ; W = weiglii of boily ; thou I
j

+ A/’-' for iho .surfiu'o, a,mi

= 1 + W/-‘‘ for tho body.

Couaidcr a .siaall eleraent F of the surface or body, and lot vi denote

its area or weight. Referring now to Figs. 51 and 52, let PM and PN
be perpendiculars from P to the axes XX and X^Xj respectively, and let

PQ be the perpendicular to MN from P. Then,

'PN2 = MN2 +M2 - 2MN • MQ

2mM2-2wMN2 + SljnPM^ - 2MN2otMQ,

but 2m MQ = 0, therefore 1^ -1 + Ar^ for the surface, and +
for the body.

The case which is of most importance, on account of its frequent

occurrence in practice, is the simple one in which the surface EF is

a plane figure (Fig. 53), and the parallel axes XX and XjXj are in the

plane of the figure. In this case P and Q coincide.

Corollary 1 .—If h and \ are the radii of gyration about the axes XX
and X],Xi respectively, I= AA:2 or W/c^, and or W/c^ Hence

== 7c2 4- r®.

Corollary 2.—The radius of gyration about a given axis passing

through the centre of gravity is less than the radius of gyration about

an axis parallel to the given axis, and the axis about which the radius of

gyration is least must pass through the centre of gravity.

69. Moment of Inertia—Fundamental Examples.—The graphical

method of finding moments of inertia was explained in Article 67, p. 60.

The analytical method will now be used, and in

practice this is generally the most convenient. ^ ^
(1) Straight line, or straight and uniform x H i

slender rod (Fig. 54) about an axis XiX;^ per-
''

pendicular to it, and passing through one end. ^

it <

Consider an element of length dx at a dis- ,

tance x from the axis.. Let w denote the weight of the rod per unit

of length. The weight of this element is iodx, its moment of inertia

is wxHx, and the total moment of inertia

'
,

, Ii« ~ = ,

where W is the total -v^ighteof dhe rod.

Radius of gyration squared .



moments and centroids 53

If tlio axis passes tlirouglx the centre of the rod instead of through
WP P'

one end, it follows that I = and =~ .

(2) Rectangle or parallelogram (Fig. 55) base of length a, and

altitude h, about an axis XiXj, coinciding with the base.

Consider an element of width dc parallel to the axis, and at a,

distance x from it. The area of this element is adx, its moment of

inertia is axHx, and the total moment of inertia

=s

I
axhlx ~

®
j* Icl —

If the axis passes through the centre of gravity of the rectangle c

parallelogram and is parallel to the base, then it follows that

^ alfi ,70
I = j^,and42 = ^.

(3) Triangle (Fig. 56) base of length a, and altitude about an

axis X^Xi coinciding with the base.

Consider an element of width dx parallel to the axis, and at a

distance x from it. The area of this clement is its moment

of inertia is and the total moment of inertia

h

If the axis XX passes through the centre of gravity G of the triangle

and is parallel to the base, then by Theorem II., Art. 68, p- 51,

Ij = I + • Therefore I =^ •

If the axis XgXg passes through the' vertex of the triangle'^ and is

parallel to the base, then ^
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Circle (Pig. 57) of radius E about an axis passing tlirougb. its

(icntre and jierpendieular to its plane.

fjonsider an element of the form of a ring con-

centric with the circle and having a -width dr and

a radius r. The area of this element is '2,Trrdr,

its moment of inertia is ^irrHr, and the total

moment of inertia

*Ri

Io= 2Tj'3rfr=27r =

(5) Circle of radius E about a diameter. If I is the moment of

inertia of the circle about a diameter XOX, then I will also be the

moment of inertia of the circle about a diameter YOY at right angles

to XOX. But the moment of inertia about an axis through the centre

0 and perpendicular to the plane of the circle is by Theorem I, Art,

68, p. 61, equal to 1+ 1 = 21, and by the preceding example this is

equal to
,
therefore 1 =5^.

(6) A right prism or right cylinder of any cross-section about an
axis X^X^ (Fig. 58) in the plane of the

base and passing through the centre

of gravity of the base.

Lot a — area of base, Z = length of

solid, Io = moment of inertia of base

about axis X^Xj_. Consider a thin

parallel slice of thickness dx parallel

to the base and at a distance x from it.

The centre of gravity G of this slice

will lie on the line G^Gg, joining the

centres of gravity of the ends. Take
an axis XX through G and parallel to X^Xj. Then, moment of

inertia of slice about XX = Iu/7.r, and moment of inertia of slice about
XjX

^
= Ifjdx + cu^dx. Hence It. the moment of inertia of the -whole

solid about X^X^, is

Ii == + 1
ax\lx = loj dx+ a| xHx = + lal\

(7) A solid of revolution about its axis. Fig. 59 shows the section

of a solid wheel or pulley. Take a parallel strip of this section parallel

to the axis XX of the solid. The
distances of the outside and inside of

this strip from XX are E and r re-

spectively, and its mean width is

AB = X. Consider this strip as the sec-

tion of a ring whose axis is XX. The
moment of inertia of this ring about

XX is approximately 5(R4_;?^)a;.

If the ends of the ring are parallel

its moment of inertia is exactly X-

Fig. 59.



MOMENTA AND CENTROIDS

work of finding 2a, 2ay, and

should be tabulated as shown below.

87 38 6x 38 18x1102 54 x 31958
81 42 6x 42 18x 1134 54x 30618

75 42 6x 42 18x 1050 54 x 26250
69 41 6x 41 18 X 943 54 x 21689
63 22 6x 22 18x 462 54x 9702
57 11 6x 11 18x 209 54x 3971
51 11 6x 11 18x 187 54x 3179
45 11 6x 11 18x 165 54x 2475
39 11 6x 11 18x 143 54x 1859
33 11 Ox 11 18x 121 54x 1331

27 11 6x 11 18 X 99 54 x 891

21 11 6x 11 18x 77 54x 539
15 23 6x 23 18x 115 54x 575
9 41 6x 41 18x 123 64x 369
3 39 6x 39 18x 39 64x 39

6x365 18x5969 kx 135445
=Sa =i'2a,y^

Totals

~ = 49 sixteenths of an in(

54 X 135446 t i t .a= 3-jV inches. L

not parallel the error in the above value for its moment of inertia is le.ss

the smaller the difference R- r. The moment of inertia of the whole

solid is the sum of the moments of inertia of all the rings into which it

is divided.

Fig. 60 shows how to convert the section of Fig. 59 into an equivalent

section symmetrical about an axis perpendicular to XX.
a6 = AB, and c/=CD + EF.

70. General Method of finding Moments of Inertia of Irregular

Plane Figures.—Taking a standard rail section (Fig. 61) as an example,*

let it be required to find the moment of inertia I of the section about an

axis XX passing through its centre of gravity and perpendicular to its

one axis of symmetry YY. Divide the section into a number of parallel

strips, preferably of equal width, perpendicular to Y'Y, and draw the

centre lines, shown dotted, of these strips. In Fig. 61, 15 strips, each

|-inch wide, have been taken. Take an axis X^X^ perpendicular to YY
and touching the lower end of the section. Let a; be the length of any

one strip measured at the centre of its width, and let y be the distance of

its centre line from X;iXj. To avoid fractions in this example the linear

unit is taken in the first instance as one-sixteenth of an inch. The area

of any one strip is its width multiplied by x, and is denoted by a. Let

y denote the distance of the centre of gravity of the section from X^Xj.

Then y2a = 2a?/, and the moment of *

X.X.=L=2aw2 The —ll
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.

'

. . 6 X 365 „ • T
Area of section-A=— == 8'55 square inches.

492
I- Ii - A|/2= 111*6 - 8-55 X |p=

31*4 in inch units.

(Radius of gyration)2 =P“ g;g^== 3’67, and h— jv/3'67 = 1*92 inches.

71. Moments of Inertia of Plane Pigures made up of Rectangles.

—A large numlier of beam and column sections are made up of rectangles

whose sides are either parallel or perpendicular to the axis about which

the moment of inertia is required. In such cases the procedure in

finding the po.sition of the centre of gravity and moment of inertia is as

follows. Referring to Fig 62, let the rectangle of

breadth b and depth d be one of the rectangles of which

the section is made up, and let X-^Xj be an axis parallel

to the side 5. Let y be the distance of the centre of

the rectangle from X^X^. The area of this rectangle is hd,

and the area of the whole section is '2bd. The moment
of the area of this rectangle about X^X^ is hdy, and

y sa
gSfT’ y distance of the centre of Fia. 62.

gravity of the whole section from XjXj. The moment of inertia of this

IhP f d^ \
rectangle about X^X^ is Y^-¥hdy^ — hd

( 12
+ 2'^),

moment of

/d?^ \
inertia of the whole section about X^Xj is '2hd f

J 2
*“ 2/^

)
“ ^

1
*

The moment of inertia of the whole .section about an axis passing

through its centre of gravity and parallel to Xj^Xj^ is - y^'2bd.

The particulars for each rectangle and the results of the calculations

should be tabulated in a form such as is shown below.

6 d Id y My
d^

12

i

1 , 1

Totals . . Md 'SMy

72. Transformation of Moments of Inertia—^Principal Axes of
Inertia.—Let EF (Fig. 63) be a plane

figure, and OA and OB two axes at

right angles to one another in the

plane of EF. Let A and B denote
the moments of, inertia of EF about
the axes OA and OB respectively.

Let OP and OQ he twp other axes in

the plane of EF, perpendicular to one
another, and inclined at angles d and
90° 4- d respectively to OA.' Let P
and Q denote the moments of inertia of



The axes OP and OQ, about which the moments of inertia are a

maximum and a minimum respectively, are called the prvmipal dices of

inertia of the figure for the

point 0. When 0 is the f
” “'*

1

centre of gravity of the figure
j

_ lQ\ J

the axes OP and OQ are then v

called the principal axes of
inertia of the figure. /

|

®
i

If a plane figure is sym- / f 'i (/
metrical about an axis in, its /

| 1 ^ 'I A
plane, it is obvious that that pf |pi 1— o^’nTip' IP
axis is one of the principal V

I I 1 I /
axes, and if the figure is \ \ J [

/ /
symmetrical about two per- N. \ | [

/
pendicular axes in its plane,

these will be the principal f
axes.

1 ]

73. Inertia Curves and [
'"j

Momental Ellipse.—Let OP
and OQ (Fig- 64) be the

principal axes of inertia of the plane figure' sho'^n by dfitled lines.

MOMENTS AND CJENTROIDH r>7

KP about the axes OP and OQ respectively, it is rctpiired to find the

relations between P and Q, and A, B, and 0.

Consider a small element of the figure EF at L, the area of this

clement being a. Draw LM perpendicular to OA, LNK and MH per-

])endicular to OP, and MK parallel to OP. Let OM =a;, and LM = y
LN === LK •- KF === LK -- MH == y COS 0 -- a* sin (9, and

= cos^ 61-f .a- sin^ 0 - 2ay sin d cos 6*

= cos^ sin^ sin 20.

The moment of inertia of the element at L about the axis OP is

equal to cos® 0 + ax^ sin® 6 — axy sin 20
, and the moment of inertia

of the whole figure EF about OP is

P = 2a?/® cos® 0 -p 2acc2 gPi2 0_2aajy sin 20, therefore

P=:A cos® 0 + B sin® 0-C sin 20, where Q~'2axy.

Changing 0 into 90°
-t- 0, Q = A sin® 0 -p B cos® 0 -P C sin 20.

Hence P - Q = (A - B) cos 20 - 20 sin 20.

If tiro moment of inertia of the figure is a maximum about the axis

OP, then P will be a maximum and Q a minimum, also P - Q will be a

maximum.

Differentiating, == _ 2(A - B) sin 20 - 4C cos 20, and when

P - 0 is a maximum, - 2(A - B) sin 20 - 40 cos 20 = 0, and
20« -(A-B)tan 20.

Hence when P - Q is a maximum
P - Q == (A - B) cos 20 + (A - B) tan 20 sin 20, therefore

A — B*::: (P - Q) COS 20. But A -P B = P -p Q, therefore

A = p(ht.^l?^) eo»s «+Q sin^ «, and

(i
p( Ip* H
1

ffiGi-. 64. '
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Lot the uiuments of inertia of tlie figure about OP aaicl OQ be ()? = ?
iind OQ"Cjli rospectively^ and let the moment of inertia of the figure

about an axis OA making an angle 6 with OP be OA-A. Then by the

fonuula prov'fjtl in the preceding Article, A~P cos‘-^ ^ + Q sin- (9. If P
and Q are knowii, ami A be calculated for different values of 0 and the

results j)lotted, a curve FAQ, called -aw insriia curve, for the given figure

is determined.

Let a denote the area of the given figure. On OP make OP' = 7’^

= DO make OQ' — OA make OA ' — r^

Draw A'N" perpendicular to OP. Let ON =avand A'N — y.

1 = -^ =
r2 a

cos" 9 +^ siiff 9^ + ~r-~, therefore— + = 1

and therefore the locus of A' is an ellipse whose j)rincipal axes are P'OP'
and Q'OQ'. This ellijise is called the momental ellipse of the given

figure. It will be noticed tliat any semi-diameter of the momental ellipse

of a given figure is the reciprocal of the radius of gyration of the figure

about that diameter.

74. Determination of the Principal Axes of Inertia of an XJnsym-
metrical Plane Figure.—There are cases in practice in Vi''hich it is im-

portant to know the least moment of inertia, or least radius of gyration,

of an unsymmotrieal plane figure, a common example being that of the
section of an angle-bar

^

used as a strut, and this

form of figure* will be

used to illustrate this

problem. Fig. 65 shows

an L-section 3 inches x

2 inches x ^ inch, made
up of two rectangles.

In an actual angle-bar

section there is a fillet

at the inside angle, and
the outer inside corners

are rounded, and these*

modifications of the

section showm in Fig. ,G5

can be allowed for if

Find 0 the centre

of gravity of the section,

and draw axes OA and
OB parallel to the sides of the section. Determine A and B, the

moments of inertia of the section
,
abbut OA and OB respectively.

Take another axis, 00 inclined to OA, preferably at an angle of 45°.

Find the moment of inertia C of the section about OG. If D is the

moment of inertia of the' seetibn about an axis OD perpendicular to 00,
thenD =A + B-6. '

•

Let OP and OQ be the principal axes of inertia, and let 9 denote the
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iuiglc! PGA and f/j tlio angle POG. Let P and Q denote the moments of

ineTtia al)ont the axes OP and OQ respectively.

Hv Art. 72, A - B -- (P - Q) cos 20, and G - D - (P -
- Q) cos 2<^>,

Tdenee

Having found d, P — Q = -vij P + Q =A+ B. Hence P and
” cos 20

Q can be found.

If OA, OB, OG, OD, OP, and OQ be made equal to A, B, G, D, P,

and Q respectively, the inertia curve for the section may bo drawn. If a

is tlie area of the section, and OP' be made equal to ^^ ,
and OQ' be

made equal to a/x .
then OP' and OQ' will be the semi-principal axes

\ Q
of the momental ellipse of the section.

In the example illustrated in Pig. 65, P = 2”17 and Q = 0‘42, in inch

units. The student should work out this example, and draw the com-
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oxaiujik?, tli(' lieauis .shown in Fig. 66 aru acted on hy forced F, and Jl

to the right of the tran.sverse section XY, and the bending nioment at

XY i.s equal to P X / + Q X m - R x ?/.

'Flic loads on a beam also tend to shear the beam tran.sversely, and

the shearing acti(m at any transver.se section is equal to the re.sultant of

the tran.sver.se forces on one side of the section. For example, the

shearing action at the section XY of the beams shown in Fig. 66 is

equal to the resultant of the forces P, Q, and B. which act to the right

of the section, and this resultant is equal to P + Q - R.

The drawing of the bending moment diagram for a beam is .simply

the application of the construction explained in Article 59. In Fig. 67

is shown a horizontal cantilever carrying vertical loads AB, BC, and CD.
ahed is the line of loads, or polygon of forces. A pole o is chosen so

that the pole distance oh is a simple multiple or sub-multiple of the

linear unit. The funicular polygon a‘d'n' is then drawn. It is easy to

show, as in Article 60, that the bending moment at any section XY is

equal to a-^di x oh, i.e. the depth of the funicular polygon under the

section multiplied by the pole distance. The depth of the funicular

polygon is measured by tlio force scale, and the pole distance by the

linear scale. It follows that, since the pole distance is the same for

all parts of the funicular polygon, the depth of the funicular polygon

under any section of the beam is a measure of the bending moment on
the beam at that section, the scale for measuring the bending moment
being found as explained in Article 59.

The shearing force diagram is constructed by drawing horizontals

across the spaces A, B, C, and D at

the levels a, b, c, and d respectively.

The depth of this diagram under any
section of the beam, measured with
the force scale, gives the vertical

shearing force on the beam at that

section. For example, at the section

XY the shearing force is the resultant

of the forces to the right of XY, and
is equal to BC + CD = bc + cd= hd.

Another example is illustrated in

Fig. 68. The beam in this case is

supposed to rest on supports at its

ends. There are three forces AB,
CD, and DE acting downwards, a
force BC acting upwards, and the

reactions EP and FA at the sup- h|'

ports acting upwards. The bending
moment and shearing force diagrams

gg
are drawn as already explained. It

will be noticed that the forces DE and EP are equal, and therefore

there is no shearing force 6h, that part of the beam in the space D
; also,

the bending moment on that part of the beam is uniform. The thick

line HKLM shows roughly how the: beam will bend
;
the points K and L

3 the bending moment changes its sign are points of inflexion.

In the examples illustrated by Figs. 67 and 68 the loads acting on



the !.)eaui are supposed to be concentrated loads, i.e. loads acting at

definite points. When a load is distributed over the whole length or

a part of the length of a beam the bending naoment and shearing force

diagrams are determined graphically by dividing the part of the beam
carrying the distributed load into a number of parts, and assuming the

loads on these parts to be concentrated loads acting at the middle points

of these parts, and then proceeding as for concentrated loads.

Bending moment and shearing force diagrams are further considered

in Chapter VII,

Fig. 70. Fig. 71. Fig. 72. Fig, 73.

are 3^ inches xSJ inches xf inch, and the plates are i inch thick. Find the

square of the least radius of gyration of this section.

8. The cross section of a Phoenix column is shown in Fig. 73. Find the

square of the least radius of gyration of this section.

9 . Calculate the greatest and least moments of inertia of a T-iron section

5 inches wide, 4 inches deep, and ^ inch thick.
,
Construct the inertia curve

and momental ellipse for this section. Linear Scale, full size. Inertia scale,

^ inch to 1 unit of moment of inertia, the moment of inertia being in inch

units.
, . , • n • ^

10. A Z-bar section has a total depth of 5 iuolies, each flange is H inches

wide over-all, and the thickness throughodt is fcqh. Find the principal axes

of inertia, and construct tlio inertia curve and momental ellipse fur tliis section.

State the value of the square of the least mdi^^of j^nration.
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11. C'alculate the squaire o£ the least radius of gyration ol' an angle-iron

section. 5 inches x 3^ inches x f inch, and construct the

inertia curve and momental ellipse for this section,

12. Show that, the momental ellipse for any regular

polygon is a circle.

13. A column is built up of two channel irons 12

inches x 3|f inches x J inch, and two plates each J inch

thick, as shown in the section Fig. 74. Determine the

dimension x in order that the greatest and least moments
of inertia about axes through the centre of gravity of the

section may be equal.

14. Fig. 75 shows the British standard section for

No. 1 standard raU for tramways, a rail which weighs 90 lbs. per yard. Deter-

mine (1) the area of the section, (2) the distance of the centre of gravity of tlie

section from the bottom, and (3) the moment of inertia of the section about an
axis through the centre of gravity and parallel to the underside of the bottom flange.

16. The section of a small cast-iron fly-wheel is shown in Fig. 7(j. Find (1)
the weight of the wheel in lbs., taking the weight of 1 cubic inch of cast-iron
= 0-26 lb., and (2) the radius of gyration of the wheel about its axis.

16. A beam of 20 feet span, supported at the ends, is loaded at points 4, 9,
and 17 feet from pne end, the loads being 2J, 3J, and 4-.^ tons respeotively.
Construct, graphically, the bending moment and shearing force diagrams, ui'id

measure the bending momettt and .shearing force at the middle of" the beam.
Linear scale, J inch to 1" foot. Force scale | inch to 1 ton. Pole distance, 10
feet.

17. A beam of 20^ feet span, supported at the ends, carries a brad of 20 tons
uniformly distributed over its length, Determine, graphically, the bending

BST'

ftmmem

H
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mnrncnt and shearing force diagrams, and state the values of the bending

moiaeiit and shearing force at a section 6 feet from one end. Linear scale, J

inch to 1 foot. Force scale, J inch to 1 ton,

18 4. horizontal lever 10 feet long is hinged at one end and supported by a

vcrlical^chain at a point 7 feet from the hinge. The lever carries a load of

11 ‘•>0 lbs at a point 4 feet from the hinge and a ’oad of 1400 lbs. at the free

eiiA Determine, graphically, the tension in the char i, and construct the bending

moment and shearing force diagrams. r
,

, ,

19 A beam AB, 30 feet long, rests on two intermediate supports at points

C and D which are 9 feet and 19 feet respectively from the end A. The beam

carries a load of 20 tons uniformly distributed over its length, besides concen-

trated loads of 2, 5, and B tons at points 1, 12, and 28, feet respectively frim

the end A. Determine, graphically, the reactions of the supports at 0 and D,

and construct the bending moment and shearing force diagrams. State the

values of the bending moment and shearing force at the centre of the beam.
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SIMPLE STRAINS AND STRESSES

76. Load.—The combination of external forces acting on any piece

of construction is called toad on that piece. The following are

examples of forces which may constitute the load on a piece ;—(1) Forces

arising directly from the purpose for which the j)iece is designed, and
which constitute the u$efid load. For instance, the useful load on the

chain or rope of a crane or hoisting engine is the weight to be lifted.

(2) Forces due to the weight of the piece, or of pieces connected with it

;

thus, in tlie chain or rope mentioned above the load partly consists of the

weight of the chain or I’ope, and in winding engines for deep mines the

weight of the wire rope used forms a considerable part of the load which
the rope has to carry. (3) Force.s due to the inertia of heavy moving
parts when their velocitie.s vary

;
thus, the thrust or pull on the piston-

rod of a steam-engine is not simply that due to the pressure of the steam
on the piston. When the velocity is increasing the effect of the inertia

of the piston is to diminish the thrust or pull due to the steam pressure,

and vice versa, (4) Centrifugal forces, as in the arms and rim of a
rotating wheel or pulley. (5) Forces due to friction. (6) Forces due
to the unequal expansion or contraction of parts following variations of

temperature.

77. Strain and Stress.—The effect of a load acting on any piece of

construction is a change of form or dimensions of the piece, and this

change of form or dimensions is called strain. The combination of

internal forces which arc called into play in the material of any piece of

construction to resist or balance the load is called stress.

There are three kinds, of simple strain and stress :—(1) Tensile strain

and tensile stress. (2) Compressive strain and compressive stress. (3)
Shearing strain and sheari'n^ stress.

78. Tensile Strain and Tensile Stress.—If a bar AB (Fig. 77) be
pulled in opposite directions by forces

PP acting at its ends the bar becomes p- 1 »i

longer, and a tensile strain or elongation is [A b|

produced. If I is the length of the un- q
strained bar, and a? the increase in length ^A-Ia
produced by the action of 'the load, then
the tensile strain is measured by the

fraction xjl. If any imaginary section of

the bar be taken at right angles to its length, say at C, the internal

forces Q at this section balance the force P at B, and the internal

forces R will balance P at A,, . Thepe internal forces, which are distributed
over the whole of the sec^on at C, resist the' tendency of the forces

, 64
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PP to pnit the bar asunder at C. TMs system of internal forces is called

tensile stress.

Since stress is a distributed force, its intensity is measured in the
same way as that of fluid pressure, viz. by the number of units of force

on a unit of area, such as pounds per square inch, tons per square inch,

or tons per square foot.

If the stress at the section C be uniformly distributed over the section,

and its intensity be denoted by f (say in lbs. per square inch), and if

a denote the area of the section (say in square inches), and P denote the
load (say in lbs.), then it is obvious that Y— af.

79. Compressive Strain and Compressive Stress.—If the external

forces acting on the bar AB (Fig. 77) be reversed in direction, the bar
becomes shorter by an amount a;, and a compressive strain is produced
whose amount is mil. At any cross section C there is compressive stress

which resists the tendency of the forces PP to crush the bar at 0.

As in the case of tension, if the stress is uniformly distributed over
the cross section, P = a/, but/now denotes compressive stress.

It should be mentioned here that unless a bar which is subjected to
compression by a load acting in the direction of its length is short com-
pared with its transverse dimensions, it has a tendency to bend, and the
compressive stress at a transverse section is not uniform, hence the formula
P = a/only applies to short pieces, or to long pieces if special means are

adopted to prevent the bending of the latter. Long pieces in compression
are considered in Chapter X.

80. Shearing Strain and Shearing Stress.—Suppose a rectangular
block of india-rubber ABCD (Fig. 78) to have its face BC cemented to

a vertical wall, and that it has a rigid plate cemented to its opposite face

AD. The face ABCD being vertical, let a
vertical force P be applied at the middle point ^3 ^ A

, ^ X
of the lower edge of the plate. The force P % p 1

will evidently tend to make the plate slide on %
j ^ % i

the face AD of the rubber. The force P will |
also tend to make the face BC of the rubber ^ P |
slide on the wall, and it is also evident that if ^ i ^ ^
any vertical transverse section XX be taken

i % I
dividing the block into two parts, the force p ^
P will tend to make the part AXXD slide on X *^19 X T
the part BXXC along the interface XX, as 78.
shown to the right of Fig. 78. In each case

the tendency to slide is resisted by a tangential or shearing stress acting
along the face.

The load P will cause the block ABCD to become distorted so that
the rectangle ABCD will become a parallelogram aBCc?, and the shearing
strain produced is measured by the fraction Aa/AB or xjl.

If the area of a transverse section XX is denoted by a, and if the
shearing stress is uniformly distributed over the section and is deno
by/, then as in the case of tension P= fl/-

81. Volume Strain.—If a body he subjected to pressure all over
surface, as when immersed in water under pressure, it will suffer a cha
of voliune, and if V is the original volume of the body, and v t

tion of volume due to the pressure, then; called the volui
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If ? is the length of the edge of a cube, which, when placed under

pressure all over its surface, becomes l- x^ then the new volume becomes
7'** - Wx 4- Ux? - .'c®, and the change in volume is - Wx+ Mx? ~ x^)

or 2>Px — Mat + but since x is always a Very small quantity, the second

and third terms of this latter expression may usually be neglected;

hence the change in volume is very approximately •3Z“;c, and the volume

strain or ^xjl, which is three times the linear strain.

82. Elasticity.—Strain is produced in a body by the action of a load

on it, and if, when the load is removed, the strain disappears, the body

is said to be perfectly elastic up to that particular load, or up to the

particular stress corresponding to that load. If when the load is removed
the strain does not entirely disappear a penmnent set has been produced,

and the elmtic limit is reached when the load is the largest which will

not cause a permanent set.

It was discovered by Robert Hooke that so long as the elastic limit is

not passed the strain produced is directly proportional to the load pro-

ducing it, and since the stress is directly proportional to the load causing

it, it follows that stress strain is a constant ratio up to the elastic

limit for a given material, or more correctly, for a giveir piece of material.

This is known as Hooke's laiu.

The value of the constant ratio stress strain is called the modulus

of elasticity or the coefficient of elasticity.

When a body is subjected to simple tension or simple compression,

there being no external forces acting to prevent the exceedingly small
lateral contraction or lateral expansion of the body, the coefl&cient of

elasticity is the coeflcient of direct elasticity

^

and is called Young’s
modulus. The letter E is generally used to denote Young’s modulus.

When the strain is a shearing strain, and the stress of course a
shearing stress, the ratio stress ~ strain is called the coefficient of trans-

verse elasticity or the coefficient of rigidity. In this work the coefficient

of rigidity will be denoted by the letter C.

When the strain is a volume strain the ratio stress -r strain is called

the coefficient of elasticity of volv/tne or the coeffixient of cubical elasticity.

In this work the coefficient of elasticity of volume will be denoted by
the letter K.

83. Applications of Young’s Modulus.—If a bar of length Z, whose
area of cross section is a, suffers an alteration of length amounting to i?;,

under the application of a load W acting in the line of the axis of

the bar, and if / is the stress produced, then by Art. 78 or Art. 79

W= af Also by Art. 82, E ^

stress _/Z

strain x
the following results are easily obtained

From these two equations

fl WZ a&x j .
= W = -p.and/. T

If the bar mentioned above be heated or cooled so that if free to
expand or contract it would, expand or contract by an amount x, then
the forces which must be applied at each end of the bar, to prevent the
expansion or eontraetioa, vsdU be each equal to W, and the equations
above will aj)ply to this qas^ S Z-fa; he substituted for 1. But since x is

very small compared with I, the error introduced by using I instead of



Strain on first bar

Strain on second bar
^

ic-a'g ’

and since the pnll on tbe one bar must balance the thrust on the other
" ^2/2 •

Since and are very small compared with 7, the error introduced
by putting I instead of l-\-x^ and I + x^ in the above equations may be
neglected.

The method indicated above may easily be extended to determine the
relations between the various quantities when the compound bar is made
up of more than two bars of different materials.

84. Bars of Varying Cross Section.—If at any point in the longtli

of a bar wliich is in tension the cross section suddenly changes, then tlic

stress at that section will not be uniformly distributed over the si'ction
;

and at sections for some distance on each side of that section the stress

will not be uniformly distributed, -and; the rules already demonstrated in

this chapter will not apply. ,But if several parts of a bar bot^vecn
the points where sudden changes of section occur be h>ug compared with
their cross sections, the elongations^otthie^e- several parts of the bar may

l + X may be neglected. The quantity x will of course he determined

from the change of temperature and the coefficient of expansion of

the bar.

If a compound bar be made up of two bars of different materials,

firmly united at their ends, so that the component bars must suffer the

same alteration of length when the compound bar is placed in tension or

compression by a load W, then if % and a,^ be the areas of the cross

sections of the component bars, /j and /g the stresses produced in them
by the load W, Ej^ and Eg, their coefficients of elasticity, I the original

length of the compound bar, and a; the alteration in length produced

by the load W, then the following equations will obviously apply :

—

e2=4^,
/g Eg

If the foregoing is understood, the case of a compound bar made
up of more than two bars of different materials presents no difficulty.

Considering further the compound bar made up of two bars of

different materials
;

suppose that the compound bar is heated or cooled,

so that the component bars, if entirely free, would expand or contract by
amounts Xj^ and respectively. Assuming that the two materials have

different coefficients of expansion, then % and would not be equal.

Let he the greater. The first bar will tend to lengthen or shorten by
an amount x-^, but will be prevented by the other bar, which tends to

alter by the amount x^ by the change of temperature. The first bar will

therefore drag the other in one direction, while the second will drag the

first in the opposite direction. The result will be that the alteration in

length of the compound bar will be an amount a:, which will lie between
and a-g. Also the stress produced in one bar will be tensile, while

in the other it will be compressive. Using the same notation as

before

—
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be determined witbout great error by assuming that the stress is every-

where uniformly distributed and given by the formula /==?/«, a\ hero /is

the stress at a cross section whose area is u, and P is the load.

The effect of sudden changes of section on the behaviour of a loaded

bar is further considered in Article 165, p. 174.

85. Strength and Factor of Safety,—If the load on a piece which

is in tension or shear be continuously increased, the piece will ultimately

fracture or break in two, and the smallest load which will do this is

called the hrealcmg load, and the corresponding stress or breaking load

])er unit of original section is called the ultimate stress or ultimate

strength of the piece. All solid materials have ultimate tensile

ultimate shearing strength, and many have an ultimate crushing strength,

but for certain ductile materials, such as wrought-iron and mild steel,

there is no definite load which will cause complete fracture when they are

subjected to compression.

When a piece is loaded up to the elastic limit, the stress produced is

the elastic strength of the piece.

The largest load, repeatedly applied, which a piece will carry without

taking a permanent set is called the proof load, and the corresponding

stress is the proof stress or proof strength.

The proof strength, as above defined, is less than the elastic strength,

because experiment has shown that a load less than that required to

produce permanent set may, if repeated a sufficient number of times,

cause permanent set, and a load just under the elastic load will, after

one or two applications, generally cause permanent set. This proof

strength is difficult to determine, and in practice the term proof strength

is often taken to mean elastic strength. Also, the elastic strength is

frequently taken to mean the stress when the first decided set has taken
place, as in mild steel, when the yield point is reached.

The load put upon a piece in actual use is the worMng load, and the

corresponding stress is the worhing stress or worlcing strength. For
safety the working stress must be less than the proof stress. The
working stress is usually determined by dividing the ultimate stress by
a number called a factor of safety, but it may also be fixed by dividing

the proof stress by another factor of safety.

The value of the factor of safety to be used in any particular case

must be determined by experience and judgment. Some of the con-

siderations which influence the value of the factor of safety are—(1) the

degree of certainty as to the magnitude of the greatest load which is

likely to act on the piece
j (2) the character of the load, i.e. whether it

is a fixed or constant load, or a constantly changing load; (3) the
consequences of a breakdown

; (4) the reliability of the material used

;

(5) the amount of deterioration or wear which may take place in the
piece when in use.

86. Stress-strain Diagrams.—If the strains and corresponding
stresses on a loaded bar be plotted in the usual w^ay (Fig. 79), then since
stress 4- strain is, a constant up to the elastic limit, the diagram up to
this point will be a -sloping straight line OA. After the elastic limit
is reached the strains increase. more rapidly than the stresses, and the
results are represented by a more or less irregularly curved line AB.

So long as the cross section of a loaded bar does not sensibly alter,
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the stress is stnisilily proportional to the load, hut ductile materials, such
as wrought-iron and mild steel, alter considerably in

cross section when loaded in tension or compression

beyond the elastic limit, and the stresses are there-

fore no longer to the load. For
example, if a bar in tension has an area of cross

section at the fracture equal to half its original

area, the actual stress at fracture will be twice

the nominal stress, the nominal stress being equal

to load •4- original area. If, therefore, the diagram
(Fig. 79) is a true stress-strain diagram, it will

not be a true load-strain diagram. In practice it

is the load-strain diagram which is actually drawn
by the autographic apparatus on a testing machine. The diagrams are,

however, often spoken of as stress-sti-ain diagrams when they should be
called load-strain diagrams.

The actual form of the stress-strain diagram or load-strain diagram
varies greatly for different materials. Difterent forms of the diagram are

considered in Chapter XL
87. Work done in Producing Strain.—^The load-strain diagram is

also a diagram representing the work done in producing the strain. In
previous Articles of this chapter strain has been
denoted by a;/Z. Hence referring to Fig. 80, it fol-

lows that if OX represents a particular amount of

strain it will by altering the scale also represent

the quantity x. Lengths along ON then represent

distances through which the load acts, and the

heights of the line OAB above ON represent the

variation in the load as the bar is deformed. It

follows that the work done in deforming the bar,

say by the amount OX, is represented by the area

of the figure OAYX, where XY is perpendicular

to ON. (See Art. 41, p. 25.)

88. Eesilience and Shock.—^The work done in straining a bar up to

the elastic limit is called the vesilience of the bar. Eeferring to Fig. 80,
the area of the triangle 0AM represents the work done in straining the

bar up to the elastic limit. If the bar is in tension or compression,

OM = X, the amount of extension or compression, and AM is the load W
at the elastic limit. Hence the resilience = |W£B = where a is

the area of the cross section of the bar, and / the stress at the elastic

limit. But it has been shown (Art. 83) that a:=™, therefore

resilience = but al is the volume of the bar, therefore, putting V == aZ,

2Eresilience =

If the bar is strained to some point below the elastic limit the

expression for the work done will still be but the stress ./ will not
iijfi

,

now be the stress at the elastic limit, but wi^ correspond to the strain

produced.
,

, ,
,

'
'

-
,

•'
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If w in the -^veight of a unit voltuno of the bar, then the weight of the

])ar will be 'V'W. Let h equal the height through which this weight must

fall in order to accumulate an amount of energy equal to the resilience of

the bar, then V/a /s

V.4 =W,and7.=4.
The resilience of a bar is a measure of its power to resist a blow or

shock without taking a permanent set.

Suppose a bar AB (Fig. 81) of length I and area

of cross section a to be suspended from one end, and •

let it have a weight W threaded on it as shown. If < ^
the weight is allowed to fall freely through a height Ti ^ ^
before striking the head formed on the lower end of

1 .

the bar, the bar will lengthen an amount x, and the
|

total fall of the weight will be li + x. At the end I L
of the fall the resistance offered by the bar to fjS. T

|

further stretching will be af, where / is the maxi- 8

mum stress. The diagram of work done on the bar, i|

assuming that it is not strained beyond the elastic

limit, will be a triangle whose area \afx will equal Fia. 81,

the work done in stretching the bar, and this must
equal the work done by the falling weight.

Therefore W(7i-l-£c) = but =

Hence

Solving this quadratic equation, /= ~ +

When the load W is applied gradually, as when the bar is stretched

in a testing machine, the maximum stress, when the load is all on,

W
becomes — ,

but if the full load is put on at once the maximum stress, as

shown above, is ~— . The effect of a suddenly applied load is therefore

to produce a stress double that produced when the load is apidied
gradually.

1. A steel wire 0*08 inch diameter and 60 feet long is subjected to tension
by a load of 112 lbs. Determine (1) the stress in lbs. per square inch, (2) the
elongation in inches, (3) the stiram, and (4) the work done, in inch-lbs., m pro-
ducing the strain. 18=30,000,000 lbs. per square inch.

2. A steel piston-rod 2 inches diameter is subjected to a pull and thrust alter-
nately. The tensile and conipreSsive stresses are each 8000 lbs. per square inch.
Two points A and B on the axis of the rod are 4 feet apart when the rod is
unloaded. Determine (t) 'the effective load on the piston, (2) the difference
between the greatest and least- distances between A and B. E= 30,000,000 lbs.
per square inch.
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3. A fcrro-conorete column is 12 inches square. The j^rincipal reinforce-

ment consists of four longitudinal steel bars placed near the angles of the

column, and having an aggregate cross sectional area of 11 square inches. The
load carried by the column is 60 tons. Determine the compressive stresses in

the concrete and steel, in lbs. per square inch, assuming that the modulus of

elasticity of the concrete is one-tenth that of the steel.

4. A steel tube, 1'25 inches internal diameter, 0’104 inch thick, and 12 feet

long, is covered and lined throughout with copper tubes 0*08 inch thick.
_

The
three tubes are firmly united at their ends. This compound tube is subjected

to tension, and the stress produced in the steel tube is 9000 lbs. per square inch.

Determine (1) the elongation of the tube, (2) the stress in the copper tubes, and

(3) the load carried by the compound tube. E = 30,000,000 lbs. per square inch

for steel, and 16,000,000 lbs. per square inch for copper.

6,

The compound tube in the preceding exercise is raised in temperature
200° F. Find the stresses in the steel and copper, and the increase in length of

the tube. Also, what must be the magnitude of the forces, which, applied to the

ends of the tube, will prevent its expansion ? Coeflicients of expansion of steel

and copper 0*000006 and 0*0000095 respectively per degree F.

6. If a thin circular hoop is strained and remains circular, prove that the
circumferential strain is equal to the diametrical strain.

7. A cylindrical steel hoop has an internal diameter 20 inches, thickness 1

inch, and breadth 1 inch. A second steel hoop has an internal diameter 21*97

inches, thickness 0*7 inch, and breadth 1 inch. The second hoop is expanded
by heating and is then shrunk on to the first hoop. Determine (1) the new
internal diameter of the first hoop, (2) the tensile stress in the second hoop, and
(3) the compressive stre.ss in the first hoop. E= 30,000,000 lbs. per square inch.

8. Eeferring to the hoops of the preceding exercise. Find what must be the
internal diameter of the second hoop so that the stress in it when it is shrunk
on to the first will be 10,000 lbs. per square inch. Then determine the stress

in the first hoop and its new internal diameter.
9. Calculate the length of a bar of uniform section whose density is 0*28 lb.

per cubic inch, and whose coefiicient of elasticity is 28,000,000 lbs. per square inch,
which when hung from one end causes a maximum tensile stress in it of f ton
per square inch. Find also the increase in its length due to the tension.

10. A wrought-iron bar 25 feet long is 2 inches diameter for (5 feet of its

length, If inches diameter for 7 feet of its length, and 1^ inches diameter for
the remainder of its length. This bar is in tension, and the .stress on the smallest
sections is 12,000 lbs. per square inch. Taking E= 28,000,000 lbs. per square
inch, find the total elongation of the bar.

11. In testing to destruction a piece of mild steel, 0*937 inch diameter, in
tension, a load-strain diagram was taken. The diagram showed the elongations
full size, and the loads to a scale of 6 tons to 1 inch,' The length of bar under
observation was 10 inches. The total elongation after fracture was 2*46 inches.
The area of the diagram, measured with a planimeter, was 7*47 square inches.
Determine (a) the amount of work represented by the diagram, (6) the work
done in straining the bar up to the elastic limit, taking the length as 10 inches,
having given, load at elastic limit 9 tons, and modulus of elasticity 29,900,000
lbs. per square inch. Also (c) express (a) as a multiple of (&).

12. Calculate the resilience, in ft. -lbs., of a cubic inch of steel, in tension,
taking the elastic limit at 20,000 lbs. per square inch, and the modulus of elas-
ticity at 30,000,000 lbs. per square inch.

13. A steel bar 1 inch diameter and 6 feet long is put in tension by a force
of 3 tons applied suddenly. Determine the maximum stress and the maximum
elongation produced. E= 30,000,000 lbs, per square inch.

14. If a bar J inch in diameter stretched J of an inch under a steady load of
1 ton, what stress would be produced in the rod by a weight of 150 lbs. falling
through 3 inches before commencing to stretch the rod. The rod is iuitiallv
unstressed,

, |
lM,.']

16. A steel rod, 2 inches diameter and 10 feet long when unloaded, is su.s-

pended from one end, and haa a weight of- 1000 lbs. threaded on i.o it. Tlie
weight is allowed to fall freely from a height in(ih on to a liead formed
on the lower end of the rod. Find the maximum stre.ss produced in the rod.
Also, find so that the maximum stress!, ipay , he 10,000 lbs. per square inch.
EseSOjOOOsOOO ibs; per square inch. ' ’ '
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16. 'Pakinff t,he stress at the elastic limit as 16,000 lbs, per square inch, cal-

culate the resilience of the bar referred to in Exercise 10-

17. Ee-work Exercise 15, assuming that there is a steady load of 1 ton hanging

from the lower end of the bar before the blow is applied.

18. If tlie maximum crushing stress of a punch is four times the maximum
shearing stress of a plate, show that the smallest hole which can be punched in

the plate has a diameter equal to the thickness of the plate.

89, Eiveted Joints.—Con.sidering first a simple form of riveted joint,

such as the double riveted lap joint shown in Pig. 82. When this joint

is subjected to tension it may give way (1) by the tearing of the plates

between the rivets, as shown at (a)
; (2) by the shearing of the rivets, as

shown at (h
) ; (3) by the crushing of the rivets or of the parts of the plates

in contact with them
; (4) by the breaking of the plates between their

outer edges and the rivet holes, as shown at (c).

p =s pitch of rivets. — tensile stress in plates.

d — diameter of rivets. fg— shearing stress in rivets.

i = thickness of plates. /c= crushing stress in rivets or plates.

Considering a strip of the joint equal in width to the pitch

Eesistance of this strip to tearing= (p™

,j „ „ shearing =i= x 2.

„ „ „ crushing 2,

In the last of these expressions the bearing area of the rivet on the

plate is taken as its projected area on a plane containing the axis of the

rivet and perpendicular to the direction of the pressure.

If the values of the stresses /(, .4, and /<, be given, then the three

expressions above must be equal to one another. This gives two equations
to determine p and d. Solving these equations.

The .stresses^ii and/, can usually be definitely settled, but for materials

used in riveted joints the value of ,the stress/, is more difficult to decide.

Very often the diameter of the rivets is fixed empirically, and the
resistance to tearing is;then equated to the resistance to shearing to deter-

mine the pitch. In that ease the crushing stress should then be calculated

1 p
i

!

/ \
1 ^ ^c

(1
)

)

1 1

h“-p H A
,
i i

i
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by equating the resistance to crushing to either the resistance to tearing

or the resistance to shearing.

Tlie ratio of the strength of a riveted joint to the strength of the solid

plate is called the e^icicncy of the joint. The efficiency is called either

the tearing, the shearing, or the crushing efficiency, according to the kind
of resistance which is taken as the strength of the joint. The resistance

of the solid plate being jjtft, the various efficiencies for a double riveted lap

joint are

Tearing officioucy

Sliearing efficiency = •

_Mtf,^’2,df,
'

Pift Pft'

It is usual to express the efficiencies as percentages by multiplying
the above by 100.

The lowest efficiency is the real efficiency of the joint.

To resist the rupture of the j)late between its edge and the rivets,

as shown at (c). Fig. 82, it has been found by experiment that if the
least distance between the edge of the plate and the nearest rivet is

equal to the diameter of the rivet this is sufficient, and this is the rule

followed in practice.

For simple lap joints other than the double riveted joint which has
been considered, the multiplier 2 w'hich was used in the expressions for

the resistance to shearing and the resistance to crushing must be changed
to n, where n denotes the number of rows of rivets in the joint.

The determination of the strength and proportions of riveted joints
other than simple lap joints presents no particular difficulty, but a few
cases will now be considered briefly.

Fig. 83 shows an ordinary double riveted butt joint with two cover
straps. Considering a strip of the joint equal
in width to the pitch p, and using .the same
notation as before.

Resistance to tearing ~(p — d)fft

.

, , , ,
shearing= x 2 x 2

„ ,, crushing = 6^^/cX 2 . ,

Equating (2) to (3) =^ - . - -
TlI”

Equating (1) to (3) and substituting from (4) jo« 1

If d is given, or fixed empirically, equate (1) to (2), then

and equating (2) to (3) . !

® 1

% 1&
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Of the two factors 2 x 2 in expression (2), one is for two rivets

and the other is for two sections of each rivet, the rivets being in

double shear. Experiment has shown that the strength of a rivet in

double shear is twice that of the same rivet in single shear. The

Board erf Trade, however, only allow a load on a rivet in double

shear equal to 1-875 times the load allowed on the same rivet in single

shear.

If each cover strap -carries half the load on the joint, it is obvious

that each should have a thickne.ss equal to

|if, but in practice the straps in an ordinary

butt joint liave a thickness equal to |i.

Fig. 84 shows a treble riveted butt joint

with two cover straps, in which the pitch

of the rivets in the outer rows is twice the

pitch of the rivets in the other rows. In

this form of joint, and in all joints where

there are f'.wer rivets in the outer rows

than in the others, there is another way
in which the joint may fracture in addi-

tion to those already considered, viz. the

outer row of rivets may shear, and at the

same time the plate may tear between the rivets of the next row.

Considering a strip of the joint equal in width to the greatest

pitch p.

• ® 1 ® x-e

!

®

'

• 1^* p-
|p- 9 j

• • 7^ii

i •
Jdk ® ! ®
0. o __

[o 1ojo

Fic4. 84.

Resistance to tearing between rivets of outer rows= ip- d)tff

.

shearing =» X 5 X 2/g = ^dyj . . . •

(
1 )

(2)

Resistance to shearing of rivets in outer row and tearing between

(3)rivets of next row= x 2j^ •+ (p — 2d)fft
4

Resistance to crushing = 5dffo (
4
)

These four expressions yield three equations to determine p and d if

all the stresses are given, and this is more than sufficient.

Equating (1) to (3) d=>^ (
5
)

Equating (1) to (2) and substituting from (6) = =

Equating (2) to (4) and substituting from (5) fc-=ft.

Since the safe crushing stress is always greater than the safe tensile

stress, it is evident that, with the proportions deduced above, the joint

win have an excess of crushing strength.

The combined resistance to tearing of the two cover straps is

2(p - where is the thickness of each cover strap. Equating

this to (p - d)tfi -y
|h© resistance ..of the plates to tearing, In

practice this would be nalide . Making n = 6c?, then t =^

.

^
. . 8(2?,- 2c?)

° ^ ^ 32
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Eig. 85 shows a tie-bar joint. Here a bar of width h and thick-

ness t has a lap joint in it containing

nine rivets arranged as shown. This ' ^ f
joint may give way

(
1
) by tearing at

j ^ i

A or E; (2) by shearing of all the ( ® J ^ j'', 1

rivets; (3) by tearing at B or D, and shear- ( y i ^ 1 Y 1

--9

ing at A or E
; (4) by tearing at C, 1 ^ ^ ;

and shearing at A and B or at D and
|

^ x''\ i
E. The values of these various resistances

gg ,

are-—

(h-d)tf, . . . (1) {h-2d)tf, + ^rPf, . . . . . (3)

9|3% . . . (2) (5_3,*)//, + 3j#/,. .... (4)

The strength of the solid bar is ht/f, and the various efficiencies are

h — d {b — 2d) ^TvrPfg

b
‘ • VJ

9^ m {h-U) J^rPf, ...

"ibtfi
•

• • *

There is only one dimension to determine, viz. d, and a value of d
may be found by equating any two of the four expressions which give

the resistance of the joint. Six possible values of d may be found in

this way, but generally there is only one value which will give the highest

minimum efficiency of joint.

The most satisfactory way of finding the best value of d is to plot the

various efficiencies for different values of d, as shown in Eig. 86 . In this

case b has been taken equal

to 10 inches, t—1 inch, and \(o\j~X

/s=0'8/f. The best diameter of ^

rivet must be under the inter- |_90
section of a pair of efficiency -'==C —

......
(3)

curves, and an inspection of I T
the figure shows that the dia- -g

1~ ^
meter which gives the best /
efficiency is under the inter- “7oL 1 J-—-L J

section of (
2 ) and (3). This Diameter of Rinets.

diameter is 1‘23 inches, and
gg

the minimum efficiency is 85'

6

per cent. In plotting the efficiency curves it is only necessary to show
the parts in the neighbourhood of their intersections,

A butt joint with two cover straps, such as is shown in Fig. 87, is a
more satisfactory joint for a tie-bar than the

lap joint, because in the case of the butt joint

the pulling forces on opposite sides of the .

joint are in the same plane, whereas in the
|

• i • I

case of the lap joint the pulling fprces are in
J # i * * ^ (

different planes, and in consequence- there is / L # I • J i

a bending action on the bar in the ue^h- \ (

bourhood of the joint. „ g_
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90. TMn Cylindrical Shells.—A thin cylindrical shell or pipe (Fig. <

of internal diameter d, thickness t,

and length J is exposed to internal

fluid pressure of intensity p. Let

the shell be divided into two equal

parts by a plane of section contain- i R r ^

ing the axis. The resultant R of

the pressure on either of these

parts is evidently independent of

the shape of the otlier pait. ^t
Fia. S9.

the other part be replaced by a flat

plate, as shown in Fig. 89. Then the resultant pressure on the flat

plate is S=jt?r7Z. But S must balance R, therefore R=S —
lift is stress in the material of the shell at the plane of section,

then R =pdl = 277/i or x>d — ^tft-

If the shell has longitudinal riveted joints whose efficiency is e, then

pd ~ ^tfe.

The assumptions made in determining the last two equations are,

(1) that the stress /< is uniformly distributed over the section of the shell,

and this is justified if the shell is thin compared with its diameter
; (2)

that the shell derives no assistance from the ends, and this is justified

if the cylinder is not very short compared with its diameter.

The resultant pressure on the ends of the shell is '^d^p, and the

resistance of the shell to tearing at a section perpendicular to the axis

is Trdtftt therefore ^d'^p — irdift or^d= 47/t, which shows that the resist-

ance to tearing at a circumferential section is twice the resistance to tearing

at a longitudinal section, the effect of the riveted joints being neglected.

91. Thin Spherical Shells.—By the method of the preceding Article,

and using the same notation, the resultant pressure on one half of the

shell is and the resistance to tearing is Trdtft, therefore '^^p = ’irdtft

or dp = 47/4.

92. Centrifugal Tension in a Revolving Hoop.—Each part of a
hoop revolving about its axis tends to fly outwards because of centri-

fugal force, and the effect on the hoop is the same as that of an internal

fluid pressure acting on it.

Let a be the area of the cross section of the hoop in square inches

;

w the weight of a cubic inch of the material in

pounds ; v the linear velocity of the hoop in feet

per second; and d the diameter of the hoop in

inches. The hoop is supposed to be thin compared
with its diameter.

The weight of a portion of the hoop 1 inch

long is auo lbs., and the. centrifugal force q of this

portion is 24a?uw3 lgd._
,

Each inch of hoop will

have the same amount; of . centdfugal force acting .

on it, and the result is a uniformly distributed

radial force acting on thb hoop, as shown by the small arrows in Fig. 90.
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From the analogy between this case and that of a thin cylindrical shell

under fluid pressure (Art. 90) it may he concluded that R, the resultant

of' the centrifugal forces qq . . . . on one half of the

hoop, is equal to = 24a?.t’w2/j7, and equating this to

the resistanceof the hoop tobursting, 2fl/j = Maivv^lg,

therefore /( = 1 ‘itov^jg, where ./) is the stress (in lbs, \ i

per square inch) due to centrifugal force.
i

The foregoing result may be demonstrated in ip
another way. Consider a small portion of the hoop
(Fig. 91) subtending an angle (9 at the centre. v /

This is in equilibrium under the action of the \ 0 i

centrifugal force F and the tensions TT. The V7
weight of the portion under consideration is V
and F = 12atodv^/g. From the triangle of forces

F = T0, since 0 is a very small angle. Also T=/i<r,
’

'

therefore Td=fia6 = 12ato6ifi!g, and ft = \2xov^jg.

93. Oottered Joints.—Fig. 92 shows two bars of diameter d joined

together with their axes in the same straight line. The upper bar is

enlarged at its lower end to form a socket, which fits over the enlarged

upper end of the lower bar. A cotter passes through the two as shown.
It will be assumed in what follows that the two
bars are made of the same material, and that they Cm
are in tension under a load T. tlLJ

For the parts of diameter d,

The weakest cross section of the part of diameter
is at the cotter hole, where the area of the cross

section is very nearly and therefore

refore
1 - d\) - {T, - (

The cotter will shear at two sections, therefore

T= 2&//, . . . (

The bearing area of the cotter on the lower bar is df, therefore

(

The bearing area of the cotter on the socket is (D^ - d-^t, therefore

. . . , . . . . (

Assuming T and the stresses to,be known, the foregoing six equutio
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Exercises VIb.

In. the following excrciises on riveted joints, t=thiclcness of plates, £?= dia-

meter of rivets, jp=: pitch (or greatest pitch) of rivets, all in inches. In all cases

where has to be determined the result is to be stated and taken to the nearest

eighth of an inch, and where d has to be found, the result is to be stated and
taken to the nearest sixteenth of an inch.

Unless otherwise stated the tenacity of the plates is to be taken at 28 tons
per square inch, and the resistance of the rivets to shearing at 23 tons per
square inch.

1. Inasinglerivetedlap joint <=^ 5̂ , andp=2. Calculate the efliciencies,

and find the crushing stress on the rivets when the joint gives way by tearing.

2. A treble riveted lap joint has the following dimensions

—

and p= 3|. Calculate the efficiencies, and find the crushing stress on the rivets

when the joint gives way by tearing.

3. Findp for a double riveted lap joint in which and Then
calculate the efficiencies.

4. Design a double riveted lap joint for plates f inch thick, and find the
efficiencies, having given fs=0-8fe and/c= l-3/<.

6.

In the treble riveted lap joint shown in Fig. 93, d=li, and p = 4|.
Calculate the efficiencies of the joint.

6. Having given determine d and p for

the joint shown in Fig. 93, so that the three
principal efficiencies shall bo as nearly equal as pos-

sible {d being to the nearest sixteenth, and p to
the nearest eighth of an inch), then • calculate the
efficiencies.

7. Plates 1 inch thick are connected by a treble

riveted butt joint with two cover straps. The pitch
of the rivets in the outer rows is twice the pitch of
those in the other rows, and the diameter of the
rivets is 1 inch. Taking the resistance of rivets in

double shear equal 'to 1*75 times their resistance
in single shear, determine p (to nearest eighth of an
inch) for equal tearing and shearing resistances. Then determine the efficiencies.

8. Same as preceding exercise, except that the resistance of rivets in double
shear is to be taken equal to twice their resistance in single shear.

9. In a riveted joint of the form shown in Fig. 94, p = 7.

Taking the shearing resistance of rivets in double
shear equal to 1'76 times their resistance in single
shear, determine the efficiencies of this joint.

10. Determine p and d for the joint shown in
Fig. 94 (i=A)) so that the efficiencies may he as
nearly as possible equal to one another, taking p to
the nearest eighth, and d to the nearest sixteenth
of an inch. Take shearing resistance of rivets in
double shear equal to 1*76 times their resistance to
single shear. (Jive the efficiencies.

11. In a double riveted lap joint «= cZ=|, and
p=22. Find the efficiencies. This joint is streng-
thened by the addition of a cover strap, as shown
in Fig, 95. The rivets at A and B being !• inch
diameter, and 6^ inches pitqh.. Calculate the
efficiencies of the altered joint. .

12. The tie-bar lap joint shown jn, Fig. 96 has rivets ^ inch diameter. The

r—
A • • T*

i

>'dK • •
• • . pL. 1

• • •5;
A,

!

•

tn

•

zrd-

•&
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bar is G inches wide and inch thick. Determine the lowest efiicieucy of this

joint, and describe how it will give way,
13. A tie-bar 5 inches wide and ^ inch thick has a lap joint in it, as shown in

Fig. 97. The rivets at A and B have a diameter d, and those at O and D have a
diameter Find the best values of d and (to the nearest sixteenth of an
inch) so that the eiSoiencies may be as nearly as possible equal to one another.
Give the efficiencies.

14. Taking the joint referred to in the preceding exercise, but making all

the rivets of the same diameter, plot on squared paper the various efficiencies of
the joint for different sizes of rivets up to IJ inches diameter.

16.

Determine the best diameter of rivets (to the nearest inch) for a tie-

bar butt joint with double cover straps, and 12 rivets in all, arranged as in Fig.

87, p. 75.^ Width of bar, 9 inches; thickness, % inch. fs~0'8fi. Eesistance
of rivets in double shear =1-75 times their resistance in single shear. Find the
lowest efficiency of the joint.

16. A cylindrical boiler shell is 7 feet in diameter, and the plates are finch
thick. The longitudinal riveted joints have a tearing efficiency of 70 per cent.

Find the steam pressure which will cause a tensile stress of 5 tons per square
inch in the platea bebween the rivets. Also, what tensile stress will this steam
pressure produce in the plates between the rivets of the circumferential joints

which havd a tearing efficiency of 60 per cent. ?

17. The end plates of a boiler shell are t®?? inch thick, and are dished to

a radius of 6 feet. Find the tensile stress in these plates due to a steam
pressure of 160 lbs. per square inch. If the thickness is altered from

i^jj-
inch to

^ inch, to what radius must the end plates be curved so that the stress shall be
unaltered under the' same steam pressure ?

18. Find the centrifugal tension (in lbs. per square inch) in the rim of a
cast-iron fly-wheel 25 feet in diameter when running at 250 revolutions per
minute. Weight of oast-iron= 0-26 lb. per cubic inch.

19. Determine the speed, in revolutions per minute, of a cast-iron fly-wheel
20 feet in diameter when the centrifugal tension in the rim
is 4250 lbs. per square inch. Weight of 1 cubic inch of cast- Pf
iron=0-26 lb.

20. Fig. 98 shows the lower end of a foundation bolt; H

the part A is round and of diameter d, the part B is square g
in cross section, s being the side of the square. The effective

width of the cotter 0 is 5, and its thickness t. Taking
/f=8, /s — 6, and /c= 15, all in tons per square inch, express C
the dimensions s, 5, and t in terms of d. I —

J

21. Eeferring to the bolt of the preceding exercise, if

/c = l’6/«> /»=0’8/i, /f=5 tons per square inch, and P=10 tons. L_„
Find the dimensions d, s, 5, and t in inches. gg

22. Eeferring to the joint shown in Fig. 92, p, 77, if

15,

/if=8, and/s= 6, all in tons per square inch, determine dj, 5, D, and Di in
terms of d. •

94. Simple Torsion.—If two equal and opposite parallel forces P
and Q act at opposite ends of a straight lever (Eig. 99) which is fixed

to a shaft S, and which lies in a
plane at right angles to the axis

of the shaft, then, the forces P Mj/f «/////
and Q cannot be balanced by any ^ - m
single force, i.e. they have no • 'p aQ ''p

single force for their resultant,
< a

-j

from which it follows that the n ^

forces P and Q will only tend to

rotate the shaft about its axis.
‘

If the lines of action of P and Q be at perpendicular distunces a and h

respectively from the axis of the sMft, theh the turmn/j vumm/-, imistinp



square be the outer face of a thia layer of material on the shaft, then the

edges or narrow faces of thia layer are subjected to shear stress of, say, an

intensity /, and the shear strain is x'/V=^xfl where x is the length of the

arc AB. But shear strain =>

—

shear
_
stres3

^ therefore xjl ==//0 or
modulus of rigidity

X If B is the angle of twist in circular measure, then 6 = xjr=

but X —fl[0, therefore 6=

< If w is the ai^le io| twist in degrees^ then since 0/7r=w/18O,

APPLIED MECHANICS

then I’ - iX^t + h) = PK If P is in qiouiids and R is in inches, then T will

lie in -m'.k-jKrmidft. The inch-pound is generally the most convenient unit

for the torque on a shaft, but the footpound, and inch-ton

are also used.

If T is the torque on a shaft in inch-pounds, N the number of revolu-

tions per minute, and H the horse-power transmitted, then it follows that

27rRPN ^tTN

^“12x33000“ 6 x33000'

96. Angle of Twist of a Shaft.—Let a shaft of length I, radius r,

or diameter d be subjected to pure torsion by torques each equal to T
applied at its ends, as .shown in Fig. 100. A straight line AM drawn on

the surface of tlie shaft and parallel to the axis when the
_

shaft is

un.strained, will become a helix when the shaft is twisted. This follows

from the following consideration. If the shaft be divided into a number

of parts each of unit length by planes perpendicular to the axis each part

will be subjected to the same torque, and the angular movement of one

end of each part of unit length relative to the other end will be the same,

and therefore the angular movement of one end of the shaft relative to

the other end will be the sum of the angular movements due to each

part, atid therefore the movement of A relative to M, namely, the arc

AB, will bo proportional to 7.

If a small square MN be drawn on the surface of the shaft when the

latter is unstrained and having a side on AM, this square, shown

enlarged to the left of Fig. 100, will become a parallelogram. If this
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In. stating that the shear strain on the small square element or thin

layer MN is ecpal to x'jl', it is assumed that only the edges of tliat

layer are subjected to shear stress, and that there is no stress on the

square faces. It is obvious that there cannot be any stress on the outer

square face, and since the angular movement of each particle of the shaft

about the axis of the shaft is proportional to its distance from that axis,

particles which are on the same radial line when the shaft is unstrained

will remain on that line as the latter revolves; there can therefore be no
relative movement between the layer MN and the layer next it within

the shaft, and therefore there cannot be any stress on the inner face of

the layer MN.
96. Moment of Resistance of a Shaft to Torsion.—It has been

shown that the angle of twist of a circular shaft is d-'lfljCd or fljOr.

Hence /== dOxjl, and for given values of 0, C, and I, f is proportional to r.

Now for all parts of a given shaft .subjected to a given torque, 0, C, and I

are the same, therefore if a circular shaft be conceived to be made up of a

number of thin tubes, the shear stress on any one of them will be pro-

portional to its radius. Lot be the mean radius of one of these tubes,

the area of its cross section, and the shear stress on it. Then fjf^ rjr,

or/jaarj//?*. The total shear stress on the cross section of this tube is

and the moment of this about the axis is fxCi-fy Hence the

moment of resistance of this tube to torsion is =-Ii, where Ii is
r r

the polar moment of inertia of the cross section of the tube about its axis.

In like manner the moment of resistance to torsion of each of the other

tubes is the factor fjr multiplied by the polar moment of inertia of its

cross section about the axis. Hence M, the moment of resistance of the

whole of the tubes, or of the solid shaft, is //r multiplied by the sum of

the polar moments of inertia of the separate annular parts of the cross

section, which is equal to fjr multiplied by the polar moment of inertia

of the whole cross section. But the polar moment of a circle of radius r

about an axis through its centre and perpendicular to its plane is

therefore

The following is another way of determining the moment of resistance

of a circular shaft to torsion. Consider a small sector OAB of the cross

section of the shaft (Pig. 101). The' full section of the

at (a). The part in the neighbourhoQd of the sector is

at {b)^ and an oblique view of thi§^ is, shown at (c;. I



ance of tlie hollow shaft js

97. Formulse for Shafts subjected to Simple Torsion.—It will be
convenient to collect here the forinulse which have been proved in the
three preceding Articles, and give several additional formulfe easily
deduced from them. .

T = torque or twisting mbfaent on shaft in inch-pounds.
N 5= number qf ,, teyo|utio]5s of shaft per Tninutej

H== horse-power transmitted by shaft
7 length of shaft in thybcB.
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intensity of the shear stress along AB. Let perpendiculars to the sector

be erected all over its surface to represent tbe intensity of the stress at

each point, ,'ind consider for the moment that the stress is perpendicular

to the plane of the sector. These perpendiculars will be enveloped by a

pyramid OABFH, in which AH and BF are each equal to /. The
volume of this pyramid will be the magnitude of the resultant R of the

stress over the sector, and this resultant will act through G, the centre of

gravity of the pyramid, and its line of action will be perpendicular to

OAB, meeting the latter at g. The real line of action of B is in the plane

of OAB and perpendicular to 0^, as shown at (a). The moment of

resistance of the sector to torsion is B x Qg. But B is equal to the

volume of the pyramid OABFH=ABx and 0^==|r. Therefore

B X 0.9 =AB X The moment of resistance of the whole section will

be B X O9 multiplied by the number pf times that the circle contains the

sector OAB, that is, by tbe number of times that the circumference of

the circle contains the are AB, which is
27r?’

AB'
Therefore

If the first method adopted in this Article for finding the moment of
resistance of a solid circular shaft to torsion be applied to a hollow
circular shaft (Fig, 102), it follows that the moment

of resistance of the hollow shaft is ~ multiplied by

the polar moment of inertia of the section, i.e. .

The moment of resistance of the hollow shaft

may, however, be deduced directly from the moment
of resistance of the solid shaft as follows. The mo-
ment of resistance of a solid shaft of diameter D is

^D®/. The moment of resistance of a solid shaft of diameter d token it

forms the central portion of the other is where /j is the shear stress

at radius r (Fig. 102), but/j^ — Hence the moment of rosist-
It: D -
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d= diameter of solid shaft &>' internal diameter of hollow shaft in

inches.

D = external diameter of hollow shaft in inches.

/=maximum shear stress on shaft in lbs. per square inch.

C = modulus of rigidity of shaft in lbs. per square inch,

6 — angle of twist of shaft in circular measure.

n = angle of twist of shaft in degrees.

For both Solid and Hollow Shafts—

-

27rTN

12x33000

For Solid Shafts—

12x33000H

ttW

For Hollow Shafts-

16TD

32TZ „_360/;_ 360x 16T?

CD ttCXD^-.#)' ^cD 7r2C(D4-d!4)’

98. Helical Springs.—It has already been shown that if a shaft or
wire of diameter d and length I be subjected to a torque T, the angle

S2TZ
-* ' °

of twist is i9= Also, if f is the maximum shear stress, T = —efs/,

Now suppose the wire to be bent round so that its axis forms a semi-
circle of radius R, and let two radial arms AB and CD be connected to the

free ends of the wire, as shown In If furco.s PP be applied to

the inner ends of these aims,, the forces acting througli the centre of the
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somicirclc and perpendicular to its plane, the wire will bo under a torque

equal to PR. The length of the wire is ttH. Heuf’e the total angular

inoveinent of the two arms is 6^ ,
and the relative inoveiuent of

AandGis8 = Rf^ = ^f,^J^.C#
The half ring shown in Pig. 103 corresponds very approximately with

a half coil of a helical spring (Fig. 104), in which the slope of the coils

is small.

Extending the above formulsB for the half ring (Fig, 103) to the

helical spring (Pig. 104), if n is the number of complete coils, then since

. , 1 . ., „ 32PR3 ^ . -1 • s 64PR%
for one half coil S=—

. ,
the extension for n coils is h =—p—— .

Od^ ’ C#

Also, PE=
fg#/.

TUeretore also, 8-i^. aud

The length of wire, I
— 27rR«, nearly.

The above formula} also apply when the load is reversed, so that the

spring as a whole is in compression.

Helical springs are also called cylindrical spiral springs

Exercises Vic.

1. Find the twisting moment in inch-pounds on a shaft which transmits
50 horse-power at a speed of 120 revolutions per minute, and calculate its

diameter, taking the maximum stress at 9000 lbs. per square inch.

2. The turbine shaft of a 6 horse-power De Laval steam turbine is 0'263
inch in, diameter, and its speed is 80,000 revolutions per minute. What is the
maximum stress on this shaft when transmitting 5 horse-power ?

3_. A shaft transmits 100 horse-power at 120 revolutions per minute. The
maximum torque is 1'4 times the mean torque, and the maximum stress is

9500 lbs. per_ square inch. Find the diameter of the shaft,

4. The diameter of a shaft is inches. Determine the horse-power trans-
mitted when the maximum stress is 9000 lbs. per square inch, and the speed is

130_ revolutions per minute. The couplings of this shaft have each six bolts

2f inches diameter, whose centres lie on a circle 14^ inches diameter. Find the
average shear stress on the bolts.

_

6. A cast-iron flanged shaft coupling has six bolts
1 J inches diameter. The

axis of each bolt is 7§ inches from the axis of the shaft. Diameter of shaft,

6^ inches. When the maximum shearing stress on the shaft, due to the twisting
moment, is 10,000 lbs. per square inch, what is the average shearing stress on
the bolts ?

^ ^
.

s s

6. If a shaft 2 inches diameter safely supports a torque of 15,000 inch-
pounds, what torque would a shaft of the same material 6| inches diameter
support with the same factor of safety ? What horse-power would the former
shaft transmit at 160 revolutions per minute, and what should be the speed
of the latter to transmit 600 horse-power.

7. Determine the horse-power transmitted by a hollow steel shaft whose
external diameter is 18 inches, and internal diameter 12 inches. The speed
is 90 revolutions per niinute, and the maximum stress 10,000 lbs. per square
inch.

8. A hollow steel sh^ft, external diameter d, internal diameter -ac?, is subjected
to pure twisting, and’ traigsmits. 80QO, horse-power at a speed of 110 revolutions
per minute. Taking the- maximnop shear stress at 9000 lbs. per square inch,
find d. ,

'
'

9. A hollow steel shaft is vtaade' to replace a solid wrought-iron one of the
same diameter, the ihkterial? being ,36 per cent, stronger than the iron; find
what fraction of, the ontod® diameter the internal diameter may he, and,
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neglecting the couplings, find the percentage saving of 'weight by the substitu-

tion, assuming that the steel is 2 per cent, heavier than the wrought-iron.
10. A steel shaft 2^ inches diameter, which is subjected to pure twisting, is

50 feet long, and is driven at one end, while the power is taken ofi’ at the other.

One end of the shaft moves 30° in advance of the other. Find (Ij the maximum
shear stress, (2) the torque, and (3) the horse-power transmitted at 180 revolu-

tions per minute. 0 = 13,000,000 lbs. per square inch,

11. A wrought-iron shaft 3 inches diameter and 40 feet long is subjected to

pure twisting by couples at its ends. The maximum shear stress is 9000 lbs.

per square inch, and the speed is 120 revolutions per minute. Determine the
horse-power transmitted, and the angle of twist in degrees. 0 = 10,500,000 lbs.

per square inch.

12. Find the diameter of a steel shaft which will transmit 15 horse-power at

130 revolutions per minute with an angle of twist amounting to 1° in a length
equal to twenty times the diameter. Find also the maximum shear stress.

0= 13,000,000 lbs. per square inch.
13. Determine the diameter of a solid shaft which shall have the same stiff-

ness, under the same twisting moment, as a hollow shaft of the same material
whose external .and internal diameters are 9 inches and 6 inches respectively.

Find also the ratio of the maximum shear stresses in the two shafts.

14. A steel shaft 2| inches in diameter is driven by a 20 horse-power gas-

engine at 100 revolution'*s per minute. The shaft is supported by three bearings,

spaced 16 feet apart between centres, and the centre of the driving pulley is

6 inches beyond the centre of one of the end bearings. Pulleys are arranged,
as shown on the sketch (Fig. 105), to work certain machines, and the horse-

20 H.R
ra .. ,

4-5H.P. 2HP
18 Diameter.— 10 Diameter.—

j

24"Diameter.

—

power taken off each of these pulleys is shown on the sketch; in addition, each
bearing absorbs J horse-power. Assuming that all the loads are applied at the
centres of the respective pulleys and bearings, calculate the angle of twist in

the shaft at each of these points, reckoning from either end of the shaft. The
modulus of rigidity is 12,500,000 lbs. per square inch. [B.E.]

IS.—-iTwo closely coiled spiral springs were made out of round steel wire

J inch diameter. The one spring, A, had a mean diameter of coil of 4 inches,

and the other, B, had a mean diameter of coil of 5 inches, both springs had 12
complete coils. These two springs were tested by loads extending them axially,

and the results of the tests are shown in the table below :

—

0'26 0-52 0*79 1*06 1'32 1'59 1-86 2-12 1 2-39 2-66

0-51 1-02 1'53 2-04 2-56 3‘06 3'57 4'09
j

4*60 512

Where W is the axial load in pounds, and £Ci and jcq are the oxLensions i

inches of the springs A and B respectively.

Plot the results on squared paper.
Given that the law connecting the extension of these springs with their nica

diameter of coil is of the form
Extension of B_ /mean diameter of coil of B\"
Extension of A \mean diameter of coil of A

/

what is the probable value of n ?

Determine from these experiments the averagbwalnc of the modulus of slier

elasticity C for this quality of steel wirfe., [B.E:

16.

A closely coiled helical spring is made out of round strel wire } inch i

diameter, the coils having a mean diameter,,of inches. What axial pull wi
1 produce a shear stress oC 20,000 lbs. per square inch? If the modulus d
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rigidity of the wire is 11,000,000 lbs. per square inch and the spring has 20
coils, how much will the spring extend under this pull, and how many ft. -lbs.

of work must be done in producing this extension ?

17. What is the stiffness, in lbs. per inch of axial deflection, of a close coiled
helical spring having 10 coils whose mean diameter is 2 inches, diameter of
wire ()‘128 inch, and modulus of rigidity 11,000,000 lbs. per square inch?

18. What length of wire 0-232 inch in diameter will be necessary to form a
closely coiled helical spring which shall extend 0-05 inch per lb. of axial load if

the mean diameter of the coils is 3-5 inches, and the modulus of rigidity of the
wire is 11,500,000 lbs. per square inch?

_

19. It is required to design a close coiled helical spring which shall deflect
1 inch under an axial load of 100 lbs. with a shear stress of 50,000 lbs. per
square inch. The spring is to be made out of round steel wire having a modulus
of rigidity of 11,000,000 lbs. per square inch, and the mean diameter of the coils
is to be 10 times the diameter of the wire. Find the diameter and length of
the wire necessary to form the spring.
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BEAMS AND BENDING

99. Bending Moments and Shearing Forces on Beams.—In

general the lines of action of the external forces acting on a beam are

perpendicular to the length of the beam, and they may be considered as

being in one plane, and this plane, in what follows, will be taken as tlie

plane of the paper. The external forces acting on a beam must of course

balance one another if the beam is at rest.

Consider the case of a horizontal beam ABC (Fig. 106) acted on by
any number of vertical forces Pi, Ps, etc. Take any cross section YY
dividing the beam into two parts AB and BC. Consider the equilibrium

of the part BC. Let the distances of P
1
.P

2 . etc., from YY be etc.

Let B (Fig. 107) be the resultant of the external forces P,, Pg, etc.,

acting on BC. The magnitude of B will be the algebraical sum of the

forces Pj, P^, etc., acting on BC. (For the forces shown in Fig. 106,

E,= Pj^ - Pg _ Pg). The distance a of B from YY must be such that the

moment of B about a horizontal axis in YY is equal to the algebraical

sum of the moments of Pi, Ps, etc., about the same axis. (For the

forces shown in Fig. 106, Ba=*Piari - Poajn - PoCCo). Expressed in another

™y.E-2Paud]L-5;(P4
The force B tends to turn BO about a horizontal axis in YY

;
in other

words, B tends to bend the beam at YY (Fig. 108), and the bending
moment is Ba=YP.'c. B also tends to make BC slide on AB at YY

;
in

other words, B tends to shear the beam at YY (Fig. 109), and the shearing

force is B = 2P.

The bending and shearing effects of B on BC may perhaps be made
more apparent by the artifice of applying at YY two opposite forces

B^ and Bg, each equal and parallel to B, as shown in Fig. 110. The
addition of the forces B^ and Bg will evidently not affect tlic (iquilibrium

of BC. The forces B and B^ being equal and acting in op])osite

parallel directions, form a cqhple whidi can only pjodncc a turning or

bending action on BC, while the remaining force Bg can only make or

tend to make BC shdc on YY.
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Tomake the existence of the turning or bending and the sliding or

shearing actions more evident, consider the case of a block BC (Fig. Ill)

resting on a hori-
-i

zontal plane YY. fj
' c i T" C

\

Let this block be l
j ^

r \ U«-5-
pushed by a hori- Y ^ '

1 \ \

shown. If tho re-

f j‘

sistance to sliding ‘
j j ( (

on YY be not too 110. m 112
great the block will

slide to the left into, say, the position shown by the dotted lines. But
if the resistance to sliding is great enough the force R will cause the

block BC to tilt over, as shown by the dotted lines in Fig. 112, provided

the resistance to tilting is not too great. Bj is the resistance to sliding

at YY, and Rg is the effect of R transmitted, by reason of the rigidity

of BG, from section to section downwards to YY,
It is evident that the magnitude of the shearing action at YY depends

only on the magnitude of R, and not on the distance of R from YY.
But the turning or bending action at YY depends on both the magni-
tude of R and the distance of R from YY.

100. Positive and Negative Bending and Shearing. — When a
horizontal beam is bent by tbe action of the loads on it, it will either
“ sag ” or “ hog,” that is, it will either become concave or convex on the

+ Bending. Bending, Shearing. Shearing.

top, and it will be convenient to call one of these, say the first (Fig. 113),
positive

{ + ) herding, and the other (Fig. 114) negative {-) bending.
Again, in considering the shearing action at a section of the beam the
loads will tend either to cause the portion to the right of the section
to descend and the. portion to the left to ascend, or vice versa, and it will
be convenient to call one of these, say the first (Fig. 11^), positive

{ + )
shearmg, and the other (Fig. 116) negative {-) shearing.

101, Bending Moment and Shearing Porce Diagrams. If the
bending moments and shearing forces at a sufficient number of sections of
a beiim be determined and the results plotted to scale at right angles to
a base Hne representing the length of the beam, diagrams are obtained bv
joming the points plotted, which are caUed the bending moment and
shearing force dutgrcms. In cases where there is both positive and
negative bending, or pofeifath negative shearing on the same beam
It IS necessary to distinguish botiyeen the positive and negative quantities
by measuring them on c^ppsite sides of the base line, and it is desirable
in all cases to measure positive Rending moments and positive shearing
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forces above the base line, and negative bending moments and negative

shearing forces below the base line.

102. Examples of Bending Moment and Shearing Force Diagrams.

—Two examples of bending moment and shearing force diagrams

have already been given in Art. 75, pp. 59-61, where the graphic

method of constructing these diagrams was explained. In this

chapter the bending moments and shearing forces will be found by

calculation.

In what follows M will denote the bending moment and F the

shearing force at a section which is at a distance x from some fixed

point, generally the free end of a cantilever, and either the centre or

one end of a beam. will denote the maximum bending moment,

and F,„ the maximum shearing force. XX will denote the base line

upon which the bending moment diagram or shearing force diagram is

plotted.

Example I.—Cantilever (Fig. 117) with loads Wj and Wg.
Between A and B, M = -W^w, which is the equation to a straight

line. MOT=-WiaatB. F^Wj.
Between B and C. M = - {W^x+ ^^{x - a)}, which is the equation to

a straight line. = - {Wj(a + &) + Wg^}. F = Wi+ Wg-

Example II.—Beam (Fig. 118) supported at' the ends and carrying

a load w per unit of length uniformly distributed.

Keactions at supports = wl.

Behmen A and B. M == wl{l -x)- w{l - which

is the equation to a parabola whose axis is the vertical through' B,

M == 0 at A where x — l M becomes M„i where a;= 0. Hence M,,, =—
at B. -

Y~wl~ -x) = wx, which is the equation to a straight line. F -= 0

at E where a; = 0. F becomes F,„ where x—l.- Hence F„^= at A.
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Between ^ and 0. M

F — n^(l-x)~ wl— - wx,

which, is numerically the

same as bet-weenA and B,

but of the opposite sign.

Example III.—Beam
(Fig, 119) supported at

two points equally dis-

tant from the ends, and
carrying a load w per

unit of length uniformly

distributed,

Eeactions at sup-

ports = will + Zg).

Between A and D.

M == - which is the

equation to a parabola,

vertex at A and axis ver-

tical. M= 0 at A where

r» --WX, which is

the equation to a straight

line. F = 0 at A where Fig. 119.

x=iO. F,»s= at D.
Between !) and F.

+ - |(!>

which is the equation to a parabola whose axis is the vertical through B.

At D where x==l^, M= as before.

At B where x M = 0 where x= h
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Eeactiona at supports of beam = loads at free ends of cantilevers

For the beam K&, .
W

m=jw(/2-4 —i—j

—

V" T IM= 0 at A and B -where ^ k-x-^ h-ac^x-*)

M^= |WZ2 at the centre

C where » = 0
.

j
! x|(|f| |r[]v

'

F - JW between A and C >
j >f||||

1

and P = -•i'W between C xU[|
| ||

|||'
| | || |

M)yKnll l l l ll^

and B.
^

j

For the cantilever AD.
} [

!

M= - ^Wcc, a straight line
| { {

which is a continuation of the
||||||||||

l||||[||||| ||||||||||il|||||||| 1

bending moment line for AC. sfd '

M = 0 at A where a;— 0 .

at D where
F = |W. llllliillil

For the cantilever BE.
. Fig. 120.

M= “IWa;, a straight line

which is a continuation of the bending moment line for BO.

M— 0 at B where x= 0 .
— - IWl^ at E where x = ly

If Mot for the beam = Mot for the cantilevers, then

103. Shearing Force at a Section where there is a Concentrated
Load.—Let AO and BD (Fig. 121 ) be cross sections of a beam on
opposite sides of a concentrated load

Q. Let Ej be the resultant of all 14 |Ri iQ

the loads to the right of Q, and Kg
j

A j' B_i A IIb
the resultant of all the loads to the

| j

I

j } j |

I

| )

left of Q. The shearing force at BD
j

c!
j

jD
*

t Cj i 'd t

is equal to Ej, and the shearing force Irj
1

' > iRa
'

>
1 IRi

at AC is equal to Eg. In moving I / v
\

the section BD towards Q the shear-
j

R2
i | 1 (<*-)

ing force remains equal to IL so long •

j
TT^' yJ, v

as the section is to the right of Q i I3;
and near it may he to Q. „ ^ ! 1 \

In like manner, in moving the section
'

, 1 (b)

AC towards Q the shearing force i

1

remains equal to Eg so long as the ^
section remains to the left of Q and
however near it may he to Q. The Fig.- 121.

question then is, what is the shear-

ing force at Q ? is it equal to Ej or is it equal to Eg? The answer is that
it is probably near the algebraical mean of the two. In practice there is

no such case as a load acting at a point or line. What is called a concen-

trated load must act over a certain amount of surface, even if it acts

through what is called a “knife edgq.” At (a) (a) (Pig- l‘-B) are shown
examples of shearing force diagrams as nshally drawn in the neighbour-

hood of a concentrated load. A,t
,
(6), (M the diagrams are shown cor-
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rooted on the assumption that the load Q is distributed over the surface

AB. Generally the distribution of the load on

AB would not be uniform. The j)oint just dis-

cussed is of little practical importance, but some-

times students find it to be a difficulty.

104. Relations between Bending Moment and
Shearing Force Diagrams.—Let M be the bending

moment and F the shearing force at a section AC
of a beam (Fig. 122). The section AC may be

anywhere except at a point where there is a

concentrated load, but it may be as near to that

point as is desired. Take a section BD at an

indefinitely small distance dx from AC, and let

M-biiM be the bending moment at BD. Let Q
be the resultant of any loads which there may
be on the beam between the sections AC and BD,
and let its distance from BD be ndx where n is

a fraction.

Let R be the resultant of all the external forces acting on the beam
to the left of the section AC, and let its distance from AC be x. Then,

M = Ea;, F = R, M-l-cfM = B(a3+ cZa!)- Qwcfa:-E,a: + Rcfa’-- there-

fore, cfM = 'Edx - Qndx, and™ ==B - Qw == F - Qn.
dx

If Q is the resultant of a load which is distributed over AB, then,

since dx is indefinitely small, Q will be so small that it may be neglected,

cZM

'

>^1

a

( dx-.

ti
j

c D

H|d
Y - ^A 1

T'l
F

1

1
A

1

|cd|

Again, if Q is the resultant of loads concentrated at points in AB,
these loads may be avoided by taking dx small enough, and then as

before ^=
dx

The shearing force F at the section AG is therefore a measure of the

slope of the bonding moment line at the point corresponding to AC. In
other words, the shearing force at any section is equal to the rate of

increase of the bending moment at that section.

Again, d'K^^'Fdx, therefore the difference between the bending
moments at two sections indefinitely near to one another is equal to the
area of the shearing force diagram between these sections, and, in passing
from one section to any other section, it is obvious that the sum of all the
increments will be equal to the sum of all the increments 'Fdx^ and
therefore the difference between the bending moments at any two sections

is equal to the area of the shearing force diagram between these sections.

These results are very interesting and very useful. For example,
referring to a horizontal beam, if the bending moment line is horizontal

at any point its slope is nil, and there can therefore be no shearing force

at the corresponding section. Again, at the highest point of the bending
moment line thei slope changes from positive to negative, and therefore

where the maximum bending moment occurs the shearing force must
change its sign, and the shearing force line will cross the base line. The
converse of this is hot always true, and all that can be said about the
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bendmg moment at a section wliere the shearing force is zero or changes

from positive to negative is that at that section the bending moment has

ceased to increase or ceased to decrease, but in seeking for the section

where the bonding moment is a maximum, the shearing force diagram is

very useful.

105. Travelling Loads.—By a travelling, moving, or rolling load is

meant one that comes on to a girder at one end, moves along the girder,

and comes off at the other end. It is evidently necessary to know what
the maximum bending moment and the maximum shearing force are at

any section of the girder, and the bending moment and shearing force

diagrams are constructed so as to show the maximum bending moment
and maximum shearing force at every section.

The first step is to find the position of the travelling load in relation

to any section selected which will

make the bending moment a maxi-

mum at that section
;

then an ex-

pression is found for that bending
moment in terms of the load and the

distance of the section from a fixed

selected point, and from this expres-

sion the bending moment diagram
can be constructed. The positive

and negative shearing force diagrams

are determined in a similar manner.

Example I.—A single load W
travelling along a girder AB (Fig.

123) supported at its ends.

When the load W is to the right

of a section D which is at a distance (c)p (+)

X from A the bending moment at

D is Bja:, and is greater the -^23 .

nearer W is to D. Again, when W
IS to the left of D the bending moment at D is and Bg is

greater the nearer W is to D. Hence the bending moment at D is a

maximum when W is at D.

PlacingW at D, Bj^ = — (Z - x), and the maximum bending moment at

D = M=^^(?-a:). If D be referred to the vertical through C, the

centre of the span, so that CD = 2;^, then since a: — JZ - M = ~

which is the equation to a parabola whose axis is the vertical through C.

The height of the vertex above the base line is the maximum value of

yQ - a^i^, which is obtained by putting £»] = 0, then =
,
The

bending moment for the travelling load is shown at (a). This bending
moment diagram is the same as for a uniform dead load of tv jjcr unit of

WZ 2W
‘

' or,'

4 I

cd^Gdi ihQ eqidvalent uniform dead load,
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When W is to the right of D, the positive shearing force at D is equal

to the reaction at the left-hand support, and this increases the nearer

W is to D. WhenW is to the left of D, the. shearing force at D is nega-

tive and equal to Rg. Hence the maximum positive shearing force at D
occurs when W is at D. Placing W at D, Rjl = - x), and the maxi-

mum positive shearing force at any section D = F=— — a;), which is the

equation to a straight line. F„t=W at A where a;= 0, and F = 0 at B
where » =2.

It is also evident that the maximum negative shearing force at

WicD= F= which is the equation to a straight line. F„i=W at B where

x— l, and P = 0 at A where x= 0. The complete shearing force diagram
for the travelling load is shown at (h).

In designing the section of a plate girder to resist the shearing force,

it is the maximum numerical value of the shearing force which must be
known, its sign being of no conse-

quence. Hence it is convenient to (a)

place the (H-) and (-) shearing
''

‘ iP ^
force diagrams on the same side of TT T
the base line, as shown at (c). If

j

““i'' ^ "^*^2

however lattice work takes the place (b) T ThcpfryjyYYYYTTT^
of the web plate, the lattice work MA p jc B^
must be designed so that it will 1.- 30 - -»i

j |

take either the maximum positive Ri|
^ ^

shearing force or the maximum
[ ^ B.M.D . \v

j

negative shearing force, hut not both lyiffhiMiiMiinMiiiiiinimniiiiiiiiiiiMiMiirnlK

at the same time.
j

Example II.—-A uniform load
\

of w per unit of length travelling
»

along a girder AB (Fig. 124)
supported at its ends, the length

{

of the load being not less than the
j j

As the load advances over
I

the girder it is evident that the- I S.F.i^
^ |

bending moment at any section y| i
D win continue to increase until

the girder is covered by the load,

because a load placed anywhere on the girder will add to the bending
moment at D. The bending moment diagram for this case is there-
fore a parabola having for its axis the vertical through O, the centre of
the span as shown at (e), the height of the vertex above the base line

XX being

The load beingr in the position shown at (a) or (6), the reaction
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When the load is in the position shown at (a), the positive shearing

force at D is

which shoAvs that E in-

creases' as decreases.

Whenthe load isinthe

position shown at (&), the

positive shearing force at

D is F = Bj - ic{x ~

= ^Cp 4- flJi )
- wx, which A V y j C lE B

26 'K 'D
;

shows that F decreases J_
as Xi decreases. Rj ^

! Rg

It is therefore evi-

dent that the positive
\

T/
1

(d) \

shearing force at D is
| \

greatest when x^^x,
\ (+)s.F.D. (-IS.F.D, 1

that is, when the left-
\ J"’'^ /

hand end of the load
|

'

is fit D, The shearing

force at D is then J / !
j

F = ^^(?-a:)2 ^jiich is
|

! / . ! !

the equation to a parabola "*1 /
having for its axis the

\
i //W yo'' 1 !

' '
'

vertical through B, the
[

IZ^
! I

I '•x
J \

right-handendof the span, i /0' /f'
1 I

'

1

the vertex being on the j
B-M.P

.} j j

(®) ^ '

base line XX, as shown
j //i •

1

'

f 'V '

at (rf). The^ maximum
4tlii-liilH^ll lnuinilllll»lllliliMll(liii!l\l

positive shearing force is L Q, P E H B

~ at A where a; n= 0. Fiu. 125.

2

In like manner it can be shown that the negative shearing foriie at D
is greatest when the right-hand end of the load is at D. The shearing

force at D is then F= which is the equation to a parabola having

for its axis the vertical through A, the left-hand end of the span, the

vertex being on the base line XX, as shown at (d). Th(! maximum negative

shearing force is ^ at B where x— L

The positive and negative shearing force diagrams are shown plotted

on the same side of the base line XX at (e).

,

Example III.'—Two loads and Wg at a fixed distance c

apart, moving .along a girder AB (Fig, 125) supported at its

ends.
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wSw'c"
^ W = Wi + W2, Wa = W,., and

tanoTr
any section D, which is at a dis-tance X from A, the bending moment at D will evidently increase as tlieloads move towards D. Hence the bending moment at S will be a^xxmnm, either when W, is at D, or wIicuSy, is at S or wh n w"

tblb H iT
<^PPosite sides of D, the bending moment at D has a value

W, ta PacedTa
' “* ® “'i

and'w^l^l'' placed at D, and at (c) W,
D beS^iA 1

'^'«tance of W, from

momP fs
^ ^^^2. and M3 be the bLdin-moments at D, corresponding to the iiositions of the loads shown at

(a), (&), and (c) respectively. It is easy to show that -x-. a),

Mg = -^-{l -.X+ h) - m, and Mg^^a-x-cc + x,)- \Y.x..

therefore
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curve for M, is a parabola whose axis LN bisects AH at right angles.

Wa?
in the equation M.^=rj^{l~x-a),Putting X

In like manner it can be shown that the curve for Mg is a parabola

KOB whose axis PO bisects KB at right angles, AK being equal to b,

"SR(I -b)^
and PO = 42

'• These two parabolas intersect at a point S on the

vertical through E, which divides the field of from the field of W^,
and the bending moment diagram for the whole girder is ANSB.

A parabola, whose axis is the vertical through C, the middle of the

span, and which touches the larger of the two parabolas at the base line,

will be the bending moment curve for the equivalent uniform dead load.

Let ANH be the larger of the two parabolas ANH and KOB, Produce

the axis LN to T, making NT = LN, then AT is the tangent to the

parabola ANH at A. AT will also be the tangent to the circumscribing

parabola at A. Produce AT to meet the vertical CQ at U. Bisect QU
at V, then V is the vertex of the circumscribing parabola.

It is easy to show that QV : LN : ; AQ : AL, and therefore that the

point "V may be found by joining AN and producing to meet CQ at V.

LNxAQ W{l-af I J- a

_

W(I ~a)

If the equivalent uniform dead load is w per unit of length, then

W{l-a)
, , 2W(Z-a)

—^=—^-j—
- , therefore iv == ^— - .

When both loads are to the right of D the positive shearing force at

D = Bj, and as the loads move towards D, Rj increases, and is greater the

nearer W^ is to D. When Wj passes to the left of D, the positive sliearing

force at D is suddenly diminished by the amount W-j, and is then equal

to Rj - Wj, but as Wj moves to the left, Wg being still to the right of D,

Rj increases, and therefore R^ - W^ increases until Wg is at D. When
both loads are to the left of D there is no positive shearing force at D.
Hence the positive shearing force at D is a maximum, either when W^ is

at D or when W, is at D, or, more correctly, when Wi or W, is just to

the right of D.
^

1 t J

Placing the loads so that Wj is at D, or just to the right of D, as shown
. W''

at (a), Fig. 1 25, the positive shearing force at D = Fj = Rj^ = (Z - a: - a).

Placing the loads so that Wg is at D, or just to the right of D, as shown
W

at (?>), the positive shearing force atD = Fg= Rj^ - W^= y (Z - + &) - W^.
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The equation for the maximum positive shearing force is therefore either

W W
or F

2
= +

Fj is a maximum when x = 0, and Fg is a maximum when a;= 0,

WJ
Fj = 0 when x= I - a, and Fg = 0 when x = l + h-

The equations for tho positive shearing force at D only apjdy when

both loads are on tho girder. The equation F, = y (I- x - a) applies

W
between a; = 0 and x~l-c, and tho equation Fo— y + -W^

applies between a; — c and x= l. For the remainder of the beam in each

case the shearing force is due to one load only.

The positive shearing force diagram shown at (d), Fig. 125, is for

the case where F^ is greater than Fg.

The maximum negative shearing force at any section is determined in

a similar manner.

106. Travelling Loads—GrrapMc Method.—The method discussed

in connection with Example III. of the preceding Article for determining

the maximum bending moment and maximum shearing force diagrams
for two travelling loads may be extended to cases where there are more
than two travelling loads, but for sneh cases the graphic method now to

be described is simpler.

MN (Fig. 126) is a beam, supported at the ends, along which three

f^r
'

1

L_.

nn
1

1

F

\1 1

If

1

1

.

.. _ J
S 5 X J
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loads AB, BC, and, CD, at fixed distances apart, travel. If instead of
tlie loads travelling over the beam in one direction while the beam is

stationary, the beam and its supports are moved under the loads in the
opposite direction while the loads are stationary, the resulting maximum
bending moment diagram would be the same. On the drawing paper
draw the beam MN and show the loads in one position. Still working
on the drawing paper draw (Art. 56) the funicular polygon H123K,
w^hich will also be the bending moment diagram (Art. 75) for the
position of the loads assumed. Draw a horizontal line XX' under MN
to serve as a base line for the required diagram of maximum bending
moments. Transfer the ordinates of the points 1, 2, and 3 of the
bending moment diagram H123K to the lower diagram; thus .F2 in
the lower diagram is made equal to P2 in the upper diagram, XE being
equal to the horizontal distance of F in HK from MX,

On a sheet of tracing paper TP make a tracing of the beam MN
and, the lines of the reactions of the supports. Let the tracing paper
be moved into another position T^^P^, the beam MN coming into the
position MjNj. For clearness in the figure M^N, is not at the same
level as MN, but MjNj is parallel to MN. The bending moment
diagram for the altered position of the beam in relation to the loads
will now be Hjl23Kj, and this should be drawn on the tracing paper,
or, at all events, the points such as F^ and 2 should be clearly marked
on the tracing paper.

Next transfer the tracing paper so that Fj is on XX', and MjHj is
on the vertical through X. If the point 2 on the tracing paper be now
pricked_ through on to the drawing paper, the point 2 under F^ on the
lower diagram is obtained, and this gives the bending moment under the
load BC when the latter is at F^ in XX'. The points 1 and 3 are to be
similarly dealt with.

The tracing paper is next moved into another position TgPo, and the
corresponding bending moment diagram is H223K2

. Points such as Fg
and 2 are to be clearly marked on the tracing paper, and transferred to
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The shearing force diagram for each position of the beam in relation

to the loads will be a stepped diagram, the levels of the steps being the

levels of the points a, 6, c, and il (Fig. 127) on the line of loads, and the

zero line z/ being level -with a point k obtained by drawing through o a

line oh parallel to the closing lino of the funicular iiolygon.

Horizontal lines are drawn on the tracing paper through the points

a, h, c, and fi, and the right-hand top corners of the steps above the zero

line, and the left-hand

bottom corners of the

steps below the zero line,

are marked on the tracing

paper, as shown by the

prominent dots in Fig. 1 27.

z and z\ the extremities

of the zero line, are also

marked on the tracing

paper. The tracing paper

is then transferred so that

2z' coincides with a base

lino ZZ' (Fig. 128) on the

drawing paper, and the

points marked on the

tracing paper are pricked

through on to the draw-

ing paper. This is repeated for each position into which the tracing

paper was placed in determining the bending moments. It will be found
that the outside points lie on a series of straight lines.

107. Reversal of Shearing Stress due to Addition of Travelling

Load.—Referring to the upper part of Fig. 129, AEO and BFO are the
diagrams of positive and negative shearing forces respectively due to the

dead or constant load on a girder of span AB, and AHB and BKA are

the diagrams of maximum positive and maximum negative shearing forces

respectively due to the travelling load,

figure shows aU the diagrams, drawn for

convenience on the same .side of the base

AB, the lines of the negative shearing

force diagrams being dotted.

An inspection of the lower part of

Fig. 129 shows that with the dead load

only the shearing force over the portion

00 of the girder is positive, but when the

travelling load is going over the girder

there will be between C and O, for certain

positions of the travelling load, a negative

shear greater than the positive shear.

Hence during a part of the time that the

travelling Ic^ is moving over the girder

the shear on the porladn,. CO; will change from positive to negative.

Also between 0 and ;D the negative shear due to the dead load will

change to a positive shear due to the travelling load. Hence the portion

of the girder between 0 aiid I) must be capable of resisting either

lower part of the same
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positive or negative shear. This is important in the case of open web

t)!' braced girders, and. is referred to again in Art, 207, p. 23;h

108. Bending and Shearing by Forces in different Planes.—Suppose

a beam AB (Fig. 130) to be acted on by a force at B and a force Pg at

D, the lines of action of P^ and Pg being in different planes, but per-

pendicular to AB. Consider the bending action at a section 0 at a

distance 05
],
from and from Pg . So far as the bending action of Pg is

concerned Pg may be replaced by a force Q acting at B in a direction

parallel to Pg, the magnitude of Q being such that Qa'i == Pga^g. There

are now two forces acting at B, namely, Pj and Q, and their resultant B,

may be found by the parallelogram of forces. The resultant bending

moment at 0 is then and the plane of bending is ABR.
If the plane ABPj be perpendicular to the plane ADPg, then

R= and ^/{(Pl^«l)
2 ^-(P

2
a^g)

2
}.

The following alternative method will in general be more convenient.

Through C (Fig. 131) draw OF parallel to P^ and equal to

Draw CE parallel to Pg and equal to Mg = Pgajg . Complete the parallelo-

gram CEYF. Then CY = M will be the resultant bending moment at

0. Or, after drawing CF, draw FY parallel to Pg and equal to PgCCg

,

then CY, the closing side of the triangle CEY, is the resultant bending

moment at 0.

It is understood, of course, that the actual scale drawing of the

parallelogram or triangle must be made on a plane perpendicular to the

length of the beam, and not in oblique projection, as shown.

Any number of forces at right angles to the beam and in different

planes may be dealt with in a similar manner. If there are more than

two forces, a polygon will take the place of the parallelogram or triangle.

If any of the given forces are not perpendicular to the beam, resolve

them parallel and perpendicular to the beam, and deal with the com-

^
ponents perpendicular to the beam, as above, to find the resultant bending

moment at any section.

To find the resultant shearing force at any section, consider the forces

to one side of the section. Find the shearing forces at the section due to

these forces separately. The resultant of these shearing forces is the

resultant shearing force at the sectipn. .

: Exercises Vila.

Draw the bending moment and shearing force diagrams
given. In this set of exercises the behdink ia.oinent.s and f

a sullicierit namiier of sections slionld he found hy calculation
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1. Cantilever (Fig. 132). W=2 tonSi Linear scale, 1 incli to 1 foot. Force

scale, 1 inch to 1 ton. Moment scale, 1 inch to 4 foot-tons.

2. Cantilever (Fig. 133). ITniforin load, of 2 tons per foot. Scales.—Ijinear,

1 inch to 1 font. Forces, 1 iiioh to 4 tons. Moments, 1 inch to 8 foot-tons.

Fitt. 132. Fig. 133. Fig. 134. Fig. 135.

3. Cantilever (Fig. 134). Loads in tons at intervals of 1 foot. Scales.

—

Linear, 1 inch to 1 foot. Forces, 1 inch to 4 tons. Moments, 1 inch to 8 foot-

tons.

4. Cantilever (Fig. 135). A load of 2 tons at 1 foot from the fixed end, a
load of 1 ton at the free end, and a load of 4 tons uniformly distributed over the
second and third feet of the length from the free end. Scale.s.—Linear, 1 inch
to 1 foot. Forces, 1 inch to 4 tons. Moments, 1 inch to 5 foot-tons.

6. Beam resting on supports 12 feet apart. Load of 5 ton.s at the centre.

Scales.—Linear, i inch

H li kto 1 foot. Forces, 1 inch
to 2 tons. Moments, 1

inch to 8 foot-tons.

6. Same as Exercise

5, except that the load
is placed at 2 feet from
the centre of the span.

--- 10 '

Fig. 133,

d*---

—

Fig. 137.

. Beam (Fig. 136) resting on supports 10 feet apart. Uniform load of i ton
per foot. Scales.—Linear, ^ inch to 1 foot. Forces, ^ inch to 1 ton. Moments,

i inch to 1 foot-ton.

8 . Beam resting on supports 6 feet apart. Loads in tons, at intervals, as
shown in Fig. 137. Scales.—Linear, 1 inch to 1^ feet. Forces, 2 inches to

1 ton. Moments, 2 inches to 1 foot-ton.

9. Cantilever, 10 feet long, carrying a central dovmward load of 8 tons, and
an upward load of 2^ tons at the free end. Scales—Linear, 1 inch to 2 feet.

Forces, 1 inch to 4 tons. Moments, 1 inch to 8 foot-tons.

10. Bearn (Fig. 138) resting on supports 12 feet apart. Load of 5000 lbs.

uniformly distributed over the middle third of the span. Scales.—Linear, | inch
to 1 foot. Forces, 1 inch to 2000 lbs. Moments, 1 inch to 6000 ft.-lbs.

11. Same as Exercise 10, except that the load is to be moved forward until

one end of it is at the centre of the span.
12. Girder, 40 feet long, resting on supports, as shown in Fig. 139. Uniform

--- 12 '

Fig. 138. Fig. 139.

load of 1 ton per foot. li=7 feet 6 inches. Scales.—Linear, ^ inch to 1 foot.

Forces, 1 inch to 8 tons. Moments, 1 inch to 16 foot-tons.

13. Same as Exercise 12, except that
—10 feet.

14. Same as Exercise 12, except that the
supports are to be placed so as to make
the maximum bending moment the least

possible.

16. Same as Exercise 12, with a central
load of 10 tons added.

' '

.

16. Beam (Fig. 140) resting on supports
13 feet apart. The load increases at a uniform rate from nothing at one end.

Fig. 140.,
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Total load, 10 tons. Scales,—Linear, ^ inch to 1 foot. Forces, 1 inch to 3 tons.

Moments, 1 inch to 10 foot tons.

17. Two cantilevers, 10 feet long, carrying a beam 20 feet long, as shown in

Fig. 120, p. 91. The whole carrying a load of 40 tons nniformly distributed over

the cantilevers and beam. Scales.—Linear, | inch to 1 foot. Forces, 1 inch to

16 tons. Moments, 1 inch to 60 foot-tons,

18. G-irder resting on supports 40 feet apart. Single travelling load of 2 tons.

Find also the equivalent uniform dead load m in tons per foot. Scales.-'-Linear,

1 inch to 8 feet. Forces, i inch to 1 ton. Moments, 1 inch to 8 foot-tons.

19. Girder resting on supports 50 feet apart. A travelling uniform load of ^ ton
per foot. The length of the load being not less than 60 feet. Scales.—Linear,

1 inch to 10 feet. Forces, 1 inch to 5 tons.. Moments, 1 inch to 50 foot-tons.

20. Girder resting on supports 50 feet apart. Two travelling loads of 5 tons

each, and at a fixed distance of 10 feet apart. Find also the equivalent uniform
dead load w in tons per foot. Scales.—Linear, 1 inch to 6 feet. Forces, 1 inch

to 5 tons. Moments, 1 inch to 40 foot-tons.
'

21- Girder resting on supports 50 feet apart. Two travelling loads, one of 8

tons and the other of 4 tons, the fixed distance between the loads being 12 feet.

Find also the equivalent uniform dead load w in tons per foot. Scales, the
same as in Exercise 20.

22. Same as Exercise 21, but in addition to the travelling loads there is a
nniformly distributed load of J ton per foot run. Determine the portion of the

girder in which the slreai-ing force may change sign.

23. Girder resting on supports GO feet apart. Three travelling loads Wi
= 10 tons, tons, and Ws—ty tons. W2 is between Wi and Ws, and is

10 feet from Wi and 6 feet from Ws. Use the graphic tracing paper method.
Find the equivalent tmiform dead load w in tons per foot. Scales.—Linear,

1 inch to 10 feet. Forces, 1 inch to 10 tons. Moments, 1 inch to 100 foot-tons.

24. An axle AB rests in swivel bearings at A and B 12 feet apart. At a point

4 feet from A there is a vertical load of 600 lbs., and at a point 4 feet from B
there is a horizontal load of 900 lbs. at right angles to the beam. Calculate the
bending moments on the axle, in ft.-lbs., at distances of 2, 4, 6, 8, and 10 feet

from A. Find also the shearing forces, in lbs., on the axle at sections 2, 6, and
10 feet from A.

109. Stresses Induced by Bending.—^At (a) Fig. 141 is shown a

portion of a straight beam before it is subjected to bending. At (i) is

shown the same portion bent to a cir-

cular form. It is obvious that in bend-

ing this portion of beam, the plane of

the paper being the plane of bending,

the upper part is compres.sed while the

lower part is stretched, and there will
;

evidently be a surface which will separ-

ate the compressed and stretched parts
;

(ct)

this surface is called the neutral surfa>ce

of the beam. Let HK be the position

of the neutral surface. Transverse sec-

tions AD and BC, which are perpen-

dicular to the neutral surface, will be
parallel to one another when the beam
is straight, but when the beam is bent

tbeso sections will be inclined to one
another and their planes will intersect at

O, the axis of the cylindrical surfaces

assumed by longitudinal sections of the

straight beam perpendicular to th^ plane .

of bending. E, the radius of the curVeid; ,

neutral surface, is called the radius 6f\c^fyat%Te of the bent

“Tn

A ^ 11
.

1ii. -
-f

-

1 L_

*
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Consider an indefinitely thin layer of material LIST parallel to the

neutral surface, and at a distance y from it. When unstrained, LN = HK,

but in the bent beam LN becomes L'N'. Now tliere-

fore L'N' = ^-~ and the strain produced in LN is

But E = ; hence if / is the stress produced in the layer LN in the
strain

/ E •

process of bending the beam, ~ — that is to say, / is proportional to y.

The distribution of the stress on a cross section will therefore evidently be

as shown in Fig. 142, /j being the maximum tensile stress, and /g the

maximum compressive stress.

The line in which the neutral surface cuts a transverse section of a
beam is called the nmtral axis of that section.

110. Moment of Eesistance to Bending—Position of Neutral
Axis.—The resultant of the external forces which produce pure bending

is a couple, and this external couple is balanced by internal forces in the

beam, and the resultant of these internal forces must therefore be a couple,

because only a couple will balance a couple. The two forces which form
the internal couple are the resultants of the tensile and compressive

stresses, therefore these resultants must be equal and parallel.

Pia. 142. Fig. 143.

Let YY (Fig. 143) represent a face view and Y'Y' an edge view of a
transverse section of a beam, and let XX be the neutral axis. Consider
an indefinitely narrow strip ss of the section parallel to XX and at a
distance y from it. Let a denote the area of the strip ss. The stress f
on the strip ss is such that therefore The resultant of

. y Vx Vi

the stress on ss is fa The resultant of the stress on the part

of the section b^QW XX, musi} be — =z^X2,ay. In like manner

Eg= hiay. Therefore il * Eg ,
ik2ay= &a?/. But therefore

^ 2/2 2/] 2/2

2tay tor the area below XX must be equal to Xay for the area above
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XX. Hence the neutral cms XX mmt jpass through the centre of gravity

of the section.

The moment of resistance is found as follows. The moment of the

resultant stress on ss is ox and the total moment for the

Vi V%
.

.

whole section is or ts2,ay^. which is equal to ^ I or^ I, where I is

Vx ; V-i. f Vx
.

?/2

the moment of inertia of the whole section about the axis XX.
For equilibrium the bending moment must be equal to the moment

f f . 1 I
of resistance, therefore = Putting Zi=— and Zo =—

,

Vx ?/i ^2

M=/iZi^=/2Z2
. Zj and Zg are called the moduli of the section.

Since ~ = ~ = = therefore M=~.
E y 2/i % E

111. Moments of Inertia, and Moduli of Various Sections.—The
moments of inertia and the moduli of the more common sections required

in connection with the moment of resistance to bending are tabulated

on p. 106. The axis of moments is the neutral axis of the section, and

passes through the centre of gravity of the section, y ~ distance of axis

of momenta from the top or bottom of the section. Where no value is

given for y, it is equal to half the total depth of the section. Where the

section is not symmetrical abdut the neutral axis, there are two values for

the modulus, Zj = I -f y^, and Zg = I ^ 2/2
.

112. Equivalent Beam Sections.—Since the moment of resistance of

an element of a beam section is equal to its area multiplied by the stress

on it and by its distance from the neutral axis, and since the stress on
the element is proportional to its distance from

the neutral axis, it follows that if the element

be moved parallel to the neutral axis into

another position its moment of resistance will \\
not be altered. Hence if a beam section be

divided into indefinitely narrow strips parallel

to the neutral axis, these strips may be moved jtjo,

parallel to the neutral axis so as to form another

section, which will have the same moment of resistance as the original

section. An example is shown in Fig. 144, where the original section,

a hollow semicircle, shown in -full lines, is converted into an equivalent

solid section by collecting the area about a central axis.

113. Section Modulus Figures.—Let MHNK (Fig. 145) be the

cross section of a beam, and XX its neutral axis. The distribution of

stress on the section due to the bending is shown at (a), being the

stress at N, and f^ the stress at M. Take an indefinitely narrow strip

HK of the section parallel to XX. Draw the base line parallel to

XX and passing through N, the lowest point of the section. Draw HA
and K7r perpendicular to Yi^Y^;^. Select a point 0 in XX. If the section is

symmetrical about an axis perpendicular to XX, then O is ])rcfcrably

where this axis cuts XX. In Fig. 14^ MOl^ is an axis of s;

pendicular to XX. Join h and h to 0 by lines cutting HK .

The stress /at HK is such that i;(//j^^4i0ti/QN. By similar triangles

mTO/AA = OL/6N, but AA— HK, iheifefop; ?m/HK-6L/ON=//i, and

-h: -
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Moments of Inertia^ etc.,ofVariQm Beam Sections (see Art. Ill, p. 105).

z=1bd>.

^ I ®-(D3-d“).

1*. B -w

' I-52-’

Ub'-^

I=^(D^-d^).

2/^
= 0-5756r.

2/2=0'4244?*.

I=O-1098}<

Zi = 0-1907r®.

Z2= 0-268Gr3.32

I=5(BD''-6cZ3).

'rS^b^ci 64

1^ #1 ! r. •n-/BD®-&d'>\

32( D )

T“-^S4 D(2B + &)
,

D(B + 26) y (B2 + 4B& + ?;2)D3

3(B + i)* 3(B + 6)- ~ 3(;(B + 6)

‘

_ I _ (B2 + 4B5+ &2)D2 ^ I (B2+4B6 + 62)D*
^ 12(2B + 6)

‘ y%~' 12(B + 26)
'

%

Q

i.

I

^ J
= ^{&D3 + BcM.

. k-B--»

^ I (BD2-Z»ci*)®-4
^~y{~ 6(BD^

-T"T-^n BDa-6d2 BD2-25rfD + &(i^

^^“2(BD-6d)’ 2(BD-i<i)
'

T (BD2-6iiT-4BDM{D-d)i‘
-

,
12(BD-6d)

BD6d(D-d)2 ,, I (BD2-6d2)2-4BD6d(D-«^)‘^

-M2) "
2/2

' 6{BD®-2WD-|-M‘*)

%= area of top flange. <12=area of bottom flange. a= area of web.

-
«2(2D — fe)+aiii+c*'(c?H-2i/i)

j

I
2{ct2 "h Ctg ”i" ®)

^ ^Tr9V^X^%i.-tr7^^rm ! «, _ai(2D “ 4*Cf2^2+ a(c2 -1“ 2^2)

2(ai+ «2+ a)

1

»i«a(I>+d)®+aia(<i+t?)®+«t2a(^2 + «!)®
'5 ^ Z

^

12 i{<ti'+a^+a) ^
2/1

*

^
2/2

In actual practice it is often snflBciently accurate to take and
Zg^oa^, whore h is the tojtsl depth' of the section.
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• mn =/ • HK, Hence the strip HK subjected to the stress/ will have
the same resistance as the strip subjected to the stress/.

If the above construction be repeated for a sufficient number of strips

(the construction

for a strip above v,- M y _ - .

XX is shown by ^ f fg V
dotted lines), and / \ / A
the points joined /i '\

\ \ 1/

\

up, afigure shown / 1 \ 1 \ \
to the right in Og I

4 \

Fig. 145, is ob-
, ( \yf' V 1 / i I

taiued, which is

called the mction —1-4

modulus figure. ^ h ti

Thesectionmodu- Fio. 145.

lus figure has the

property that the sum of the moments of the areas of all the strips

parallel to XX about XX multiplied by / will be the moment of re-

sistance of the section. Hence if is the distance between the centres

of gravity of the parts of the section modulus figure on opposite sides of

XX measured perpendicular to XX, and if is the area of the figure,

then /Zj ==/%/, and =
If instead of projecting tho various strips on to the base line

they bo projected on to Y^Yg
,
which is parallel to XX, and passes through

the highest point of the section, the construction will give another section

modulus figure whose area is
,
and the distance corresponding to d-^ will

be cfg, and then But since Z, =I/?/i, and Z
,2 = I/

2/2 j
it follows

that"Z
2 = Z,7//y2*" Hence if Z, is found from a modulus figure, Zg can

readily"be deduced from it without drawing another figure.

The positions of the centres of gravity of the parts of the modulus

figure on opposite sides of the neutral axis may be determined by one of

the methods described in Chapter V.

A section modulus would only be determined in practice from a section

modulus figure wdien the section was such that, not having definite, or

sufficiently simple, mathematical properties, its moment of inertia could

not be determined by the usual method. Even then it may be quicker

to find the moment of inertia by one of the methods described in

Chapter V.

114. Beams of Uniform Strength.— Considering resistance to

bending, a beam is said to be of uniform strength when the maximum
stress is the same at every cross section. If / is the maximum stress, Z
the modulus of the section, and M the bending moment, then for every

section M=/Z, and for uniform strength M/Z is constant.

In practice it is seldom possible to make M/Z constant for the whole

length of a beam. For example, in a beam supported at the ends and

loaded on the top, M vanishes at the ends where the shearing frivee is a

maximum, and sufficient area of cross section must be provided to insist

the shearing force.

115. Strength of Wheel Teeth.—A tooth of a wheel is a cantilever

on which the load acts at different points of the length during the time

of its contact with another tooth on another wheel. The direction of the

Y,- Jif

\ T

A--- / .

yJ-A ^ / /

^psejV L ^ /f
i

.1
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load on the tooth also varies during contact, and the investigation of the

strength of the tooth is still further complicated by the variation in the

form of the tooth, due to variations in the diameters of the pitch and

rolling circles, and also to variations in the number of pairs of teeth in

contact at one time.

An approximate general solution is obtained by assuming that the

load, Q (in lbs.), is two-thirds of the load, P (in lbs.), at the pitch line due

to the horse-power, H, transmitted when the velocity of the pitch line is

V feet per minute, and that Q acts at the outer end of the tooth.

.53000

There are two cases to consider
: (1) where Q is distributed over the

whole width of the tooth; (2) where Q acts at one corner of the tooth.

It will also be assumed that the thickness of the tooth at the root, is

the same as at the pitch line.

Case I.—Load Q distributed over the whole width of the tooth

(Fig. 146). This will obtain when the directions of the axes of the

wheels are properly fixed and maintained, and the teeth are truly shaped.

The greatest bending moment is at the root, and is equal to Qk. The
moment of resistance to bending is Hence Q/i = t is gener-

ally about 0'48 yi, but allowing for wear t may be taken at 0*4 p, wherep
is the pitcli of the

'teeth. Taking7i = 0*7p,

h = np, andQ = §P,then

P = Taking/
at 3500 for cast-iron,

the following simple

formula is obtained,

P = 200wij2.

Case IL—Load Q
acts at one corner of the tooth (Fig. 147). This may result from

inaccurate mounting of the shafts in the first instance, or through un-

equal wear of the bearings, or from want of truth in the shape of the teeth.

The tooth may break at a section ABCD, which makes an angle 0

xvith the side of the wheel. EF being perpendicular to AB, EF = A sin 6,

AB = . Then QA sin 0 therefore

Fia. 146. Fig. 147.

cos B’

tv tv
5 sin d cos ^ 3 sin 2 d

This shows that Q will be least when sin 26 is greatest, that is,

when 0 = 46°. Hence if the tooth breaks at an oblique section, that

section will be inclined at 45“ to the side of the wheel, and Q = If

Q => |P, # == 0 *4^, thenP — 0*G8^y^ ify_ 3500 for cast-iron, P = 280p®.

If while Q acts at one- comer the tooth breaks at the root, then

Q = and if the,tendency, to -break at the root is the same as at the

weakest oblique sectionj ox b= 2A. This shows that if b is less
, oA o
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,
tlic tootli will break at the root, and then Q=: but if h is

greater than 2/i, the tooth wiE break at an oblique section, and then

116. Bending beyond the Elastic Limit—Modulus of Rupture.

—

The expression for the moment of resistance of a beam to bending, viz.

or /o-j was deduced on the assumptions tiiat the stress varied

uniformly from zero at the neutral axis, and that the mateiial was not

strained beyond the elastic limit. In the case of a ductile material, such

as wrought-iron or mild steel, permanent set will first take place either at

the top or bottom of the section, and as the strain increases the distribu-

tion of stress will change, tending to become more uniform.

The change in the distribution of the stress as the beam is strained

beyond the elastic limit is shown approximately in Fig. 148, At {a) is

shown the distribution of stress before permanent set takes place. At (&)

the material has taken a permanent set in tension and compression, the

portions AG and

law. At (c) th^ (c) (d) (e)

whole of the ma- Fig. 148,

terial has been

strained beyond the elastic limit. If the material is very plastic beyond

the elastic limit the distribution of stress approximates to that shown
at (d), the tensile and compressive stresses being both uniformly dis-

tributed. If permanent set takes place at A before it takes place at B,

the distribution of stress will be as shown at (e), the neutral axis moving

nearer to B.

The value off in the form'ula M =/Z, when M is the bending moment
‘V’-hich fractures the beam, is called the modulus of rupture of the beam.

The modulus of rupture is generally greater than the value of / deter-

mined by experiments on bars in direct tension or compression, and the

difference depends on the form of the cross section of the beam, being

small for a flanged section and greatest for a circular section.

117. Reinforced Concrete Beams.—Good concrete, having the com-

position, cement 1, sand 2, and broken stone 4, will carry safe working

stresses of 60 and 500 lbs, per square inch in tension and compression

respectively. Beams made of this material offer small resistance to

bending on account of the low value of the allowable tensile stress.

The resistance of a concrete beam to bending may, however, be gre

increased by embedding steel bars in the concrete near the face

mum tension. The cross section of suhh ^ ,b^m is shown to '

Fig. 149, the black squares representing the reinforceme

In calculating the moment of re^isijahee of a reinforc

it is usual to assume that the steel
, r^^inlfflpcehiBnt carries tne wnoie oi me
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teiisiou, and that the concrete carries the compression. It is also assumed

that as the beam bends the strains in the various layers parallel to the

neutral surface are proportional to their distances from that surface, as

in the case of homogeneous beams discussed in Art. 109, page 103.

From the latter assumption it is obvious that the neutral axis of a

cross section will not pass through the centre of gravity of that section,

since the moduli of elasticity of the steel and concrete are not equal.

Eeferring to Fig. 149, is the depth of the neutral surface below the

top or compression surface of the beam, h is the depth of the axes of the

steel bars from the top surface, and h is the breadth of the beam. Let

a = total area of cross section of the steel bars, maximum compressive

stress in the concrete, and /g
=?= stress

^
in the steel. The depth of the a

section of the steel bars being small y f R )
'

.

'

:

compared with the depth of the beam, (
( 2

*
'

(
*// ^

it is assumed that/g is uniform over I \ y 3^' ) i NfutrdL
the section of these bars. )i

^

The resultant of the compressive (
j { - \

stress in the concrete is = \

and this resultant acts at a distance p -- ^ # i

I from the neutral surface.

The resultant of the tensile stress

in the steel is Rg == and this resultant acts at a distance h-pi from

the neutral surface.

The assumption of proportionality of strain to distance from the

• "f
"F

neutral surface already mentioned leads to the equation ^

where Ej and Eg are the Young’s moduli for the concrete and steel

respectively.

Since and Rg are the forces which form the couple whose moment
is the moment of resistance of the section, it follows that Rj^ = Rg

,
there-

fore = a/g

.

Dividing the equation /a— by the equation i/i5yi = a/o,

• 2 1
the result is r.-==-i=i—rr vj which may be written

Ega(A-yi)’

7. * F.
’

6 ‘E/^ b 'e;

which is a quadratic equation for determining

Putting ^ = n, the solution of the equation gives
El

___ J(a^n^ + 2ahhn) - an
_

Having found yj, the moment of resistance of the section is

i Bi(^-yi+|yi)===^/i5yi(A-|yi),

or Ra(A~yi4-fyj) = a/
2(ii-|yi).
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In designing a reinforced beam, if either /j^
or/^ is assumed, the other

is found from the equation = af^.

The value of the ratio = w is generally taken at 15.
El ,

Fig. 150.

Exercises Vllb,

1. Taking the moment of resistance to bending of section A (Fig. 150) as

unity, find the numbers -which will represent the moments of resistance of the

sections B, G, and D. (In section 0 the metal is 1 inch thick.)

2. Denoting the moment of resistance to bending of section A, per square

inch of section, by 1,

«- 4"-determine the numbers
which will express the
moments of resistance of

the sections B,0, and D
per square inch of section.

8. The section E (Fig.

160) has a total depth of

8 inches. The flanges are

6 inches wide and IJ
inches thick. The web
is 1 inch thick. What is the moment of resistance of this section to bending
when the maximum stress is 5 tons per square inch ? What will the answer be
if the section is placed with the web horizontal ?

4. A solid circular section is 6 inches diameter. A hollow circular section

is 8 inches diameter outside. Find the internal diameter of the hollow section

so that it shall have the same area as the solid section
;
then, denoting the moment

of resistance of the solid section by 1 determine the number which will represent
the moment of resistance of the hollow section.

6.

A steel joist has a total depth of 18 inches. The flanges are 7 inches wide
and 0*94 inch thick. The web is 0'55 inch thick. Determine the section modulus,
Z, in inch units {a) by the correct formula, (h) by the formula Z = aA, where a is

the area of one flange, and h is the total depth.
6. Construct, half full size, the modulus figures for the following sections,

(a) Circle 6 inches diameter. (6) Hollow circle, external diameter 6 inches, internal

diameter 3 inches, (o) Flanged section G inches deep, flanges 3J inches wide and

1| inches thick, web IJ inches thick, (d) Isosceles triangle, base 5 inches, height
6 inches, (e) Flanged section 6 inches deep, top flange inches wide and 1 j inches
thick, bottom flange 4 inches wide and 1-^ inches thick, web IJ inches thick.
From these figures determine in oases (a), (6), and (c) the values of Z, and in
oases (d) and (e) the values of Zj and Z3. Compare the results
with those obtained by calculation from the correct formulae.

7. AEB and CFD (Fig. 151) are semicircles whose diameters
AB and CD are parallel and 2^ inches apart. AB=2j inches,
OD= 2J inches. AD and BC are straight lines which are per-
pendicular to one another. The whole figure AEBOFD is the
modulus figure of a beam section. Construct the beam section.

8. A cantilever 60 inches long carries a load of 4000 lbs. at
its free end. The maximum stress due to bending is to be 3000
lbs. per square inch at every cross section. The cross section
is a rectangle, breadth=a;, depth=i!/. Determine the cross
section, a? x 1/ at 10, 20, 30, 40, and 60 inches from the free end,
and draw a plan and side elevation of the cantilever (scale, 1

inch to 1 foot) in each of the following cases

(a) 2/= 6 inches , and the lever to be symmetrical about a vertical long it udinal
section.

(S) *=3 inches, and the top surface of the lever to be horizontal.

(c) y=dx, the top surface to be horizontal, and the lever to be symmetrical
about a vertical longitudinal section.

9. Same as Exercise 8, except that the'cfoss Jseotion is a circle of diameter y.
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and the lever is symmetrical about vertical and horizontal longitudinal

sections.
, . ,

10. Same as Exercise 8, except that the load is 6000 lbs., and is uniformly

distributed.

11. Same as Exercise 9, except that the load is 6000 lbs., and is uniformly

distributed.

12. An overhung steel crank-pin journal has a diameter d and length Z. The
total load an the journal is 62,600 lbs. uniformly distributed. The pressure on the

journal is to be 600 lbs. per square inch of projected area (projected area=<ZZ).

The maximum bending stress is to be 10,000 lbs. per square inch. Find d and Z.

13. Same as Exercise 12, except that there is a hole through the pin having

a diameter equal to the axis of the hole coinciding with the axis of the pin.

14. A cast-iron flanged beam resting on supports 12 feet apart carries a central

load of 12 tons, and a load of 6 tons uniformly distributed over the whole length.

The total depth of the beam is 13 inches. The area of the cross section of the

bottom flange is to be four times the area of that of the top flange, and the stress

in the bottom flange is to be 2 tons per square inch. Find the area of the top
flange and the stress in it, assuming that the modulus of the cross section is equal
to the area of one flange multiplied by the total depth of the beam,

16.

Professor Goodman in his “ Mechanics Applied to Engineering” gives

the proportions for cast-iron flanged beams shown in Fig. 152. Show that, for

this form of section, neglecting the fillets between the

flanges and the web, the moment of resistance to bending T^ '

is 0‘077d‘y, where d is the total depth, and / the maximum
|

{
|

:
l

20 teeth, when running at 200 revolutions per minute, [gl |”H
Breadth of teeth 2^ times the pitch,* i

[
A'5-4. 1 i 1

17. Find the pitch and number of teeth for a spur-wheel
|

,

T |—

j

4 feet in diameter, which when running at 90 revolutions
|

per minute transmits 160 horse-power. Breadth of teeth

5 times the pitch.* Fig. 162.

18. At what speed, in revolutions per minute, must a
spur-wheel 3 feet in diameter run when transmitting 80 horse-power. Number
of teeth 40, breadth of teeth 7 inches,*

19. A horizontal steel shaft 6 inches in diameter projects 36 inches beyond a
supporting bearing. At the free end there is a vertical load of P lbs., and at a
point 9 inches from the free end there is an equal load acting in a horizontal

direction at right angles to the shaft. If the maximum tensile stress in the shaft

is 12,000 Ihs. per square inch, find the force P,

. 20, A ferro-oonorete beam, rectangular in section, is 12 inches wide and
24 inches deep. The reinforcement consists of four steel bars, each J inch in

diameter, their axes being at a depth of 22 inches below the top or compression
face of the beam. Taking the modulus of elasticity of the steel as 10 times that
of the concrete, find the depth of the neutral axis of the section from the top.

If the beam rests on supports 18 feet apart, what load, in tons, uniformly distri-

buted, will this beam carry when the maximum compressive stress produced in
the concrete is 600 lbs. per square inch, and what will then be the tensile stress
in the steel in lbs. per square inch ?

21. A concrete beam of reotaugular section, 11 inches wide, is to be reinforced
by steel bars whose axes are to be 20 inches from the compression face of the
beam. If the modulus of elasticity of the steel is 1 1 times that of the concrete,
find the total area of the steel bars, so that when the tensile stress in the steel
is 11,000 lbs. per square inch, the maximum compressive stress in the concrete
is 600 lbs. per square inch ? Find also the distance of the neutral surface of the
beam from the compression face.

* IJse the formula P csfBOOnpVwhere P is the driving force at the pitch line in
lbs., p the pitch of the teeth fn'inohes, and n the breadth of the teeth divided by
the pitch.



CHAPTER VIII

DEFLECTION OF BEAMS

118. Bending to Circular Arc.—It was shown in Arts. 109 and 110,

pp. 103-105, that = 5 = =& = These equationsS show
" Vi B I /j M

_

that a beam will bend to a circular form when is constant, or when

I/M is constant throughout the length of the beam. For a beam of

uniform cross section and I are constant, and therefore /j and M must

also be constant for circular bending. If M is variable, then, for circular

bending, I must be proportional to M.

The equations B — —^ be used for non-circular bending if

/i M
an indefinitely short length of the beam be considered

; E, wnll then be

the radius of curvature at a point in the length, M will be the bending

moment at that point, and /j, and I will refer to the section at the

same point.

119. Deflection due to Oirculax Bending.—Let a beam (Fig. 153)

resting on supports A and B, whose distance apart

is Z, be bent to a circular arc AOB. The point O
^

is the centre of curvature, D is the middle p)oint
\

of AB, and CD is the maximum deflection %. / \
In the triangle OAD, OA^ — AD^ -+• OD^. But ^' / \
OA = E, AD = and OD == E - Therefore X / „

D V
+ that is, +

But since is a very small quantity compared with.
^ 2^

E and Z, the term u\ may be neglected. Hence,
72 Th'T M/2

2miE- W, and But E == therefore . .

For a cantilever of length I it is easy to show that u-^ = .

120.

Cantilever Loaded at Free End.—The cantilever (Fig. 154) is

supposed to be of uniform cross section -i

^
throughout. Consider an indefinitely ^ -x -H q
small portion HK of the length at a

distance x from the free end A. Let

B be the angle between the radii drawn
from H and K to the centre of curva-

j
1

ture of HK, an.d let E be the radius of
j f

curvature of HK. Let HC and KD be
i- , i -4

tangents to HK at H and K, meeting Hie
’

vertical through A at C and D. Then OD ^ the amount of deflection of



123. Beam Supported at the Ends and Loaded Uniformly.

—

Eeferring to Fig. 165, but remembering that the load W is uniformly

distributed over the length, and that its intensity is w per unit of

length. :

= but K^iwLx~:^wx\ therefore =

Hei ce

jSil- __ 6WL^
'•“48EI' 128El"'‘l6ElV3‘'8j“38iEi“C84EI‘

124. Slope of Bent Beam at any Point.—Referring to Figs. 154
and 155, 0 is the change in the slope of the beam between the points

APPLIED MECHANIOS

the cantilever due to the curvature of the part HK. Let HK == dx, and

CD = rZ?/. Then, ^

therefore du

dx du

R
Wx^dx
El

— therefore du
xdx_ M-xdx

"ET'
But M =

The total deflection

0 El ElJ, 3BI’

where I is the length of the cantilever.

121. Cantilever Loaded Uniformly.—Let the load be to per unit of

length. Using the same notation, and proceeding in the same way as in

the lueceding Article, but = therefore du = '~~, and

u, = -~ f* x?dx = where W= lol = total load. The cantilever
^ 2ElJo 8EI 8Er

is supposed to be of uniform cross section.

122. Beam Supported at the Ends and Loaded at the Centre.

—

Referring to Fig. 155, and proceeding as in Art. 120, du — CD = ,

A-D WP 07 WZ3 WLS
"^^~2Eljo'^'^‘''' 6EI 48EI-
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H and K, and
E El

Hence the change in the slope between

Mdx
the points .«= and a;=--Wj is equal to j*^ dj, 'and if the beam is

horizontal where •x = l, then the slope atthe<point where x= Xyi& 9^.

125. Stiffness of a Beam.—The ratio of the maximum deflection of

a beam touts span is called the stiffness of the beam. The stiffness may

be denoted by where n varies from 1000 to 2000 for steel girders of
n

large span, and from 500 to 700 for short spans. For timber beams,

n should not be less than 360.

126. Greneral Method of Determining Deflection from Bending
Moment Diagram.—The analytical method of finding the deflection of a

beam used in the preceding Articles is simple in simple cases, but in

many cases in practice it becomes difficult and complicated. The method
now to be discussed will be

found to be comparatively

simple in cases where the

analytical method would be

troublesome.

In what follows, the beam
or cantilever is assumed to

be of uniform cross section.

Consider first the case of

a cantilever AB (Fig. 156)

under any system of loads.

Let AHKB be the bending
moment diagram, and let

A|Bjl be the curve in which

the cantilever bends. Take
two points L and N on the

cantilever near to one another, their distance apart being s. If the

distance s be small enough, the bending moment M may be considered

as uniform over the length LN. Let K be the radius of curvature of

1 M /I

LjNi, then -- == —
,
and 9 the angle between the radii to the centre of

Ji JiJL

curvature from L^ and N^ will be the change in the slope of the beam in

passing from Lj^ to But 9 = A, therefore = which shows that
Jtli iiii

the change in the slope of the cantilever in passing from Lj to Nj is

equal to the area of the vertical strip of the bending moment diagram
over LN divided by El. Hence if the bending moment diagram over

the portion BP be divided into a large number of vertical strips, it follows

that the total change in the slope of the cantilever between B and P wiU
be equal to the sum of the areas of these strips divided by El, that is,

equal to the area of the* part of the bending moment diagram lying

between the verticals through -B and P, divided by ' El. Hence if a

tangent P^O be drawn to the curve AiPiEj^, at P^^ it will be inclined to

the horizontal -BiC at an angle a, whose tangent or circular measure,

the angle being very small, is equal td the area of the figure PHKB
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divided by El, and therefore
El

where A is tlie area of the liguro

PHKB.
In measuring the area of the bending moment diagram for the

purpose of finding the change of slope, the unit of area is a rectangle,

whose base is the unit of length, and whose height is the unit of bending

moment.
If on AB as base a curve BED be constructed such that the ordinate

PE at any point P in AB is equal to the area of the figure PHKB divided

by El, then the ordinate of this curve at any point in AB will represent

the slope of the bent cantilever at that point, and this curve may be

called the cwrve of slope.

Now let the mean distance of LN from P be denoted by and let ^i

be the deflection at . P, due to the curvature of the part LN, then

u^xd —^ ,
where a' is the area of the strip of bending moment

El
diagram over LN. The total deflection P^Q at P will be the sum of all

such quantities as^ between B and P,- therefore P^Q ==™, where a* is

the distance of G, the centre of gra vity of the figure PHKB from PH.
This simple rule may therefore be used for constructing the curve AiP^Bi,
the work being done graphically, or in part graphically and in part by
calculation.

Again, P^Q = OQ tan a, but since a is a small angle, tan a may be

taken equal to a, therefore P^Q = OQ * a. But a =™ and P,Q =™El EI^
^

hence therefore OQ = a. This shows that the tangent

to the curve A^P^B^ at Pj meets BC at a point vertically under G, the

centre of gravity of the figure PHKB.
The deflection A^O at the free end of the cantilever is obviously

El
where A^ is the area of the whole diagram AHKB, and

cgj is the horizontal distance of the centre of gravity of the figure

AHKB from A. Also, the tangent to the curve A^PiB^ at A^ will

meet Bj^C at a point vertically under the centre of gravity of the figure

AHKB.
Suppose that the area of the figure PHKB, on a scale dravfing, is A'

square inches. Let the scale for the base PB be 1 inch to m inches, and
let the scale for the ordinates or bending moments be 1 inch to n inch-

pounds, then A = A'mn. ol must be measured with the scale 1 inch to

m inches. Then if E is in lbs. per square inch and I is in inch-units, the

deflection will be in inches.

If the bending , moment diagram AHKB {Fig. 156) be considered as

a diagram, showing the intensity' of a load distributed over the canti-

lever, and if the cantSever' be fixed at the end A instead of at the end
B, as shown in Eig.i l&Y, then at any section ? of the cantilever

(Fig. 157) the shearing, fdice is proportional to the area of the figure

PHKB, and therefore the ordinate PE of the curve BED in Fig. 156,
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which measures the slope of the bent cantilever at P, will in Fig, 157

represent the shearing force

on the cantilever at P, that

is, the curve of slope in Fig.

156 is the shearing force

curve in Fig. 157.

Again, at any section P
of the cantilever (Fig. 157)
the bending moment is pro-

portional to the area of the

figure PHKB multiplied by
X, the horizontal distance of

G, the centre of gravity of

PHKB from P, and therefore

the ordinate Pj^Q of the

curve A^P^Bj in Fig. 166,

which measures the deflec-

tion of the bent cantilever

at P, will in Fig. 157 repre-

sent the bending moment on

the cantilever at P, that is, the curve of deflection in Fig. 156 is the

bending moment curve in Fig. 157.

Hence having constructed the bending moment
^
diagram for any

system of loads, the

curve of slope and
the deflection curve

may be constructed

by the rules for con-

structing the shear-

ing forceandbending
moment diagrams,

the original bending

moment diagram be-

ing considered as a

load diagram.

• Consider next the

case of a beam ABS
(Fig. 158) supported

at the ends, and
under any given sys-

tem of loads. Let

AHKS be the bend-

ing moment diagram

for the given system

of loads, and let

AjPjBjSi be the curve in which the beam bends, being tliu hiwosi

point in that curve.

Let a^, Uq, and ag be the areas of the figures PHKB, AllP, and

AHKB respectively. Cj, C^, and Cg are the centres of gravity of these

figures respectively, and tho horizoriital distances of the points Gg,

and Gg from A are Sg
,
and respectively. AP -= .r, and AB = 1.
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The portion AB of the beam may be looked upon as a cantilever

fixed at B, like that in Fig. 156, the bending moment diagram being

AHKBj and the deflection P^Q measured from the horizontal B^C will

be equal to kayix^ — x), where Vr is a constant. The total deflection AjC
is equal to ka^Xy Hence Pj^Pg= A^C - P^Q = - £c), and

P^Pp — Cty(^X^ “ d” "p

A^O agjgg aSgSg agCSg

Consider the figure AHKS to be a load diagram. Let AIDE'S' be

the shearing force diagram, and AjPjB^Sj^ the bending moment diagram
corresponding to the load diagram AHKS. Then the point where the

shearing force is zero must be in a vertical line through Bj, the lowest

point in the bending moment diagram, and the reaction must equal

the load represented by the area AHKB, therefore Rj = gag, where ^ is a
constant. Theii the bending moment at P is equal to

Rj^in - q(.ta{x - ^g)
“ ~ ~ “ ^1^2 •

Also, the bending moment at B is equal to

Li? — 2'fflg(7 — aJg) = — sCg) = qci^x^ = Aj^O,

and = ^3^
~ ~ ^

2) _ (^1 d* d^x — d^{x — gg) _ a-^x +
^

AjO ^^3®8 ^8^8 d^X^

Hence whether the curve AjP^B^S^ be considered as a deflection curve

or a bending moment curve, the ratio of P^Pg to A^C is the same, and
therefore the bending moment curve will represent the deflection at every

point.

127. Beam of Uniform Section Supported at the Ends and Loaded
at any Intermediate Point.—AB (Fig. 159) is a beam resting on supports

whose distance apart is L. This

beam carries a load W at a point C
at distances a and b from A and B
respectively. The bending moment

Wab
at C is and making the ordi-

L
, «T-=—

nate CD equal to this bending - a ~i~r~
moment, and joining A and B to '

D, the figure ADB is the bending
moment diagram for the beam carry-

ing the load W at 0.

Now consider ADB to be a load

diagram. The resultant Pj of the load

represented by the triangle ADC is

equal to and Pi acts in a

vertical line through tlm centre of gravity of the triangle ADO. The
resultant Pg of the load represented by the triangle BDC is equal to

Wa&2
,
and Pg acts in.a trertical line through the centre of gravity of the
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triangle BDC: Let R, and Eg be tbe reactions at tbe supports due

to tbe load represented by ABD, then

T, _W«&(a + 2§) _Wa&(2a + 6)
,
and Jig-

.

If A^F^Bj^ is the bending monaent diagram corresponding to the load

diagram ADB, then the ordinate of the curve at any point 'will

represent the deflection at that point, and the maximum deflection will

be at the section of the beam where the shearing force due to the load

ADB is zero. The complete shearing force diagram ST for the load

ADB is shown, but it is not necessary to draw this to find the deflection

of the beam, but it is necessary to find the point F, where the shearing

force is zero. Let AF - c, then the resultant P of the load represented

by the triangle AHF is equal to
,
and P acts in a vertical

line through the centre of gravity of the triangle AHF.
The shearing force at F = R^-P, and if this is zero Ri==Pj hence

and therefore »

2L 6L

|a(a+2?j)jll

The bending moment at F « R^c - P
|

,

and the deflection at F = - If a = nh, then 6 = (1 - n)lt,

WL® /2n-n^\^
and the deflection at F is given by the expression g^(I ” '^)(

—

3
—

)
•

Thebendingnron.entatC-V-r4,gg^|±^-^-^^,

and the deflection at C =
oLJiil oEi

128. Beam of Uniform Section Fixed at the Ends and Loaded at

the Middle.—The beam AB (Fig. 160) is held at the ends in such a

way that the tangents to the bent beam at A and B are horizontal. The
load W at the centre of the beam will obviously bend the middle part of

the beam so that it sags, that is, it becomes concave on the top, and the

tangent to the bent beam at C will be horizontal. Hence the curve

AtjCjBj into which the beam bends, must have points of inflexion and
F^ between the centre of the beam and its ends, and the positions of

these points have to be determined.

If the beam AB were simply supported at the ends it would be con-

cave on its upper surface for the whole of its length, and the bending

moment diagram w’ould be the triangle ac&, the altitude of which would
be equal to the bending moment at the ,centre, namely, jWL. Al.<5o the

bending moment would be everywhere positive. In order that the beam
may be concave on its under surface at A and B there must be j
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bonding moments at these points, and these are supplied by the method

of fixing. In Fig. ICO the beam is shown with flanges, whicli are sup-

posed to be bolted to the walls,

and the forces PP shown produce ^
the necessary negative bending g- -,-p- gf

I"*

moments just referred to.* Also ihg‘P__ „ l' __ __ i_ _ P±i|
these forces PP produce a uniform ^

|

i

'
I

bending action over the whole of J
Litilfi

the beam. Let aa' be the bending

moment at A.- Draw a' parallel
[ j }

to ab, cutting ac and he at e and
Li -4i Lg Li

f respectively, then the shaded
•

j

^—gp
figure will be the -actual bending i

^ }^i Pi i
^

i

moment diagram for the beam
|

Wi—

{

AB, with fixed ends and loaded i
^ w |

at the centre, a'h' being the base U 2 ^

of the diagram. This diagram Pio. iqq,

shows that the portion EF of the

beam is subjected to positive bonding, and that the parts AE and BF
are subjected to negative bending; also, that there is no bending

moment at either E or F. Hence if the beam be cut at E and F, and
the parts be again connected by pin joints, the axe.s of the pins being

perpendicular to the plane of bending, the jointed beam will behave

exactly as the solid beam. Hence the original beam is equivalent to

two cantilevers AE and BF loaded at E and F, and a beam EF sup-

ported at E and F, and loaded at the centre, as shown in the lower

part of Fig. 160.

The slope of the cantilever AE at E is represented by the area of the

triangle aea' (Art. 126), and the slope of the beam EF at E is repre-

sented by the area of tho triangle cec'. But these two slopes must be
equal, therefore the triangles aea' and cec' are equal in area, and as they

are also similar, it follows that a'e = e'e. Therefore the points of inflexion

and the middle point of the beam divide the span into four equal parts,

and Lj = JL, also Lg = ^L.

The cantilever A^Ei of length= -|L carries a load==-|W at E;^, hence

by Art. 120 the deflection at Ej = f tT 3EI .

\2/\4/

The beam E^E^ of length = ^L carries a load W at its centre C\,

hence by Art, 122 the deflection of Gj below

The total deflection of the whole beam at the centre is therefore

1 ^ WL»

* In order that -the theoiy developed in this Article and the next maybe
strictly applicable, the method of fixing must not hinder any horizontal move-
ment of the beams as a v^hole at the ends. The fixing is only supposed to keep
the beam horizontal at the ehds.i
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129. Beam of Uniform Section, Fixed at the Ends, and Loaded
Uniformly.—The reasoning in this case, which is illustrated by Fig. 161,

is similar to that in the preceding

Article, and corresponding points

in Figs. 160 and 161 have the same
letters attached to them.

Let 10 denote the load on the

beam per unit of length. The
bending moment diagram for the

whole beam considered as sup-

ported at the ends is a parabola

ad), the height of the middle

ordinate being equal to the

bending moment at the centre.

As in the preceding Article,

it may be shown that the area

of the figure aea' is equal to

the area of the figure ced, and
therefore the area of the rect-

angle adc'a' is equal to the Fig. 161.

area of the semi-parabola aecd.

But by the well-known property of tlK^paraMa, area Mcd=^ad • cd,

hence aa! • ad ~ \ad > cd, therefore aa' = |cd, and cd ~\cd', but

cd=‘\v}SJ‘, therefore cc'

=

Considering now the middle portion EF as a beam supjiorted at the

ends and loaded uniformly, cd ~ therefore Lg = -JL®, and

La = i^L = 0-u77L. Also L^= = ^L(3 - ^3) = 0-21 IL.

The cantilever A^E^ of length Li = -^L(3- carries a load

= l^aLo ” ^w'L at E^, and a uniform load of %o per unit of length.

The deflection at Ej^ due to the first load is, by Art. 120,

_ ^«;L ^3Li _wLM9 73 - 15)

3EI 648EI

The deflection at E^ due to the second load is, by Art. 121,

_toLt _?flLM7-4 73)
8EI 288EI

*

The total deflection of the cantilever AjE^ at Ej is therefore

?4>L4(9 73-15) - 4 73) _
648EI 288EI 864ET'

The beam Ej^F^ of length L
2 = |L 73 carries a uniform load of n; per

unit of length, hence by Art. 123 the deflection of below

_ 5wLg _ 6«jL4

'384EI 3456EI*

The total deflection of the whole beam at the centre is therefore

wJd ^ 5z<7L^ _ Wh^
,

864Ei
^
3456EI“ g84EI

’
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130. Beam of Uniform Section, Fixed at one End, Supported at

Other, and Loaded at the Centre.- -AB (Fig. 163) is a beam fixed

B, resting on a support at A, and carrying a load W at the centre C.

3 first step is to determine the reaction P of the support on the

,m at A. Suppose the support at A removed, as shown in the upper

part of Fig. 162, then the load W will produce a deflection in AB at

0 = . The bending moment diagram due to W on
3EI 24-EI

BO will be a triangle BOD, and the tangent to the bent cantilever B^Cj
at 0^ will meet the horizontal through at 0, which is vertically under

C, the centre of gravity of the triangle BCD. Hence OC' = | ^ = w*

If a is the inclination of OCi to the horizontal, then tan a, = m, 4-— = -=-l.

O

The portion CjA^^ of the deflected cantilever will remain straight, but will

be inclined to the horizontal at an angle a. Hence the deflection A^A'
5WL^

of the cantilever at A, ==r2 = Wi Hh-JL tan a = |wi =
^ 48EI

Next suppose that the load W is removed, and the reaction P at the

support to act as shown in the lower part of Fig. 162. An upward deflec-

PL®
tion will he produced at the free end of the cantilever = Uo — ;vrw •

Now if P andW act together, the deflection at A due to W will be

neutralised by the deflection due to P. Hence d~u^, that is,

5WL«_PL8
48Ef 3ir

therefore P=tVW.
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The bending moment diagraixx for the beamAB (Fig. 1 63) may now be

constructed. At C the bending moment is = ^%WL. At B the bend-

ing moment is ygAVL - •|-'WL= - y\WL. Let E be the point where the

bending moment is zero, and let AE— aij then y^Wa: ~ W(.'x; -- |L) — 0,

therefore a;== y\-L. The shaded figure on the base ah is the bending

moment diagram. As there is no bending moment at E the beam may be

supposed to bo hinged at that point, and the whole beam is equivalent to

a cantilever Bj^Ej^ fixed at Bj, and a beam EiA^ supported at its ends.

Since the supporting force at Aj is y'V'W, it follows that the supporting

force at E^ is yyW, and this latter force will also be equal to the load on

the cantilever B^Ej^ at Ej.

llWfA TA3 PWT/
The deflection of the cantilever B^Ej at E^ = ~

i

'

By Art. 127 the deflection of Cj, below AjEi= - . In this

case a = -/yL, and b - |L, therefore the deflection of 0^ below A^Ei

. But Ei deflects and this will lower the point a
4224Ei lyobEi

distance equal toH x the multiplier being the ratio
Id IPodEI 281 dEI

of AC to AE.
The total deflection of below the horizontal through Bj, is therefore

_ 9WL3 ^ 25WL8 _7WL8
'2816El’^4224EI TeSEI*

If the bending moment diagram on the base ah be considered as a load

diagram, the part below ah representing a load acting upwards, the reaction

at the right-hand support will be found to be equal to and the

point F, where the shearing force is zero, is easily shown to be at a distance

from the right-hand support equal to -^L, The complete shearing force

n/5
diagram ST is shown, but this need not be drawn.

Still considering the bending moment diagram on the base ah as

a load diagram, the bending moment due to this load at a point in AG

at a distance x from A is equal to
32

and the deflection at

Putting X —

(-£>
WL^ /

this point is therefore equal to
(
x - ).^ ^ 32EI \ 3LV

deflection at F, where the deflection is greatest, is equal to

WL8 WL» ,

48 V5EI 10®

Putting a? = ^L in the same expression, the deflection at C is found to

be a result which has already been found in another way.
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131. Beam of Uniform Section, Fixed at one End, Supported at

the Other, and Loaded Uniformly.—The treatment of this case is similar

to that of the case in the pre-

ceding Article, and the steps will

be here stated briefly, and the

results given. The load is ro per

unit length, Kemoving the sup-

port at A (Fig. 164), the down-

ward deflection at that point due

to the uniform load will he
olLi

An upward force P at A, the

uniform' load being removed, will

produce an upward deflection at

PL3
that point equal to . Hence

3EI

Sr
The bending moment at a dis- Fig. 164.

tance x from A is -|?,oLx - ^'wx^,

and when this is zero, ^xdLx=\wx?, and .r= |L. This gives the point

of inflexion E. When x = L, the bending moment is

fwL2-|wL2= -\wLK

Between A and E the bending moment is greatest at C, where «== |L,

and is then equal to yI^^oIA
The beam AB may now be considered as a cantilever fixed

at B^^, and a beam EjA^ supported at the ends. The load on the

cantilever B^Ei is P = |2oL at E^, and a uniform load of w per unit

length. The load on the beam EjAj^ is a uniform load of lo per unit

length.

T. « . . n >, 1 u « 6(i!oL)(|L)» 136mL‘
Deflection of .O, below

Total deflection of below A^Bj

135«;L4 _~

2 X 2048EI 32768EI 187EI
nearly.

The greatest deflection is
jgggj

whose distance from A is

0‘4215L. " '
' "

'

Observe that this beam is nOt strengthened by fixing it at one end,

the maximum bending mpment being the same as when the beam
is simply supported at the ehds.
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132. Beam of Uniform Section, Resting on Three Ectnidistant

Supports and Uniformly Loaded.—AB (Fig. 166) is a beam resting

on three supports, one at each end and the other at the centre, and
carrying a uniform load of w per unit length. Let each of the equal

spans be denoted by L, and let the reactions at the ends be Q, and the

reaction at the centre P.

First consider the case where the supports are at the same level.

Suppose the middle support to be removed, as shown in the upper half of

Fig. 165. The deflection at the centre will .then be

Now suppose that the load is removed and that a force P acts upwards at

the centre, forces acting downwards being applied at the ends, as shown

I H--|L

in the lower half of Fig. 165. The upward deflection at the centre will

P(2L)g _PL«
If the conditions in the upper and lower halves of

Fig. 165 be applied simultaneously, and there is no resulting deflection

at the centre 0, then therefore P — -®wL, and consequently

Q = |wL. The bending moment diagram may now be constructed, and
will be as showm on the base in Fig. 166. The beam AB (Fig. 166)
may evidently be considered as two cantilevers AO and BO fixed at Cj
loaded uniformly and supported at their free ends.

Next, suppose that the middle support is l-7^th of d below the level

of the other supports, where d—
,
the downward deflection at the

centre w'hen the middle support is removed. The upward deflection

duo to P k uow tierdoro P=>l(i- 1), and

Q'

Lastly, suppose that the middle support is 1-wth of d above the
level of the other supports. The, upward deflection due to P is now

5^6-LYi ,T\ „ PTA
'

“•

UWlV^nJ 6EI’
The case discussed in this Article is'the simplest case of a wdivnoits

beam

;

the g07ieral case, where there are any number of supports and any
combination of loads, is considered in ithe,next Article.

DEFLECTION OF BEAMS
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133. Continuous Beams and Theorem of Three Moments.-—A beam

which rests on more than two supports is called a continuous heam. Let

BCD (Fig. 167) be a portion of a continuous beam, BO = Lg and CD == L3

being two consecutive spans. Let 5'ec' and c'/tf be the bending moment

diagrams on the base b'c'd' for BO and CD considered as separate beams

supported at their ends. The separate beams BC and CD would have no

bending moments at their supports, but the continuous beam BCD will

have bending moments M^, and My at the supports B, C, and D

respectively, but at present these bending moments are unknown. Sup-

pose, however, that
,
Mj,, and Mp are known. Make h'b = Mb, c'o = Mo,

and d'd = M^. Considering the portion BC, the bending moments Mb and

Mo may be considered as arising from the loading to the left of B and to

the right of C, and these bending moments will affect the whole of BC, as

shown by the diagram 6'&cc', where be is a straight line. The resulting

bending moment diagram for BO as a part of the continuous beam will

be the shaded diagram h'ee'cb, the base of which is be.

Let a
2= area of bending moment diagram b'ec\ and a

3 = area of

bending momeht diagram e'fd'. Let 2!b== horizontal distance of the

centre of gravity of the diagram
^

b'ee' from B, and = horizontal \* lU -i:

distance of centre of gi*avity of the

diagram c'fd* from D. Also let

= horizontal distance of the centre

of gravity of the shaded diagram

b'ee'cb from B, parts below be being

reckoned as negative, and parts

above bo as positive, Lastly, let S
2
denote the effective area of b'ec'cb,

that is, the algebraical sum of the positive and negative parts.

Now'- consider the shaded bending moment diagram to be a load

diagram. Let TOT' be the tangent to the bent continuous beam at C,

and let it meet the verticals .through B and D at T and T' respectively.

By Art. 126, BT « SgajB EX. Dividing the figure b'bcc' into a rectangle

and a triangle, as shown in Fig. 168, where is the centre of gravity of
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tlic rectangle and Gg is tlie centre of gravity of the triangle, it follows

that ,

= a,f.^+ LgMB • JEg+ |L2(Mc - Mb) • fLg

= ciig^B d* i'l^ 2 Mjj + ^LgMc .

[ISTote that in the foregoing general expression, as applied to Pig, 167,

if ctg is positive, Mb and Mo-would be negative.]

I-Ience BT - + iL^Mc).

In like manner DT' = - ^LgMn + -iLsMi..),

But if the three supports are at the same level as in Eig. 167,

Therefore + l-LaMB + l(L, + Lg)Mc + = 0,
Lg 1^3

which is the form of the theorem of three moments for the case where the

supports are at the same level.

If the intermediate support at C is at a distance S below or above the

supports at B and D, as shown in Fig. 169, then

BT + S DT'±S ^ ,BT DT' ^./l 1\

where the plus sign applies to the case where 0 is below BD, and the

minus sign applies to the case where G is above BD. It then follows

ftat ®£"? +M? + |I,jM,+ J(L3 + L,)M„+iL,M„= ±8Q..+jJ)EI,whic}i

is the most general form of the theorem of three moments.
Consider the common and simple case in which the three supports are

at the same level, and the load over the span BC is uniformly distributed

and equal to per unit of length, and the load over the span CD i.s

Wso uniformly distributed and equal to per unit of length. . Here

<*2=I • hf’iUh^ •



i If tlie beam k free over the end- supports, then the reaction at either

end is equal to thp shearing force at that end.

135. Example of Oonitinuous Beam.

—

A bridge ABCD (Fig. 171)
consists of two continuous girders having a central span BC of 20^0 feet,

and two side spans AE -and GD each of IGO feet. There is a uniform
dead load Qf | ton peh fodtThn bn the whole of each girder, and on oacn

girder'of the span AB- there is an additional load equivalent to ton per

foot run. The four piers are At the same level, and the ends of- the girders

128 APPLIED MECHANICS

~ I
' ~

5
and = IIjs* •

Hence -3\:?^?2^2 + -5V-^’3^3+ 6 ^J2^B + |(L2+ Ls)^fu + ^

or, multiplying both sides by 6,

JwgL®+ Jw’gLs+ LjMb+ 2(L2+ L2)Mc + LgM,, — 0.

For a continuous beam bn n supports the theorem of three moments
furnishes ra - 2 equations, and the conditions of support at the two exvds

furnish another two equations. These n equations are sufficient ior

determining the bending moments over the n supports. Most commonly

the beam is free over the end supports, and the bending moments thom

are then zero.

134. Reactions at the Supports of a Continuous Beam.—Consider

the reaction Ro (Fig. 170) at the

intermediate support of two fhfffb

consecutive spans BC — and t~'B'
'

b'
"

b' I

CD = Lg. Let M„, M,
,
and ^

be the bending moments over I^b Pc 1*^0

the supports B, C, and D re-
2^0 .

spectively. Let F^ and F^. be

the shearing forces on the beam immediately to the left and right

respectively of the support at C. Then Rc=*Fc + l^c>

Consider the span BO, and take moments about B.

Mb= PcLa + ^^0 - WgZB . Therefore F^- ^^(Mb - Me -i- WgZs), where Wg

is the sum of the loads on the span BC, and Zb is the horizontal distance

of their centre of gravity from B.
.

Consider the span CD, and take moments about D.

Mb = F^Lg + Me - WgZB. Therefore F^ = ~(Mb - M^ -I- WgZ,,), where Wg
jjg

is the sum of the loads on the span CD, and Zj, is the horizontal distance

of their centre of gravity from D.

He.ce = +
•*-'2 -^3 •‘-'2 Ls

For uniform loading of per unit run on BC and li'gper unit run

on CD. . B- Mgr-M-q + Mp
~

^ ^
L„ ^ Lo • 2 2
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are free. It is required to construct the bending moment and shearing

force diagrams for one girder.

.

[
j

\Bendin0 Moments in Foot-Tons

Shearing Forces in Tons.

Be'iiding Moments at Supports .—Using the notation of the preceding

Articles, the theorem of three moments gives the equations :
—

+ + 2(Li + L2)Mb + L2Mc = 0 for the spans AB

and BO, and ^itf2L2 + |«'8^3'^^2^B + 2(L2H-L3)M(, + L3MB = 0 for the

spans BC and CD, where = 1^, L^=160, L2 = 200,

£3=160
, Ma, = 0, and M„ = 0. Loads being in tons, lengths in feet,

and bending moments in foot-tons.

Solving the above equations, Mb= - 2799, and Mc= - 1322.

Shearing Forces at Supports.—

~

= + tom.

F. =
“

5^* + Stl > ... 117-6 tom.

57‘38 tons.

42*62 tons.

. 48*26 tons.
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Reactions at Supports .

—

p,^ = p;=:82-5 tons. E„= Fb+ Fb= 117‘5 + 57-38= 174'88 tons.

Eo = Fo + Fc = 42-62 + 48'26 = 90-88 tons. E„==Fj, = 31-74 tons.

Bending Moments.—

For span AB. M = 82-5aj - fa;®, where x is the distance of the section

from A. M is zero when a;=0, or 132. Maximum positive value of

M = 2723 when a; = 66.

For span BO. M = - 2799 + 67-dSx - lx% where x is the distance of

the section from B. M is zero when a; = 70-3, or 159-2. Maximum
positive value of M — 493'2 when a;= 114-8.

For span CD. M ^ 31 - 74a; - ^x% where x is the distance of the section

from D. M is zero when a;~0, or 127. Maximum positive value of

M=1007 when !»= 63-5.

All the bending moment curves are parabolas whofse axes are vertical

and pass through the .points of zero shear and maximum positive bending

moment, as shown in Fig. 171.

136. Advantages and Disadvantages of Continuous Grirders.—^The

chief advantage which a continuous girder has over separate girders for

each span will be clearly seen by reference to Fig. 172, in which the

bending moment and
shearing force dia-

grams for the example
of a continuous gir-

der, discussed in the

preceding Article, are

reproduced with the

addition of the bend-

ing moment and
shearing force dia-

grams for the three

spans when covered

with separate girders.

The diagrams for the

continuous girder are

shaded, while the

boundaries of the dia-

grams for the separate

girders are shown dotted where they do not coincide with the boundaries
of the others. ,

It will be seen that one effect of converting the separate girders into

one continuous girder is to considerably reduce the bending moments in

the neighbourhood of the middle, of each span, and to produce bending
moments at the supports, and also to increase the bending moments in

the neighbourhoods df' the supports. If the bending moments at the

supports of the continuous ^der are greater than at the other points,

which is generally ,the the girders may bo strengthened in the

neighbourhoods of the -supports, and the increase in weight wU I not, to

any considerable extent^ affect the bending moment diagram, tbe additional

weight coming over or hear the piers. A continuous girder will therefore
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be ligb-ter tlian a series of separate girders covering the same spans. It

will be noticed that tlie maximum shear is still at the supports when
the separate girders are converted into a continuous girder, and that the

change in the values of the maximum shearing forces in the various

spans is not very great.

The disadvantages of continuous girders are, however, serious. In

the first place, the level of the piers is liable to changes due to unequal

settlement or variations of temperature, and comparatively small in-

equalities of level may cause considerable changes in the bending moment
diagram. In the second place, travelling loads will cause the points of

inflexion to change, and there will be portions of the girder in the

vicinities of those points on which the bending moments will be alter-

nately positive and negative. This disadvantage will obviously be greater

the greater the moving loads are compared with the permanent load due

to the weight of the structure. The advantage of continuity is therefore

greater in long spans, where the permanent load is the most important

one.

A continuous girder requires more care in construction than separate

girders, because any want of straightness in the unloaded girder will

upset the results of the designer’s calculations.

The shearing force diagrams in Fig. 172 show that for a uni-

formly distributed load tlie web of a continuous girder tnust be slightly

heavier than the webs of a series of separate girders covering the same
spans.

137. Cantilever Bridges.—Let the shaded diagram in Fig, 173 be
the bending moment diagram for a continuous girder covering three spans.

If the continuous girder

be cut at the points of

inflexion E and F, or at ^
the points of inflexion

G and H, and joints

be made at these points

which are capable of

resisting shear but not _
bending, the resulting W
girders form what is

(idX\.Q6.& cantilever hridrje,

and they will have all the advantages of the original continuous girder,

but the bending moment diagram 'will not now be affected by any settle-

ment of the piers. Moreover, the bending moment and shearing force

diagrams for a cantilever bridge may be constructed by applying the
simple principles of statics without any reference to the elasticity and
deflection of the structure. The cantilever bridge has therefore the
advantage of being simple to design and, what is most important, there
is the further advantage that there need be no doubt about the results of

the designer’s calculations.

It should ho noticed iliat when the flexible joints are m.adi) at G and
I-r, ill Ihe centre span, the cantilevers AO and JJTI may need to be
anrhorol Jovn hut not jh-ecl at A and D, as the reactions at these iioiiib:

may hocuine negative.

Cantilever bridges have been used with great success for very large



levors ABG, and tlie bridging girders GH in the centre of one of the

large spans. As the arm BG has to carry half the weight of the central

girders GH and of the train loads which may be passing over them the

arm AB is made heavier than the arm BG, and at the extremity A there

is an additional weight sufficient to counterpoise with an excess of 200
tons half the weight of GH when carrying a full train load.

138. Resilience of a Beam.—Consider a very short portion LN of

length s of a beam, and let M be the mean bending moment over LH,
also let B be the change of slope of the beam in passing from L to N.
The work done in bending LN is equal to But by Art. 126,

TV/Tq TVT^q

therefore work done in bending LN = .

JtLl

Referring to Fig. 175, let ACB be the bending moment diagram for

a beam. Construct another curve

AC'B on the same base AB, the y ^

ordinates of AO'B being equal /
to the squares of the correspond- /
ing ordinates of ACB. The work / H
done in bending the portion of A-'''''"' C

the beam lying between A and M
|

B will evidently be equal to the a >^sm g
area of the figure AC'B divided

by 2EI. In measuring the area

of the figure AC'B the unit of area is a rectangle, whose base is the

unit of length, and whose height is the unit of bending moment.
In the simple case where a beam of length L is subjected to a uniform

bending moment M, the work done in bending it is obviously If
21lil

is the greatest stress at the elastic limit, and the distance at which

it acts from the neutral axis, then M and the resilience of the beam
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For a l)eaui of longth L supported at its ends and loaded with a weight

AV at an intermediate point di- q‘

viding L into two pai'ts « and Y iK
the hending jnoment diagram /wnhV / \.
(Fig. 17 G) ivs a triangle ACB and VX7/ Nv
the curves AC' and BC', whose

' # r
ordinates are the squares of the

ordinates of the bending moment
diagram, are semi - parabolas MumiiiMiiMUiiijmiimimiaaii^^

whose axes are vertical and whose "O' “
“ £ ”“-7-^ TJ 1 2L-S

vertices arc at A and B re-

sjiectively. Hence the area of

,,,,,, 1 , ,, WW .n.AC'B = ^ + h) = and the work done in deflecting the
3 ' 3L

beam is But the work done is equal to |-WS, where 8 is the
oLEl

Wa%^
deflection at the load. Hence S= -- -.j— ,

a result which was proved in
uLliil

another way in Art. 127.

The work done in deflecting a beam of length L may be found
analytically as follows. Let ;t;==mean distance of LN (Fig. 175) from A,

and let dx = s, then work done in deflecting beam== (*

==^ f

Jo2Ei 2ElJo
Ai)plying this to the case of a beam supported at the ends and carrying

a uniformly distributed load of zv per unit of length, M = and

_ /L5 2L5 L5\_
~8ElV3~ 4 5

UxMx - 2La^d!jc + sc^dx
)

L5\_ _ W2I/
^5y"240EI 240EI’

where W = zdL= total load.

Exercises VIII.

1. A pitch pine beam rests on supports 16 feet apart, and carries a uniformly
distributed load of 2 tons per footYun. The cross sectionis a rectangle 15 inches
deep, and the maximum stress is 3000 lbs. per square inch at every cross section.

The breadth b of the section is to vary so that the beam will bend to a circular
arc. Find b at the centre of the span, and at 2 feet and 'I feet from the centre.
Find also the deflection at the centre, and the radius of curvat.ure of the neutral
surface. 1= 1,900,000 lbs. per square inch.

2. A cast-iron cantilever, 64 inches long, carries a load of .3000 lbs. at its

outer end. The cross section is a rectangle 2 inches broad. At the fixed end
the depth is 8 inches. The depth at other points, is to be such that Ihe lever
will bend to a circular arc, and the lever is to be symmetrical about th
surface. Find the depth at 9, 27, and ,46 inches from the fixed end.
the deflection at the free end, and the radius ot curvature of the neut
when the lever is bent. What are ,the,maximum stresses at the fixe
at the other sections mentioned ? l|::;:.17,00p,000 lbs. per .sq

3. A beam, instead of being straight
" ' ’ ' ''

'

,

' f 11-3 7 r.
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to a radius r. On applying a bending moment tbe radius of curvature is altered

from r to H. Show that and therefore if »• is large compared

with 1/, +E ^^-i^nearly.

4. The cross section of a cantilever is a circle of diameter d. Length of lever,

4 feet. Load at free end, 5000 lbs. Maximum stress, 9000 lbs. per square inch.

E= 29,000,000 lbs. per square inch. Find d and the deflection at the free end.

5. A cylindrical cantilever is 30 inches long, and 5 inches in diameter. There

is a load at the free end which causes a maximum stress of 2500 lbs. per square

inch. Taking B at 1,800,000 lbs. per square inch, what is the deflection at the

free end?
6. A vertical mild steel tube of 6 inches external diameter, and % inch thick,

is securely bedded in the ground. Its height above ground is 10 feet, and it is

subjected at the upper end to a horizontal pull of 1500 lbs. Calculate the

maximum stress at the ground section and the deflection at the top. (Take E
as 30,000,000 lbs. per square inch.) [Inst.C.E.]

T. A beam 12 feet long, 1 foot deep, and 6 inches wide rests on supports

at its ends, and carries a load of W lbs. at its centre. The maximum stress being

2000 lbs. per square inch, findW and the deflection at the centre. E = 1,800,000 lbs.

per square inch.

8. Eeferring to the beam of the preceding exercise, what load, in pounds,
distributed uniformly over the length, will cause a deflection at the centre equal
to l-flOOth of the span ?

9. A steel joist, 10 inches deep and 10 feet long, is supported at the ends.

The joist has equal flanges 6 inches wide and 0'54 inch thick, and a web 0’35

inch thick. The weight of the joist is 29 lbs. per foot. What central load, in
addition to its own weight, will this joist carry when its deflection at the
centre is 1 -1000th of tbe span, and what will then be the maximum stress?

Eb= 30,000,000 lbs. per square inch.

10 . A wooden plank, 12 inches wide and 3 inches deep in section, rests freely

on two supports, in the same horizontal level, which are 20 feet apart. A man
weighing 12 stone stands in the middle of this plank carrying on his shoulder
a hod of bricks which weighs 84 lbs. Find ;—(a) The maximum stress at the
central section due to this load, and the weight of the plank. (1 cubic foot of

wood weighs 46 lbs.) (b) The deflection in the centre, if Young’s modulus of

elasticity, is 3,600,000-lbs. per square inch. [B.E.]

11. In connection with a contract for the supply of Cast-iron pipes, certain
,

bending tests were specified on bars (cast at the same time) 40 inches long,

2 inches deep, and 1 inch thick. The following results were obtained when one
of these bars was tested on edge on a 36-inch span :

—

Load at centre of beam,!^
.pounds . . . ./

100 400
,

800 1200 1600 i 2000
'

2400

Deflection at centre of beam, \
inches , . . ..J

0-012 0-048 0-098 0-160 0-204 0-266 0-314

(a) Plot on squared paper a curve to show the relation between the load at the
centre of the beam and the deflection at the centre of the beam, (b) From your
curve determine the load which will be required at the centre of the beam in order
to give a deflection of one-eighth of an inch. (<s) Calculate in lbs. per square inch
Young’s modulus of elasticity for l^is cast-iron, [d) Calculate in inch-pounds
the total work done in bending this beam up to a load of 2400 lbs. in the centre
of the span. (<?) The beam- eventually broke with a load of 3200 lbs, in the
centre. Assuming that the ordinary beam formula holds up to the breaking
point in cast-iron beams, what was the maximum intensity of tensile stress in
the metal at the instant of ruptur^ ? [B.E.]

12.

A steel girder, having a Uniform depth of 13 feet, rests on piers which
are 150 feet apart, and carries a uniformly distributed load. Find the deflection
at the centre in inches

; (a) When the area of the flanges is proportioned so that
there is a uniform flange stress of tons per square inch

; (6) when the girder
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is of uniform cross section throughout and the maximuin flange stress is (h} tons

per square inch. 1=13,400 tons per square inch.

13. Show that if a cantilever of length L carries a load W at a point ~ from

the fixed end, the deflection at the free end is —
14. A steel shaft AB, 3 inches in diameter, rests on supports at 0 and D, and

is loaded at the ends, as shown
in Fig. 177. If the maximum |V/ ^1
stress due to bending is 10,000 j-aj
lbs. per square inch, what is the J ^ii"
total deflection Ml at the centre ? k—30 60
1= 30,000,000 lbs. per square inch.

15. A continuous girder, built FlG. 177.

for crossing two equal spans, has

a uniform section whose moment of inertia is I, while its uniform weight per foot

lineal is io. The girder is launched across the spans from one end, and, when its

centre comes nearly over the central pier, the leading end will droop downwards
under its unsupported weight. Write the expression for the extreme deflection

of the leading end, the length of each span being denoted by L. [Inst.C.B.]

16. A cast-iron pipe, internal diameter 18 inches, and thickness 1 inch, rests

on supports 40 feet apart. Find the maximum bending stress and the deflection

at the centre when the pipe is full of water. Take weight of cast-iron=450 lbs.

per cubic foot, weight of water=62'3 lbs. per cubic foot, and
E= 6000 tons per square inch.

17. If any beam of uniform section deflects 1 inch in a span y.-
of 100 inches under a central load, what will he the slope of the
beam at each end 1 ' [Inst.C.E.] j

'''

18. Suppose that three beams or planks, A, B, and 0 (Fig.

178), of the same material, are laid side by side across a span ^ B
^

L=100 inches, and a load W=600 lbs. is laid across them at _
the centre of the span so that they must all bend together.

The beams are all 6 inches wide, but while A and 0 have a depth of 3 inches,

the depth of the middle beam B is twice as great. How much of the weight W
will be carried by each of the three beams, and what will he the extreme fibre

stress in each ? [Inst.C.E.]

19. A flitch beam is made up of two timbers, each 6 inches wide and 14 inches

deep, and a steel plate | inch thick and 12 inches deep, as shown in Fig. 179.

Taking the modulus of elasticity of the steel as 21 times
that of the timber, find the maximum tensile stress in the iJx
steel when the maximum tensile stress in the timber is

1000 lbs. per square inch. Find also the percentage in-

crease in the strength of the timber beam to resist bend-
ing due to the addition of the steel plate, allowing the 'X//
same stresses. VxS-.

20. A beam of uniform section rests on supports
whose distance apart is L, and carries two loads each FiG. 179.
equaT to W, one at a distance a from one support, and
the other at a distance a from the other support. Show that the deflection

under each load is equal to ^^(3L-4a), and that the maximum deflection (at

the centre) is equal to

21.

A single line railway bridge
40 feet span. The total weight
of a locomotive standing on the
bridge in the position shown in

Fig. 180 is 68 tons, distributed
upon 4 axles, the leading axle'
carrying 8 tons, and each of the
others 20 tons. Find the maxi-
mum deflection of the girders,

and where it occurs. [U.L.]

carried by two main girders, each of

20 TONS, 20 TONS. 20 TONS. 8 TONS.

V t > \

-30'- ^^ |^-30"-
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22. A beam of uniform section is built into a wall at one end, and rests on a

support at a distance of 20 feet from the wall. A load of 26 tons rests on the

l)eani at a point 12 feet from the wall. Taking E= 13,000 tons per square inch,

and 1= 1000 in inch units, determine the reaction of the support on the beam
and the deflection of the beam at the point where the load is applied. Draw
the bending moment and shearing force diagrams for this beam.

23. A beam of uniform section is built into a wall at one end and supported

on a column, as shown in Fig. 181. The
beam carries a load of tons uniformly
distributed. Find the vertical thrust on
the column, and draw the bending moment
and shearing force diagrams. At what
points is the bending moment zero 1

24. A beam of uniform section is rigidly

fixed at its ends to two walls, which are
24 feet apart. Two loads, each of 10 tons,

are applied to this beam at points 6 feet from the walls. Determine the bend-
ing moments at the ends and at the centre, and find the positions of the
points of zero bending moment. Draw the bending moment and shearing force
diagrams.

26,

A continuous beam of uniform section covers two spans, each equal to
L, and carries a uniform load of w per unit of length. Show that the middle

support must be below the level of the outer supports by an amount in

order that the pressures on the three supports may be equal,

26. A continuous girder of uniform section consists of two spans, each of
60 feet, and carries over both spans a uniformly distributed load of 1 ton per
foot run. Both ends of the girder are free. Calculate the bending moment
over the middle support, and the maximum positive bending moment between
the centre and one end. Find also the reactions at the supports.

27. A continuous girder of uniform section and of two equal spans carries a
uniformly distributed load of w tons per foot run. Find the bending moment
over the central pier when the height of the three piers is the same, and also

when the central pier, owing to temperature effects, is raised or lowered by an
amount equal to x inches. [U.L.]

28. A rolled steel joist 40 feet in length, of I section, 10 inches deep, and
6 inches wide, has a thickness which is equivalent to J inch in both flanges and
web. It is continuous over three supports, forming two spans of 20 feet each.
What uniformly distributed load would produce a maximum stress of fij tons
per square inch? Sketch the diagrams of bending moments and shearing
forces. [In.st.C.B.]

29. Apply the theorem of three moments to find the reactions when there
are three level piers supporting a continuous girder carrying a uniformly
distributed load of 2 tons per foot run, the two spans being 200 feet and 150
feet respectively. [U.L.]

30. A continuous girder consists of two spans. One span of 100 feet is

loaded with If tons per foot run, the second span of 80 feet is loaded with
tons per foot run. Find the values of the supporting forces, and the

maximum bonding moment for the whole girder. Both ends of the girder are
free. [Inst.C.E.]

31. Work out the example of Article 135, pp. 128-130, assuming that, owing to

settlement of the pier, the support at B is ^ inch below the level of the other
supports. Take E=:13,000 tons per square inch, and 1=432,000 in inch units.

32. A cantilever bridge ABOD has supports at A, B, 0, and D. AB=CD
= 100 feet. BO= 300 fe^t. There are hinge joints at E and F in the centre
span. BE=CF=?100 feet. Assutning that there is a permanent dead load of

2 tons per foot run, and a live load of 1 ton per foot run, construct the bending
moment and shearing force 'diagrams for this bridge when the live load covers
(a) the span AB only, ($) the 'cantilever AE only, (c) the girder EF only.

33. A cantilever bridge,has three spans, each of 200 feet. There are hinge
joints in the side spans at .points 120 feet from the shore ends. Assuming a dead
load of 2 tons per foot rup, aftd a live load of 1 ton per foot run, construct the
bending moment apd shearing force diagrams when the live load covers (a) one
side span only, (6) the centre span only.

Fig. 181.
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CHAPTER IX

COMPOUND STRAINS AND STRESSES

139. Directions of Stresses G-enerally Parallel to one Plane.—If

a portion of a strained body be taken wbicb is a right prism it will be

found that in the majority of practical cases this prism may be selected

so that on its parallel ends there is no stress whatever, and if this is so it

is easily shown that the directions of the stresses on the remaining faces

must be parallel to the planes of the ends of the prism.
_

In the web of a

girder, for instance, there is usually no stress on the sides or on plane

sections parallel to the sides, and the tensile, compressive, and shearing

stresses are all in directions parallel to the sides of the web.

In considering the equilibrium of a right prismatic element, on the

ends of which there is no stress, it is most convenient to represent this

element with its ends parallel to the plane of the paper upon which it is

projected ;
the directions of the stresses considered are then all parallel to

that plane.

In the articles and exercises of this chapter it will be assumed, unless

otherwise stated, that the directions of the stresses considered are parallel

to the plane of the paper, and that the plane sections upon which the

stresses act are perpendicular to that plane. —
^

In proving the propositions connected with stresses in a strained body

it is convenient to consider an element of it which is a right prism, selected

as described above, and in many cases it is necessary to assume that the

element is indefinitely small to allow of the stresses being of varying inten-

sities, because if the stress on a surface is not of uniform intensity, the

stress on an indefinitely small area of that surface may be considered

as of uniform intensity.

140. Stresses on an Oblique Section of a Bar subjected to Direct

Tension or Compression.—Let AB (Fig. 182) be a bar subjected to a

direct pull or push by a load P
which is uniformly distributed

over its ends. If cb is the area

of the cross section of the bar,

and p the intensity of the

stress on it, then P =pa- Con-

sider an oblique section CD
inclined at an angle 6 to the

cross section. The, area of

this oblique section is a/cos 0. jg2 .

Considering the equilibrium of

the part AGD, the force P. is balanced by a force F perpendicular to

CD, and a force Q in the plane of CD. The force N is the resultant

1_LLL

TTTTl
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of a normal stress on CD, and the force Q is the resultant of a tan-

gential or shear stress on CD. By the triangle of forces N = P cos 6, and

Q — P sin 9.

If w is the intensity of the normal stress, and q the intensity of the

tangential stress on CD, then N - = P cos 0 cos 0, therefore

cos^ 9. When 9 = 0, n is a maximum, and is then equal to p.

Also Q" 9=pa sin 9, therefore q—p sin 9 cos 9, but

sin 0 cos (9 = I sin 29, therefore sin 20. When sin 20 = 1,

i.e. when 0 = 45°, g is a maximum and is then equal to

If a section be taken perpendicular to CD its inclination to the cross

section will be 90° — 0, and the shear stress on this section will be

sin 2 (90 - 0) = Ip sin (180 - 20) = |p sin 20, which is the same as the

shear stress on CD. It will be shown in the next Article that in all cases

where there is a shear stress on one section there is always an equal shear

stress on a section perpendicular to it.

The fact that there is a shear stress q on the section CD having a

maximum value equal to |p when 0 is 45°, suggests that if the resistance

of a material to rupture by shearing be less than half its resistance to

rupture by direct tension or compression, it will give way by shear-

ing when subjected to tension or compression. This is what really

happens with several materials, and examples will be found in Art. 166,

p. 175.

141. Equality of Shear Stresses on Planes at Eight Angles.

—

Consider an indefinitely small rectangular portion ABCD (Fig. 183) of a
strained body, and let h be the height, b the breadth,

*

and t the thickness of this portion. Assume that r
there is no stress on the face ABCD or on any inter- a —

^

face parallel to it. The portion of material ABCD i
t a

being at rest, the stresses on the faces which are + -[-h—> 1

perpendicular to the face ABCD must balance one
q| -j^

fq
another. The stresses on the faces AD and BC

/

^
‘

may be resolved into normal stresses p, and shear
/

|

' t

stresses q. In Fig. 183 the arrows representing the
1 p

i

^
1

^

normal stresses are omitted. The normal stresses on I
S'*

AD and BC must evidently balance one another. —
The resultant of the shear stress on AD equals Fig. 183.

qJit, and this will also be the magnitude of the result-

ant shear stress on BC. These two resultants will form a couple whose
moment is ghfb. Now no system of forces but a couple will balance a

couple, therefore the stresses on AB and CD musthave components which
are shear stresses s on these faces. The normal components of the

stresses on AB and CD must balance one another. The resultants

of the shear stresses on AB and CD will form a couple whose moment
is sbth, and if this couple is to balance the other couple, then sbih= qh
therefore s = q. Hence if at any point of a strained body there is

shear stress in one plane there must, be a'sliear stress of equal

tensity in another plane at right an^es to the first, but these two pla

must be perpendicular to a plane which is parallel to
'
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142. Pure Shear Stress Equivalent to two Normal Stresses.—

Consider an indefinitely small cube ABCD (Fig. 184) of a strained body.

Let 7; be the length of the edges of this cube. Assume that there is no

stress on the face ABCD or on any interface parallel to it. Suppose that

the faces AD and BC are subjected to pure shear stress of intensity q, the

direction of which is parallel to the face ABCD, then by the preceding

Article there must be shear stresses of intensity q on the faces AB and
CD, as shown. Imagine the cube divided into two equal parts by a plane

AC perpendicular to the face ABCD. Consider (Fig. 185) the equili-

brium of ABC, one of these parts. The resultants QQ of the stresses

on AB and BG must balance the resultant E of the stress on AC, and by
the triangle of forces it is seen that R is perpendicular to AC and equal

to Q ^/2. The stress on AC is evidently a tensile stress. Let r be the

intensity of the stress on AC, then

R .== rb^ — ^2^ qb^ ^/2, therefore r = q.

In like manner, by dividing the cube into two equal parts by a plane

BD perpendicular to the face ABCD, and considering (Fig. 186) the

equilibrium of the part ABD, it can be shown that there is a compressive

stress of intensity q on the face BD.
Hence a pure shear stress is equivalent to two normal stresses at 45°

to the shear stress, and each equal in intensity to the shear stress, but one
is a tensile and the other a compressive stress.

It is evident that all sections of the cube parallel to the plane AC
will be subjected to tensile stress, of intensity q, and all sections parallel

to BD will be subjected to

compressive stress of inten-

sity q. Hence if a part of

the interior of the cube be
mapped out so as to form a

rectangular solid EF having
faces parallel to AC and BD,
as shown in Fig. 187, this

solid will be, subjected

to tensile and compressive

stresses of intensity equal

to that of the shear stresses on the faces of the cube ABCD.
Conversely, it is easy to show that if a cube ABCD (Fig. 188) have

its faces AD and BO'sniy^cted to tensile stress, and also have its faces

AB and CD subjected to"an i equal compressive stress, sections parallel to

AC and BD will be.subjected to shear stress of the same intensity.
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The tlieorein which has just been proved has an important application

in the case of a shaft subjected to twisting. Let ABCD (Fig. 189) be a

scpxare traced on the surface

of a shaft, the sides AD and

BO being perpendicular to

the axis of the shaft, and

suppose that this square

represents an indefinitely

thin prism of the material.

The faces AD and BO are

subjected to pure shear

stress, and by Art. 141 the

faces AB and OD must be subjected to an equal shear stress. Hence by
the theorem of the present Article the diagonal face AO is subjected to

pure tension, and the diagonal face BD is subjected to pure compression,

also the intensities of the tensile and compressive stresses will be the same

as that of the shear stress. Now, if the resistance of the material to tension

be less than its resistance to shearing the shaft will give way along AC,

which is part of a helix whose inclination to the axis of the shaft is 45°.

This is what actually occurs when a cast-iron shaft is broken in torsion,

except that the inclination of the helix is not exactly 46°. Further

reference to this matter will be found in Art. 167, p. 176.

As an illustration of the presence of tensile and compressive stresses

whose directions are inclined at 46° to the directions of the shear stresses

in a shaft under torsion, it will be found that a spiral spring whose coils

are close together and inclined at 45° to the axis will be as stiff and

strong when twisted in one direction as a tube of the same material

having the same outside and inside diameters, bnt under torsion in the

opposite direction the spring will be very weak. “When twisted in the

first direction the surfaces of the coils in contact are subjected to pure

compression, and therefore the fact that the material is divided at the

surfaces in contact will not affect the powder of the coils to resist com-
When twisted in the opposite direction the coils will separate.

143. Principal Stresses-

(Fig. 190) be an
indefinitely small

cube in a strained

body, the face

ABCD and all in-

terfaces parallel to

it being free from
stress. The stresses

on the faces AB,
BO, CD, and DA
may be resolved into

Principal Axes of Stress.—-Let ABCD

TTqtT
FlO. 190.

normal and shear stresses. The normal stress on AD must balance the

normal stress on BC
;

let the intensity of these stresses be denoted by p.

The normal stress on AB must balance the norinal stress on CD
;

let the

intensity of these stresses be denoted by
By Art. 141 the intensities of the shear stresses on AB, BC, CD, and

DA must be equal,* let these be denoted; by/i ,
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Lot PE lie a plane sectiouj upon which there is pure normal stress of

intensity /*. It is required to find r, and 0, the inclination of BE to CD,
in terms of jy, (/,

and /.

Let the edge of .the cube be denoted by a;. Consider the equilibrium

of the prism BCE.

P the resultant of the stress p on BC = px^.

Q » >> )! S yj CE = cot 0.

• R „ „ 5 ,
r „ BE = ?u'2/ sin 0.

F „ « / „ BC^M
S „ „ „ . / „ CE=:/./;2cot0.

Resolving veHically.

E, cos d = F + Q.

rx“ cot d cot 6.

r cot 6 —/+ O'
cot 0 . .

. Resolving horizontally.

Rsin0= P+S.
rx^ ~p'x? -Vfx^ cot 9.

(1) r=j?+/cot 6 , (2)

Solving equations (1) and (2), r~\{p + q± a/(P

“

2)^ + ^/^}

tan 20 or tan 0 = -Z_ =
q~p r~p

-q p-q±
f " 2/

There are two values of 0 which satisfy the above equations, and
these values differ by 90°. Corresponding to the tw^o values of 0 there

are two values of r.

The two values of r acting in directions at right angles to one another

are called stresses, and two lines parallel to the directions of the

principal stresses are called jw'majpoZ axes of stress.

As a numerical example, let p — Q, g *= 3, and /= 2, all in tons per

• -U mr 6 + 3± J(6 - 3)2 + 4x22 ^
square inch. Then r= i = /, or 2 tons per square

• 1 j. n “ 2 7 - 3 2 - 3 1

/ 2 2 2

To show the positions of the principal axes of stress, draw HE (Fig.

191) parallel to the direction of p, and make it equal to unity on any
convenient scale. Draw KL at right angles to KH, and make it = 2.

Join HL, then the angle LHK is one value of 0. Produce EH to

M, making HM = 2. Draw MN at right angles to MH, and make
it=l. Join NH, then the angle NHE is the other value of 0, and it

is easily seen that the angle NHL is a right angle. Through any
point O in the original cube ABCD draw OX and OY perpendicular to

HL and HN respectively. OX and OY are principal axes of stress, and
if a rectangular element be taken at 0, with its faces parallel to OX
and OY, the stresses bn the faces of tliis element wull be entirely normal,

the stress in the direction OX being a tension of 7 tons per square

inch, and the stress in ,'the direction OY a tension of 2 tons per square

inch.

In Fig, 190, jp and q are shown as tensile stresses, lip or g, or both.
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be altered to compressive stresses, this will be equivalent to making -p or

(7, or both, negative instead of positive. It
,

^

would be well for the student to demon-
strate the proposition, first, taking g as

compressive stress and p as tensile stress,

and then again, taking both and
g;

as

compressive stresses.

The case where ^ or g is equal to zero

is one of great jjractical importance, and
will be considered in the next Article.

144. Principal Stresses due to Com-
bined Bending and Twisting,—-When a

shaft of diameter d is subjected to a bending

moment B, the maximum tensile and com-

pressive stresses produced are given by the

equation p = -~-g, and these stresses are in direction parallel to the axis

of the shaft. If the same shaft is subjected to a twisting moment T, the

16T
’

maximum shear stress produced is given by the equation /=.-—r-. Let

ABCD (Fig. 192) be an indefinitely small square prism of the material of

the shaft in the neighbour-

hood where the tensile or £*
compressive stresses are a ,*_4

”

maximum, the face ABCD .

being on the surface of the

shaft, and AB parallel to its ^ ^
axis. Then by the preceding - *—

Article, putting q — 0, there

will be pure normal stresses *
Fig. 192.

on planes at right angles to

one another, the intensities of these normal stresses being given by the

equation r =s |{p± + Inserting the values of p and / given

above, Tbe

greater of these two values of j' is T^^j and when p is a

tensile stress the greater value of r is a tensile stress, but when p is a

compressive stress the greater value of r is a compressive stress. Now,
since the resistance of the material of shafts to compression is greater

than the resistance to tension, the maximum value of r should be con-

sidered as a tensile stress.

The equation r = -^{B + -f T^} may be put in the form

^<fV =B+ .yB^-fT^, Now, a simple twisting moment T^rzr^d'Vwill

produce a pure shear stress and also a pure tensile stress (Art. 142) of

intensity r, therefore a twisting moment Tg^B-f will ])rodu(’e

the same maximum normal stress as is j^rbduced by the combined action
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of the heudiiig moment B and tmsting moment T. is called the

equivahmt hoisting moment.

In using the formula Te==B+ ^B^ + it must he remem-

bered that r is not a shear stress, but a tensile stress. This is a point

which is frequently misunderstood, and it may be well to restate the case

as follows When a shaft of „ „

diameter d is subjected to a pure —>• h a

—

»- > n

twisting momentT, then T =

where / is the shear stress on the

faces AB, BC, CD, and DA
(Fig. 193) of a square element

of the skin of the shaft, AB
being parallel to the axis, but

Fig. 194.

f is also the tensile stress on AG. If a bending moment B
is added, this shifts the plane of tensile stress to EF (Fig.

194), and increases its value from / to r, the value of r being

Hence it may be said that in the formulae

T= -dy and Te =

Id 16
,dV, / and r are both tensile stresses.

It is easy to show that if B^, is a bending moment which will produce

the same maximum normal stress as a bending moment B and a twisting

moment T acting together, then B^^ |B -f I -f T®. In applying this

to a shaft, B^ must be equated to where / is the maximum normal

due* to Combined Twisting and

- B

145. Maximum Shear
Bending. — Let ABCD
(Fig. 195) be an in-

definitely small square

prism of the material

of a shaft of diameter

d which is subjected

to a bending moment
B and a twisting mo-
ment T, the face ABCD
being on the surface of

the shaft in the neighbourhood
is parallel to the axis of the

CD are subjected to i

also subjected to bending stress.

3913
tensile stress p = These

on planes parallel to Cl, and a
to DK, which is perpendicidar to,

Fig. 195.

of the greatest bending stress. AB
shaft. The faces AD, CB, AB, and

f— AD and CB are

In Fig. 195 the bending stress is a

produce a pure normal stress

pure normal stress on planes parallel

GJ. By Art. 143, putting <7 = 0,
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Consider the indefinitely small square prism HJK.L, shown -^‘nlarged

in Fig. 196. Let JK = ;^:, and let the depth of the prism at right angles

to the plane of the paper also be x. Gut off from the prism HJKL a

wedge KNJ, the angle JKN being a. Consider the equilibrium of the

wedge KNJ. On the face JK there is a normal stress 7’j

,

the resultant

of which is 7\x^. On the face JN there is a normal stress
,
the re-

sultant of which is tan a. On the face KN there is a stress equiva-

lent to a normal stress and a shear stress /g . The resultant of the

normal stress on the face KN is n ,
and the resultant of the shear

cos a -

stress on this face is /„—:— Resolving these resultant forces parallel
cos a

x^
to KN, /q -— = r,x^ sin a + tan a cos a, or

cos a ^ ^

/g = sin a cos a + rg sin a cos a = |(?'j + sin 2a.

Hence /g is a maximum when a = 45°, then /g = |(rj + rg)._ If tensile

stress is positive and compressive stress is negative, and if and

carry their proper signs with them, then /g
= |(?\ - rg). Inserting the

values of and 7\ in terms of p and /, then the maximum valxre of

/a is i + But P= ,
and/=^ ,

therefore /g =

and = + f But a simple twisting moment Te= ^.d^/g would
16 lb

produce the same shear stress /g. Hence a simple twisting moment

Tgss a/B^ + T^ will produce the same maximum shear stress as the bend-

ing moment B and twisting moment T acting together.

A bending moment Bg = Te== + would produce a maximum
normal stress equal to 2/g, and therefore (Art. 140, p. 138) a maximum
shear stress /g at 45° to the direction of the normal stress.

There is little doubt that in the case of ductile materials, such as mild

steel, it is the resistance to shear which determines the strength (see Art.

166, p. 175). Hence in designing shafts made of ductile material, and

which are subjected to bending and twisting, the formula Te = JW +
should be used in preference to the one Te=B+ .^/B^+ T^. But, for

mild steel shafts, in equating B+ a^/B^-pT^ to it must be re-

xnembered that/^^ is a tensile stress, while in equating JW + to -^d®/g

the stress /g is a shear stress, and/g= |/j.

Guest was the first to demonstrate that mild steel shafts subjected

to bending and twisting gave way by shear,* and his theory and the

results of his experiments have been confirmed by Hancock, Scoble

C. A. Smith, and others.

Tg = JB'^ + T2 is generally called the “ Guest ” formula, and

Te =B+ a/B^-i-T^ is generally called the “ Rankine” formula.

Shafts designed by the Rankine formula are weaker than tho.se

designed by the Guest formula.

* Strength of Ductile Materials under Oomhiue^ Btress." PAfZ. .July IflOO.
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146. Stresses in a Cranked Shaft,—A cranked shaft is a good

example of a structure subjected to both bending and tvdsting, and

particular attention should be directed to the fact that the crank pins

are generally subjected to twisting as well as the shaft itself. The forces

acting on a cranked shaft usually vary in naagnitude and direction as the

shaft revolves, and each part of the shaft must be designed to withstand

the greatest straining action which may come upon it.

A simple example will serve to indicate how the stresses in a cranked

shaft are determined. Pig. 197 shows a. cranked shaft turning in bear-

ings at A and E. The shaft has two crank pins B and D, the axes of

which are in the same plane as AE, the axis of the shaft. The parts

A, B, C, D, and E are each 3^ inches in diameter. Fig. 198 shows how
the shaft is loaded when the cranks are in a vertical position. There is

a pure torque on the left-hand end of the shaft, a force P of 4800 lbs.

on the crank pin B, and a force Q of 6000 lbs. on the crank pin D ; the

lines of action of P and Q are perpendicular to the plane containing the

axes of the crank pins. It is required to find the maximum stresses iu

the pins B and D, and in the shaft at C.

Imagine the shaft produced to the points P and H directly opposite

to the centres of the crank pins B and t> respectively. The equilibrium

of the shaft will not be affected by applying at F forces Pj and Pg acting

in opposite directions and each parallel and equal to P. Nor will the

equilibrium be disturbed by applying at H forces and Qg each

equal and parallel to Q, as shown.

P and P| being equal and parallel forces acting in opposite directions

form a couple, and since a couple can only have a turning effect, there

can be no pressure on the bearings due to these forces. The forces Q
and Qj^ also form a couple. The reactions on the shaft at the hearings

at A and E must therefore be due to the forces Pg and Qg . Taking
moments about A, is found to be 3120 lbs., and taking moments
about E, is found to be 1920 lbs.

Consider the straining actions on the crank pin D. The only

force to the right of D is Rg ,
and this produces a bending moment

= 3120 X 8 = 24,960 inch-lbs., andatwisting moment = 3120 x 6 = 18,720
inch-lbs. Using the Rankine formula, the equivalent twisting moment
at D due to these is

24960 -t- ^^249602+ 187^= 56, 1 60 inch-lbs.

If / is the maximum stress in the pin D, then ^(3^)®/=5 6,160, from
16

which/= 6671 lbs. per square inch.

Consider next the straining actions on the shaft at C. Taking the
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forces to the right of G, the forces Rg and Qg produce a bending moment
= 3120 X 15 - 6000 X 7 -^-iSOO inch-lbs,, and the forces Q and Qj
produce a twisting moment = 6000 x 6 = 36,000 inch-lbs. The ecprivalent

twisting moment at G due to these is

4800 + jmo^ + moo^ = 41,1 19 inch-lbs.

If /is the maximum stress in the shaft at C, then ~(3|-)®/= 41,119, from

which /= 4884 lbs. per square inch.

Consider lastly the straining actions on the crank pin B. Taking the

forces to the rignt of B, the forces Qo and Rg ^ bending moment
= 6000 X 14 - 3120 X 22 = 15,360 inch-lbs., and the forces Q, Q„ Qgj and

Rg produce a twisting moment= 6000 x 121 - 31 20 x 6 = 63,280 inch-lbs.

The equivalent twisting moment at B due to these is

'15360 -I- 7T53^2:r5M802 = 70,810 inch-lbs.

If/ is the maximum stress in the pin B, then ^(3|-)y= 70,810, from

which/= 8411 lbs, per square inch.

147. Ellipse of Stress.—^ABCD (Fig. 199) is an indefinitely small

cube, edges of length L On the faces AD and BC there is pure normal

stress of inten-

sity
1
^ t

I
<1 1 t

the faces AB and
^CD there is ymre

^ ir

^

normal stress of /|\ 7 V —».

intensity (j. It is / !>. 7 \ p P
required to find / /^ '\ //\\ \
the direction and // i \ l/a \\ \ N_ ^
intensity of the

f IjfTp/ |t> 1 L, Dn—

\

1

—

stress on any I \^l t

interface LN in- k ^r7~ j I

dined at an angle \\'/ / / l/^/r
d to AB. Draw

^ r^/ /
MN parallel to p J / t7?\/ f
AB. Consider \ / y *

—

the equilibrium Mn—pTi
of the element 4 1 v t

LMN. The re-

sultant of the

stress on LM -- 2^1- tan = P. The resultant of the stress on MN = qP — Q.

Let r denote the intensity of the stress on LN, R the resultant of this

stress, and ^ its inclination to LM. R = rl^l cos 6. Then, since R must

balance P and Q,

R sin <j!) = P, or
^

sin tan 6, therefore sin 6 — ~ sin c/).

Qj or ——-s cos = ql% therefore cos 6
cos o

2^!i_sin5 e+cos»e-

Y

r A '' I/q Xa \

f m3
K Dp-

V
j

'

pj

Hence
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Also, sin- (jE) = C, sin^ andcos^A^ A cos^
r-i j-

tlierefore, J'® = p^ sin2 0+ <7®co,s2 0 and tan <i)=^ tan
'

Draw OX parallel to P, OY parallel to Q, and Os parallel to P
Make Os = r, Draw sni and sn i)arallel to OX and OY respectively.

Let On — x = r sin f/), and 0?n ~-y=^r cos Tken, substituting x for
' m2

r sin and y for r cos cf> in the equation at the foot of p. 147, ^
~

which is the equation to an ellipse whose semi-axes Oa and Oh are equal

to p and q respectively.

The point s may be found graphically as follows. Draw OiT perpen-

dicular to LN, to meet a circle with centre 0 and radius Oa at and

a circle with centre O and radius 06 at T. Through T and t draw

parallels to OX and OY respectively to meet at s.

OX and OY are principal axes of stress, and the ellipse, whose semi-

axes are Oa and Ob, is called the ellip)se of stress.

If the stresses p and q have opposite signs, that is, if one is tensile

and the other compressive, then Ot' =p must be measured in the opposite

direction from 0. The construction being completed as before, Os' will

be the direction and intensity of the resultant stress on the interface LTSf.

148. Shear Stresses in Beams.—The existence of a transverse shear

stress in beams has been discussed in Art. 99, p. 87, and in Art, 141,

p. 139, it has been shown that a shear stress in one plane is always accom-

panied by a shear stress of equal intensity in planes at right angles to

that plane
;
hence there is shear stress in horizontal longitudinal sections

of a horizontal beam. The object of this Article is to determine the

intensity of the longitudinal shear stress at any point in a beam, and also

to show how the intensity of the transverse shear stress varies at different

points in. the depth of the beam.

Before discussing the general case of a beam of any section, it null be

advantageous to first consider the simple case of a beam of rectangular

section. Fig, 200 ’shows a portion of a rectangular beam of depth d and
breadth b. YY and Y'Y' are two transverse sections very near to one

another, and W, at a distance a; from YY, is the resultant of all the external

forces acting on the beam to the right of YY or Y'Y'. The bending moment
at YY is Wa:, and if /, is the maximum stress at this section due to the

bending moment Wee, then WaJ The bending moment at Y'Y'
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is Wix + t), and if /g is the maximum stress, then Wx + Wt-^bfP/^.

ilence Wi= ^M2(/2 "/i)- ,
", , .

The distribution of the stresses due to bending on the upper halt ot

tlie sections YY and Y'Y' is shown in Fig. 200. A portion A of the

beam bounded by the sections YY, Y'Y', the top surface of the beam, and

a horizontal section at a distance % above the neutral surface, is pulled to

the right by a force R^ = 6/i(|
~ ~), and it is also pulled to the left by a

force The resultant of these two pulls is a pnll to the

left by a force R = R2-Ri = &(/2-/i)(|-f)
and this is balanced by

the horizontal shear on the under surface of A. Let q equal the intensity

of the shear stress on the under surface of A, then htq = UJ^ "/^(^ ~ d )

'

But /e-/i= ||* = ?)’
'’5'

be the intensity of the transverse shear stress on the section YY at a

distance h from the neutral axis.

The equation connecting q and h is the equation to a

parabola which, when drawn as shown in Fig. 201, represents the dis-

tribution of the shear stress on a transverse section of the beam.

The maximum shear stress in the case just considered evidently

occurs at the neutral surface of the beam or neutral axis of the transverse

section where its intensity is j
since the total |<— z

£tUlh

transverse shear is W,theaverage transverse shear stress

is hence the maximum transverse shear stress is 1 1 ^ ^

M, iH-.r-i
times the mean.

Proceeding now to the general case of a beam

of any form of cross section, and referring to

Figs. 200 and 201, and also to Fig. 202, which

represents the section of the beam, the stress due PiG. 202.

to bending at a distance y from the neutral axis

= at the section YY, and at the section Y^Y^.

Vx Vi

R^ = 2/zSy = S/j^z8y=-^22/2Sy between the limits y = h and y = yy.

But Si/zS?/ = aijfi, where a is the area of the section beyond the line at a dis-

tance Ti from the neutral axis, and y^ ig the distance of the centre of gravity

of that area from the neutral axis. Therefore R^ ay^ . In like manner
2'!

R2=4ayQ, Hence R = R2--Ri=(/2-r/i®. Again, and

Vx yii ‘'Ly.

-l- 1) therefore (/^ -/j). Also, R= qU. Hence q == •

Vi V\ .
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Putting h = d/8, tlie maximum value of q

Putting h= 0f the value of q at the neutral axis is .

The mean value of qi&'W -i- value at the

neutral axis.

The variation of the stress is shown plotted to the right in Fig. 204.

The curved lines are portions of parabolas whose axes are horizontalj and
at distances d/8 from the neutral axis of the section.

An interesting case of great practical importance is that of a flanged

beam, which will now be considered, and for the sake

of simplicity a numerical example will be taken. The

I section shown in Fig. 203 has a total, depth of 12

inches, the flanges are 8 inches wide, and the Aveb and

flanges are all 2 inches thick. The formula which gives

the shear stress at a distance h from the neutral axis

Wayo
bl

has just been proved to be
s'

^

Consider the value of q at the neutral axis, where the shear stress is

greatest. Here a = 24 square inches,
2/o
= 4 inches, and 6 = 2 inches, therefore

48W

At the junctions of the web and flanges, a— 16 square inches, y„ = ty

inches, and 6 == 2 inches, therefore the value of q at these places is

In the flanges at places indefinitely near to the junctions with the

web, a = 1 6 square inches,
2/o
= 5 inches, and 6 = 8 inches, therefore q in

low
the flanges at these places is —j

—

For the dimensions given 1 = 896 in inch units, and if W=14 tons,

the three values of q considered above are 1680, 1400, and 360 lbs. per

square inch. The diagram to the right

in Fig. 203 shoAvs the distribution of

the shear stress. It will be seen that

.not only does the web take a large

proportion of the whole of the shear

stress, but that the shear stress is

nearly uniform over the section of the

Aveb, It may be noted that the

curves in Fig. 203 are parabolas.

In most practical cases the maxi-

mum shear stress on a section of a
beam is at its neutral axis, but this is not always the case. For example,

consider a section which is a square (Fig. 204) with one diagonal vertical

(in the plane of bending). Let d equal the length of a diagonal of the

square. Using the same notation as before, it is easy to show that

q = ^^{2dh - 8h^+ dP). Differentiating, ^ ~ ^

a maximum when 2d - 166.= 0, or 11= d/8.
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The distribution of a shear stress over a section of a beam may be

found by making use of the section modulus figure which was described

in Art. 113, p, 105, A little consideration will show that the force R
(Fig. 201) is equal to ™/i), where is the area of that part of the

section modulus figure which lies beyond the line at a distance h from

the neutral axis. Hence it follows that q— .

ol

Uli

TTTT
Fio. 205.

Exercises IXa.

1. A cube ABCD (Fig. 206) is subjected to compressive stress of 10 tons per
square inch on the faces AB and Cl), Taking D as the origin,

draw a polar curve showing the intensities of the shear stresses

on inclined sections through D. Scale, 1 inch to l.tou per
square inch.

a. A cube ABCD (Fig. 206) is subjected to a compressive
stress of 3 tons per square inch on the faces AD and BC, and
also to a compressive stress of 6 tons per square inch on the faces
AB and CD. Determine the shear stresses, in tons per square
inch, on the interfaces BD and BE.

3. On A and B, the opposite faces of a cube, there is no stress, but on
the remaining four

faces there are nor- AlililiiiR rliiin
mal stresses of the yy U I U 1 1 l a \
same kind, and of

^

intensity p. Show
that there is no
shear stress on any
interfaces which —

’

are perpendicular
to the faces A and
B, also that the
intensity of the
normal stresses on

niTTT
Fia. 206.

Tft
Fig. 207.

these interfaces is equal to p.

4. ABCD (Fig.. 207) i's a cube. On the face.s AD and BC there is tensile
stress of intensity p, and on the faces AB and CD there is compressive stress of
intensity q Show that there is pure shear stress of intensity / on all interfaces
inclined at an angle 0 to AB, and find /and 6 in terms of p and q. {Mint.

—

Consider the equilibrium of the element BCE.)
5. The rhombus ABCD (Fig. 208) is one end of a right prism. There is pure

shear stress of intensity/ on the faces AB, BC, CD, and
DA, as shown. Prove that the interfaces AO and BD
are subjected to pure normal stresses of intensities

p and q respectively, and that interfaces, such as
BE, which are perpendicular to BO, are subjected to
shear stress of intensity /, and a normal stress of

intensity s. Express p, q, and s in terms of /, and 0

the angle ABD. '

^ D
6 . The maximum tensile stress on a shaft due pjo, 208

to the bending moment is half the maximum shear
stress due to the twisting moment. The maximum tensile stress due to

the above two stresses combined is 12,000 lbs. per square inch. If the
diameter of the shaft is 3 inches, find the twisting and bending meunents in
inch-lbs,

7. The maximum stress on a shaft 3 inches in diameter is f»000 Ihs. p.er square
inch, and the shaft is subjected to equal bending and twisting moments. Find
the twisting moment in inch-lbs. -ij

8. A shaft transmits 60 horse-power at 135 revolutions per i-.iitiute. There is

a bending moment on the shaft equal to three-fourths of the twisting moment.

/



[6000 lbs.

Takitig the maximum stress at 10,000 lbs. per square inch, find the diameter of

the shaft.

9. The external diameter of a hollow shaft is 15 inches, and the internal

diameter is 10 inches. The shaft is subjected to a bending moment equal to

the twisting moment, and the maximum stress is 10,500 lbs. per square inch.

Find the horse-power transmitted at 85 revolutions per minute.
10. A shaft 5 inches diameter is subjected to a thrust of 15 tons along its

axis. There is a bending moment on the shaft equal to half the twisting moment.
The maximum compressive stress is 13,000 lbs. per square inch. Find the horse-

power transmitted at 120 revolutions per minute.
11. Referring to Figs. 197 and 198, page 146. If the forces P and Q are

each 9000 lbs,, and the angles PBF .

and QDH are each 60°, what must
,

TONS
be the diameters of the crank pin B
and the shaft at 0 if the maximum
sti'ess is 9000 lbs. per square inch ?

12. The centre lines of the crank
shaft of a single-cylinder engine are
shown in Fig. 209. When the crank
and connecting-rod are at right

angles, the effective force on the rod
is 30 tons. The work is entirely

taken off at the right-hand end, and
the bearings may be assumed to

exercise no restraint on the shaft. Calculate the bending moment and twisting
moment on the crank pin, and find the maximum direct stress induced, the pin
being 12 inches

internal and 21

inches external „ „ ^ ^ .

-s"- 4<- - s'-
I I

diameter. [U.L.]

13. The cranked
shaft (Fig. 210)
turns in bearings
at A and B. The

plane, and the forces P and Q act at right angles to that plane. P= 2000 lbs.,

and Q=:2400 lbs. Find the equivalent twisting moments in inch-lbs. on the

shaft at A and on the crank pin at C.
14;. Same as the preceding exercise, except that the crank G and the force Q

are turned through a right angle, as shown in Fig. 211.

16. A three-throw cranked shaft used for working a set of three deep well
pumps is shown in Fig. 212. The rods are so long that the forces on the crank
pins may be as-

sumed as acting
vertically. The
shaft turns in

bearings at A
and E, and it

is driven by
pure twisting

at the end A.

The cranks
make angles of
120° with one
another. Allowing for bending and twisting, determine the diameters (in

inches) of the three crank pins for the given loads when the shaft is in the
given position {a) by the Esnkine formula, and (5) by the Guest formula.
Maximum tensile stress, 9000 lbs. per square inch.

16. A wooden be^, 3 inches deep and 2 inches wide, when tested, gave way
by shearing along the n^tilal Surface when the load at the centre of the span
reached 2760 lbs. What was the intensity of the longitudinal shear stress in the
plane of fracture, assuming that the distribution of stress at fracture is the same
as within the elastic limit 7
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17. Two cross sections 1 inch apart of a rectangular heara 3 inches broad by
8 inches deep are subjected to bending moments of 20 and 30 inch-tons respec-
tively. Determine the maximum shear stress on the sections, and draw diagrams
of shear stre.ss and direct stress, [U.L.]

18. A cantilever of mild steel 10 inches long, 2 inches deep, and 1| inches
wide, carries a load of 1000 lbs, at its free end. Construct the curve which
shows the intensity of the transverse shear stress at any point of the depth.
Scales,—Linear, full size. Stress, 1 inch to 500 lbs. per square inch.

19. A rolled steel joist has a total depth of 15 inches; the flanges are 6
inches wide and 0-85 inch thick, and the web is 0*54 inch thick. The total trans-
verse shear at a certain cross section is 30 tons. What is the maximum intensity
of the shear stress in the cross section, and what multiple is it of the mean
shear stress, assuming that the weh takes the whole of the shear. Draw the
diagram which shows the actual distribution of the shear stress in the cross section.

149. Bending Oomliitied with. Tension or Compression.—A piece

AB has an arm CD upon which a force P acts as shown in Fig. 215, the

line of action of P being parallel to the line YY, which is

of the neutral surface of AB when considered as a bo,an

bending, the plane of bending being the plane of the jiapei-

Let XX be any cross section of AB.^ .If idreses P-, and



inch, and is a compressive stress.

150. Strength of a Bing.—Fig. 216 shows a ring of uniform cross

Fig. 216. Fig. 217. Fig. 218. Fig. 219.

section carrying a load "Vf. ’pphe wean radius of the ring is r. There is

at the horizontal section at B a bending action tending to diminish the

curvature of the rmg at B, and at the vertical section at A there is a

154 APPLIED MECHANICS

and parallel to P be applied as shown at points F and H in YY produced,

these added forces will not affect in any way the stresses at XX, because

Pj and Pg balance one another. Pand P^ being eqnal and parallel forces

acting in'opposite directions form a couple which produces a pure turning

or bending action at XX. The bending moment is P/', and the distrilni-

tion of stress at XX due to Pr is shown at (a), where is the tensile stress

along AC, and /, is the compressive stress along BE. Pr=/iZj =/i—

,

y\

also Pr“/
2
Z
2=/2--, where I is the moment of inertia of the section XX

about its neutral axis 0. From these equations ^
,
and/g

The force P„ wiU produce a direct tension, and the tensile stress at

P PXX due to Po is 2 = - = /v,
, w'here a, is the area of the cross section XX.

^ a a

The distribution of this stress is shown at (b).

Combining the stresses due to the pure bending and the direct tension

as shown at (c), it is seen that there is a tensile stress / along AO equal

toA +.4> ^ compressive stress along BE equal to/g -/g. IfA is less

than/g
,
theu /2 ~A ^ tensile stress.

Example.—Eeferring to Fig. 215, the section at XX is a rectangle,

depth XX = 6 inches, breadth == 3 inches, r~6 inches. Total tensile

stress along AC = 5 tons per square inch. It is required to find P and
the stress along BE.

5P
Tr— that is, 5P ~ x 3 x 6^/1,

henceA

/-5=A+/g.

5x15

^ P
'18 ’^18“

,5

18

therefore P = 15 tons,

HenceA ~A~^\ tons per square
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bending action tending to increase the curvature of the ring at A. Tlicre

must therefore he some intei'inediate point F in AFB at -which there is

no tendency to alter the curvature of the ring, and therefore at F there

is no ]-)ending action
;
consequently at F the ring may he jointed -uithout

altering the stresses in the other parts. There are obviously four points

at which joints maybe introduced, these being symmetrically situated with

reference to the vertical and horizontal diameters AC and BE, as shown
in Fig. 217, The ring now consists of four links connected by pin joints.

The lower link FK, shown detached in Fig, 218, is in the condition

of a beam ,sui)ported at the ends and loaded in the middle. The maxi-

mum tensile stress / due to the bending moment will bo at L, and will

be equal to
,
assuming the cross section of the ring to be a circle of

diameter d.

The right-hand linkFH, shown detached in Fig. 219, is subjected to

a' maximum bending moment at the horizontal section at B amounting
W .

to-^('r-a;), causing a maximum tensile stress /j at M equal to

, 1)1 addition there is a uniform tensile stress /g on the hori-

2W W
zontal section at B equal to A

,
due to the load —

.

The total stress

at ll is therefore /i -b/a = -t- .

Now it seems reasunable to suppo.se that the points F and H will be

so situated that the total stress at M will equal the stress at L, because

when the first jiermanent set takes place, say at M, if there is not a,

simultaneous permanent sot -at L, the line FH would shift towards M,
causing the bending moment, and therefore the stress, at L to increase.

The line FH will therefore adjust itself so that permanent set takes place

simultaneously at M and L, and therefore the stress at M must be the

same as that at L. Making use of this,

... , 16W.X 16W(r-a-) 2W f , r d
/=/i +/2 j

=
Va
—

- + —52 ’
ie =

-J5 +

Hence,

7rd^ '7r(P

16Wa;^16W/r d

2^16’

W/8^‘ l\
7r\d^’^dy'

r— nd, then d

The foregoing results are only roughly approximate, because of the

assumption that the moment of resistance to bending of the curved piece

FBH is the same as for a straight piece. In the case of a curved bar

subjected to bending the neutral axis of a cross section does not pass

through its centre of gravity, and the stress does not vary uniformly from

the neutral axis, as in the case of a straight bar. The errors in the

formnlse deduced above are on the w;rOng aide for safety.

For a full discussion of the theory of bending of curved bars the

student is referred to MoTley‘s Btrmgih, of Matenals.

151. Poisson’s Ratio.—^When aBs,r is subjected to direct stress, cither

tensile or compressive, there is not only a longitudinal strain, but also
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Fig. 220.

be fonned whose front face is the square EFGH, having its angular points

at the middle points of the sides of the square ABCD, the faces of this

solid, which are perpendicular to EFGH, will be subjected to pure shear,

and the intensity of the shear stress will be /. If (j> is the angle of dis-

tortion, then 4> —f/0. When the block EFGH is strained it assumes the

form E'F'G'H', and the angle E'F'G' —^ +
c/>. Let E'G' == ^ + a;, and let

EF be denoted by a, then
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a transverse strain. If a bar of length breadth b, and thickness t be

lofided, say in tension, in the direction of its length, the length will

increase by an amount x, the breadth will decrease by an amount ?/, and

the thickness will decrease by an amount 2. The longitudinal strain

is £c/Z, and the transverse strain is or 2/^.

It is found that, within the elastic limit, the ratio of the transverse strain

to the longitudinal strain is constant for any given material, and this con-

stant ratio is generally called -Poasswi’s ratio. In this work Poisson’s ratio

is denoted by 0-
;
thus o- = , For metals 0- is generally

longitudinal strain

between and
-J,

but values as low as 0*22 and as high as 0‘46 are given

by different authorities. For india-rubber, a is about

152. Relations between cr, E, 0, and K.—Let a cube ABCD (Fig.

220), whose edges are of length I, be subjected to tensile stress of in-

tensity f on the faces AD and BC, and all interfaces parallel to them.

Also let the faces AB and DC, and all interfaces parallel to them, be

subjected to a crushing stress of intensity/. The cube will assume the

rectangular shape A'B'C'D'.
The tension will cause a strain in the direction EG amounting to //E,

and the compression will increase this strain by the amount cr//E. There-

30 f
fore the total strain

j
~ (1 + cr).

According to Art. 142, equal tensile and compressive stresses acting

at right angles to one another, as in this case, are equivalent to shear

stresses of the same intensity on planes inclined at 46° to the directions

of the tensile and compressive stresses. If, therefore, a rectangular solid
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subjected to a uniform normal pres-

sure of intensity the edge AD will

be lengthened, and the strain pro-

duced in AD by the pressures on

. E-2C 3K-E 3E:-2C
“'2G + 6B:

It is evident that if any two of the four quantit

be found by experiment, the other tiirO caifh be cajcula

(I) cj!)

CGs2.y-sin2H / ^ (kv

^gl^cosg sm-gj

But since ^ Is a very small angle, cos-^ may be taken = 1, and

But it has already been shown that
^
= +«)•

If the faces AG and DH of a cube AH ^ig. 221) be subjected to a

normal pressure of intensity p, the edge AD will be shortened, and the

strain produced will be ^/E. If, in
p g

1

aJljLIJlJLb

-d k-
AE and BB! wiU be crpfE. D C cYyTTfo

In like manner, normal pressures pjo,, 221.

of intensity p on the faces AC and

EH will lengthen the edge AD, and the strain in the direction AD, due

to the pressures on AC and EH, will be o-pfE.

When all the faces are subjected to normal pressure of intensity p, it

follows that the strain produced in the direction AD will be

But the strain in the direction of each edge will be the same, and the volume

strain will be three times the above linear strain (Art. 81), therefore volume

strain = ^(1 - 2cr). But volume strain — ^ • Therefore -^(1 “ 2o-) =

orE-3i?(l-2.).
Erom the equations E= 2C(1 -ftr) and E = 3K (1 - 2<r), the following

relations are easily obtained :

—

^-C + dK' '"“9K-E
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153. Thick Hollow Cylinders.—In Art. 90, p. 76, it was shown that

if a thin cylindrical shell of diameter d and thickness i5 be subjected to an

internal pressure of intensity

p, the material of the shell

is subjected to a tensile stress

of intensity /, given by the

equation pd ~ 2tf, Inserting

twice the radius ?* instead of

the diameter d, thm pr= tf.

It is evident that so long as

the thin shell remains circular

the relation pr = tf will hold

if the pressurejpbe transferred

to the outside of the shell,

but the stress f will become compressive instead of tensile. The assump-

tion made in proving this relation was, that the stress is uniformly distri-

buted over the longitudinal section of the shelly This assumption is

justified for a thin shell, but it cannot be used in the case of a thick

hollow cylinder.

Let a thick hollow cylinder (Fig. 222) have an internal radius and

an external radius r.2 ,
and lot there be an internal pressure of intensity

and an external pressure of intensity jpg •

In what follows a thrust or compression will be considered as posi-

tive, and a pull or tension as negative. It will be convenient to suppose

that the cylinder is in compression, the external pressure being greater

than the internal pressure, but the results obtained will be of general

application, the formulae making the stress negative when tlie internal

pressure is greater than the external pressure.

Consider a portion of the cylinder of unit length, and take an inter-

mediate indefinitely thin ring of it of internal radius ?• and thickness dr.

Let the internal radial pressure on this ring be p, and the external

pressure p +• dp.

Considering the equilibrium of this ring, if the external pressure

p + dp acted alone, the stress f produced would be given by the

equation {p -1- dp){r + dr) ^‘fdr, and if the internal pressure acted alone,

then pr—fdr. Hence, when both pressures act at the same time

(^p-\-d]^(p-\'dr)--pr—fdr, which reduces to pdr rdp —/dr^ W'hich is

one relation between /, and r.

Another relation involving p and / is found from a consideration of

the strains produced by p and / in the direction of the axis of the

cylinder. The pressure p will produce a strain in the direction of the

thickness of the ring equal to p/E, and a strain in the direction of its

axis equal to o-pf&. The stress/ will produce a strain in the material of

the ring, in the direction in which it acts, equal to //E, and a strain in

the direction of the axis equal to cr//E. Hence the total strain in the

direction of the axis due tojp and /is cr^/E-)-cr//E, and this strain wall

be uniform throughout, because it is reasonable to suppose that plane

sections perpendicular to ' the axis will remain plane. If, therefore,

0-p/E -t- 0-//E is constant, p -f/ is constant. Let p +•/= 2a.

From the equationp •+•/= 2a,f=%a-p-, substituting this value of/ in

the equation pdr + rdp ~fdr^ it follows that 2pdr -t- rdp = 2adr. Multi-
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by r, iprdr + rHp = d^ptr'^) = ^ardr. Integrating

4- c = ar2+ c, -where c is a constant of integration.

,
o= n,, therefore jJirf =arf+ c.

From these equations a =

From the equations pr^ = ar^ 4-

a and c just determined,

Putting r==ri,/ becomes /j, the stress, at the inside surface,

Putting r-T„,f becomes /„ ,
the stress at the outside surface,

The most common cases in practice are those in which p^ is so small

compared with that the former may be neglected, or p<^ = 0,

Tf„'_n =aM±rIl

Note.—TAe answers given at the end of the hooh to Exercises 5, 6, a/nd 8 on crane

hooks were ohtained on the assumption that the moment of resistance of a curved

har to lending is the same as that for a straight lar. The answers are therefore

only approximate. See the latter part of Art. 160, p. 156.

1. The crank shaft shown in Fig. 223 is subjected to a thrust P along

its axis. Determine the magnitude of P, in tons,

when the maximum tensile stress produced by it

in the crank pin is 4 tons per square inch,

What will then be the maximum compressive T
. ,

-

stress in the pin ? ,

2. A link (Fig. 224) of rectangular section, “cj

3 inches deep and 2 inches wide,’ is subjected \

to tension by a load P, the line of action Of Which ;
I ,

is paraUel to the axis of the cenW ;pai^ .pf^M , -A-*- P ^ H-n—



Pig. 226. Fig. 226. Fig. 227.

beam is to be 10,000 lbs. per square inch. Find the magnitude of P, in lbs,,

(a) when /!.= 1 1 inches
; (6) when /i= 4^ inches.

8. In the crane hook shown in Fig. 227 the dimensions are given in terms or

an unknown unit, and the section at AB is to be assumed as having the form

shown in the lower part of the figure. Determine the unit for the dimensions in

terms of W the load in tons, so that the total tensile stress at E shall he 6 tons

per square inch.
, , . h.

9. A built-up crane jib is in the form of a curved girder, and a horizontal

section near the base is a hollow rectangle. The outside dimensions of the

rectangle are 04 and 36 inches, and the longer and shorter sides are 1 inch and

2 inches thick respectively. Find the maximum tensile and compressive stresses

induced in the material when a load of 25 tons is suspended from, the end of the

crane, the horizontal distance of the load from the centre of the section being

50 feet. Show by a sketch how the intensity of stress varies across the

section.
_ , _

[U.L.]

10 . A' cylindrical masonry column of diameter d feet is^ subjected to a

horizontal force due, to the wind pressure. Prove that no tensile stress will be

produced in the basal cross section of this column, if the resultant of the wind

pressure and the weight of, the column fall inside a circle concentric to the

circular cross section,of; the column, and of diameter of the diameter of the

column. Hence fluid the .'greatest height to which a column of granite 0 feet in

160 APPLIED MEOHAKICB

the maximum value of so that there shall be no crushing stress in the

link.
'

•

3. A short cylindrical block of diameter d ac^ ^
is subjected to crushing by a load whose line

of action is parallel to the axis of the block, p.«—

t

and at a distance as from it. Find the maxi- V___iHLL__
mum value of x, in terms of d, so that there

shall be no tensile stress in the block.

4. Show that there wiir be no tensile stress hiG. 224.

at the joints of a masonry arch if the resultant
^ : 4.

thrust between two adjacent blocks falls within the middle third of the joint.

6. The crane hook shown in Fig. 225 has at the level AB a circular cross

section 2 i- inches in diameter, and i the distance of B from the line of ackon

of the load W is 2 inches. Find W, in tons, when the tensile stress at B is

4 tons per square inch. Find also the nature and intensity of the stress at A.

6. Eeferring to the crane hook shown in Fig. 225, if d is the diameter of the

section at AB, and find d in terms of W, where W is in tons and the

tensile stress at B is 5 tons per square inch. What is the nature and intensity

of the stress at A ? j, n j
7. A beam 3 inches deep and 2 inches wide projects from a wall and carries

a load P, which acts as shown in Fig. 226. The maximum tensile stress in the
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Note .—You may assume that the wind pressure on the cylindrical surface is

equivalent to a jjressure of half the given intensity on an area equal to the
diameter of the column multiplied by its height. [U-Ij.]

11 . Using the method of Art. 160, p. 154, show that if the mo^ section

of the ring is a square whose sides are equal to a, then 8=lyy/^(6n + l).

12. A steel bar 20 feet long and 2 inches square is elongated by a load of

20,000 lbs. Find by how much the volume of the bar is increased. Take
(r=0‘27 and E= 80,000,000 lbs. per square inch.

13. A ijiece of cast iron 5 inches long and 1 inch square is subjected to com-
pression in the direction of its length by a load of 10 tons. What must be the

inten.sity, in tons per square inch, of the lateral external pressure which must be
applied to the piece to prevent lateral strain, and what will then be the alteration

in length ? Take cr=0'2o and E = 7000 tons per square inch,

14. The shell of a cylindrical steam boiler is 8 feet 4 inches in diameter and
1 inch thick, and the effective steam pressure is 200 lbs. per .square inch. Find
the circumferential strain produced, (a) neglecting the longitudinal strain, (b)

taking the longitudinal strain into account. Take £r=0'26 and E= 30,000,000 lbs.

per square inch.

16.

A bar of mild steel 1 inch in diameter twists through an angle of 2-2 degrees

in a 20-inGh length when subjected to a twisting moment of 2200 inch-lbs. An
exactly similar bar of the same material deflects 0‘03 inch when supported

horizontally at two points 20 inches apart and loaded at the centre of the span

with a load of 264 lbs. Calculate the Modulus of Elasticity (E), Modulus of

Transverse Elasticity (C), Modulus of Elasticity of Bulk (K), and Poisson’s ratio

for the material. [U.L.]

16. The cylinder of an hydraulic press has an internal diameter of 10 inches,

and the water pressure is 1600 lbs, per square inch. Find the thickness of the

metal of the cylinder so that the maximum stress may be 2500 lbs. per square

inch. What will be the stress in the metal at the oubside of the cylinder?

17. Find the safe internal pressure, in lbs. per square inch, for the cylinder

of an hydraulic press which has an internal diameter of 6 inches and an external

diameter of 7 inches, when the maximum safe stress is 3000 lbs, per square inch.

18. The internal diameter of a thick hollow cylinder is 6^ inches, the internal

pressure is 1120 lbs, per square inch, and the maximum stress produced is

3000 lbs. per square inch. Find the thickness of the metal.

19. The internal and external radii of a thick hollow cylinder are 5 inches

and 9 inches respectively. If the tensile stress in the metal at the inner surface

of the cylinder is 3000 lbs. per square inch, what is the internal pressure?

Calculate the values of the tensile stress in the metal, in lbs. per square inch,

at radii 6, 7, 8, and 9 inches, and plot the stresses on the thickness of the

cylinder as a base. Linear scale, full size. Stress scale, 1 inch to 1000 lbs. per

square inch.

20. In a thick hollow cylinder, show that if the stress / at radius is

inversely proportional to or that /}'®= constant, then (Earlovj's

formula), where is the internal pressure, fx the stress at the inner surface,

r-x the external radius, and t the thickness of the metal. The external pressure

is assumed to be zero.

21. The internal pressure in a thick hollow cylinder is 3 tons per square inch.

The internal and extermil radii of the cylinder are 6 inches and 10 inches

respectively. Calculate the values of the stress at radii 5, 6, 7, 8, 9, and 10 inches,

(a) by Lame’s formula
; (&) by Barlow’s formula (see preceding exercise). Plot

the results. Linear scale, fuU size. Stress scale, 1 inch to 2 tons per square inch.

22. Same as preceding exercise, except th'at there is an initial stress in the

material which varies uniformly from 2 tons per square inch compression at the

inner surface to 2 tons per square in,ch tension at the outer surface.



CHAPTER X

COLUMNS AND STRUTS

154. Columns and Struts.—A Column or Pillar is always vertical,

and generally it is fixed rigidly at its ends. A Strut may be vertical or

inclined, and one or both ends may be fixed rigidly, or one or both ends

may be connected to the surrounding structure by flexible joints. The
theory of struts will therefore evidently apply to columns. In most cases

the only important load on a column or strut is one acting at its ends in

the line of its axis and tending to shorten it. In some, cases, however,

there is a lateral load in addition.

Comparing a strut with a tie (Figs. 228 and 229), it is evident that

if the strut and tie be bent by lateral forces or if they be originally bent,

the load P on the strut tends to bend it still further, while the load P on

-
st

-wt

Fig. 228. . Fig. 229.

the tie tends to straighten it. The theory of a tie is obviously very

simple, being expressed by the equation P = A/, where A is the area of

the cross section and / the stress. The theory of the strut would be the

same as that of the tie if the strut did not bend. Neglecting for the

present the case of the laterally loaded strut, the load at its ends may
bend the strut, because (1) the strut may not be perfectly straight when
unloaded, (2) the load may not be applied exactly in the line of the axis

of the strut, and (3) through a want of uniformity in the material one
part may yield more than the other parts in compression.

The tendency of the strut to bend will evidently be greater the

greater the ratio r of its length to its least transverse dimension, and
the manner in which it gives way under the load wall depend largely on

the value of r. When r is small there is no bending, and the strut gives

way by crushing (or oblique shearing, as described in Art. 166, p. 175).

When r is very large the strut gives way by bending, and for moderate
values of r the strut may ^ve way by crushing and bending.

155. Critical Load for Long Column,—A simple and instructive

experiment on the behaviour of a long column will here be described.

A long slender lath of wood or a straight strip of steel is placed in a

vertical position and loaded, the load being guided vertically, as shown in

Fig. 230. The ends of iiLis experimental strut are rounded and fit into

shallow grooves in the end connections, as shown on an enlarged scale
162
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5
therefore = P.

at (a). A load insufliciont to bond tbe strut is applied, and the strut is

tlio'ti slightly bent by pressing it sideways at the middle of its length.

When this side pressure is removed the strut straightens

itself. A small addition is made to the load and the side ^

pressure is again applied and removed, the strut bends and

straightens again. The experiment is continued in this

way, gradually increasing the load until it is found that

when th.c side pressure is a])plied and then removed the

strut remains bent. When this point is reached itWill be

found that, whatever aimjunt of deflection be given to the

strut by the a])])lie(l lateral force, the strut will retain

that amount of deflection when the lateral force is removed,

provided that the elasti(; limit is not exceeded. But if

the load on the strut be further increased and the strut

be slightly bent as before, the load will increase the amount of bend-

ing until the strut takes a permanent set or collapses. This load, which

will keep the strut bent but will not bend it

further, may be called the critical load for the

strut.

That there is a critical load for a long

slender column may bo demonstrated as follows.

Lot the strut shown at {a). Fig. ii31
,
be in equi-

librium under the load P, and lateral force Qj,

Ihe deflection being Uy. Let Z be the modulus
of the cross section, and lot be the maximum
stress due to bending.

The total bonding moment is Pi% + Qi~,

and the moment of resistance to bending is/^Z, therefore =/i2I.

If be now diminished to zero and P^ be increased to P, the deflec-

tion remaining the same, it follows that Pw^^ =/^Z or P=:--JZ.

If the same strut be in equilibrium under the load Pg and lateral

torco Qo, as shown at {h), Fig, 231, the deflection being iMg, then decreasing

Qo to zero, and increasing Pg to P', the deflection remaining the same,

it follows that P' — where is the maximum stress due to bending.

df :
.

.

But
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stmt, to bending will be proportionar to /, and tliercfore propor-

tional to the deflection. But when the elastic limit is passed, the

moment of x’esistance will increase more rapidly (see Art. 116, p. 109) ;

and with the additional load W there may be another position of

equilibrium for the strut, but the strut will then have taken a per-

manent set.

156. Approximate Theory of Long Columns.—ACB (Fig. 232)

represents a long slender column which, wiien unloaded, im perfectly

straight, of uniform cross section, and uniform elasticity.

The "ends are supposed to be rounded so that the column

is free to bend througliout its wiiole length. The mitical

load F is supposed to act in a fixed line wiiicli coincides

with the axis of the column when the latter is unloaded.

Let the loaded column be slightly bent by the applica-

tion for an instant of a lateral force. At any point C
there is a bending moment equal to Pm, where u is the de-

flection at G, and it follows that tlie figure ACBA is the

bending moment diagram for the whole column. It is

evident that the curve ACB cannot be an arc of a circle,

because that would necessitate the bending moment being 232.

uniform throughout the w'hole length of the column. If

the curve ACB be assumed to be a parabola, then the deflection

of the column is. the same as it would be if the column became

a beam, supported at its ends, with a transverse load uniformly dii3-

tributed over its length. In Art. 123, p. 114, it was shown that for a

beam of length L and uniform section, supported at its ends and loaded

5WL2
uniformly with a total load W, the deflection at the centre is •

If M is the bending moment at the centre of the beam, then

hence = column therefore

5Pm,L2 48EI 9-6EI

By the more exact theory of Euler, discfussed in the

9-87EI
next Article, P =

"IT"

157. Euler’s Theory of Long Columns.—The column

ACB (Fig. 233) is supposed to be under exactly the same

conditions as the column considered in the preceding

Article. At any point 0 in the column, at a distance y
from the middle point of AB, the bending moment M is

equal to Pm. If B, is the radius of curvature of the

column at C, then by Arts. i09 and 110, pp. 103-105,

py
Tri

I

y I

But
1 .

, AH-
(see Art. 9, p. 9), the minus sign

I M
II El*
being used to m^kb- B

!
positive, because as u increases

~ decreases. Hence ~==
dy El dy^

FlO. 233.

The general solution of this difier-
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eiilial equation gives w— A sin w + B cos wy, where n-

nre eon.stants.

Differentiating, = A« cos 7vy - sin nij, .

therefore A => 0, and m= B cos ny.When ^ 0, “
^

= 0, also sin ny~0;

But when y = 0, u — ?/j, and cos ny— 1, therefore % = B.

When y~ I, u~0, therefore Bcosw?= 0, hence either B = 0

But B = Mt, therefore cos nl = 0, hence nl = ^ and I

^

Therefore P - == .

158. Influence of End Connections on Strength of Ideal Columns.

—If the ends of the ideal column ACB are fixed as shown at (a), Pig.

234, then when the column deflects the directions of

the tangents to the curve ACB at A, C, and B must

he vertical, and the line of action of the resultant load

on the column will no longer pass through the centres

of its ends, but must lie between the point G and the

straight line AB, and will cut the curve ACB at points

H and K. At the points H and K there is no bending

moment, and these must therefore be points of con-

trary flexure,

Consider the parts HA and HO of the bent column.

At points in HA and HC where the deflections, mea-

sured from the vertical line through H, are equal, the

bending moments are equal, and therefore the radii of i(a)|^

curvature at these points must be equal, the column i. ^

being of uniform cross section. Also the curves have

the same slope at H, and also the same slope at A and

C. Hence it is evident that the curves HA and HO-
are similar and equal, and that the points H, 0, and K
divide the column into four equal parts. Hence the part HCK has a

length equal to half the length of the whole column. Now the part

HCK is in the condition of a column with rounded or hinged ends carry-

ing the load P, as shown at (&), Fig, 234. Therefore,

from the preceding Article, P = . Hence
Li L®

a column fixed at the ends is four times as strong as the

same column with hinged or rounded ends.

The formula for the strength of an ideal column fixed

at one end and loaded at the other is easily deduced

from that for the column with rounded ends. , A column

ACB with rounded, ends is shown at (a), Fig; 235. At
C, the middle point of its length, the tangent to the

curve is vertical, and if the column be-heldun ia clamp at

C, so as to preserve tire direction of ith^' tan^nt to the jtjg, 2:s5.

curve at that point, the lower part of’ the 'column might

be removed without affecting the upper part. The upper part will then



]GG APPLIED MECHANICS

become a column fixed at one end and loaded at the other, as shown at

(A), Fig. 236, where L= |L]. Hence, P
,
which shows

Lx 4:L“

that a column fixed at one end and loaded at the other has only one-

fourth the strength of the same column with hinged or rounded ends.

159. Empirical Formulse for Struts.—The Euler formula for struts

is rational, but it is only applicable to struts which are very long com-

pared with their least transverse dimension, and when applied to struts

which are common in practice they give values which are too high for

their strength. Numerous empirical fonnulge have been devised by
different authorities to give the strength of ordinary struts, the constants

or coefficients in these fornmliB being derived from the results of experi-

ments on struts. The empirical formula which has been most used is

that known as the Ranhine ov Rankine-Gordon formula.

160. Rankine-Gordon Formula for Struts.—The Eankine-Gordon

P f
formula is « = -- = - - y

,
where

P — crushing or crippling load on strut in tons.

2
'}
— crushing or crippling load on strut in tons per square inch of

cross section.

/= direct crushing strength of the material of the strut in tons

per square inch.

A = area of cross section of strut in square inches.

Ij == length of strut in inches.

k = least radius of gyration of section of strut in inches,

is— constant.

Values of / and a commonly taken for different materials in different

cases are given in the following table

Material, /

Values of

Case I. Case II. Case Til.

Cast-iron . ...

Wrought-iron

Mild steel .

1 4 _ 1 16 _ 1

16

21

6,400

1

6,400 1,600

4 1

9 X 6,400 3,600
16 1

36,000
1

36,000 “9,000

4 _ 1

9 X 36,000 “20,250
16 1

30,000 .30,000 7,500 9x30,000 16,875

Drytimber (strongkinds) 3-2 1
,

4 1 16 1

3,
00^0 3,000“ 760 9x3,000 “ 1,687

Case I. Fixed ends. Case II, Hinged ends. Case III. One end
fixed and the other hinged.

It will be observed that the values of a for Cases II. and III. are

obtained by multiplying the values for Case I. by 4 and ~~ respectively.
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Most text-books give a so-called proof of the Rankine-Gordon

formula, but the assumptions made are not warranted in the case of

actual struts. It is beat to consider the formula as an empirical one, but

it may bo pointed out that when it is applied to very short struts it

reduces to P = Af, which is correcti and when applied to very long struts it

reduce, to

which is the form of the 5 go
expression given by Euler’s g
theory of long columns. a: 15

Fig. 236 shows graphi- al

cally the difference between ^ 10

the Rankine-Gordon and ^
the Euler formula applied q 5

to mild steel columns with ^
hinged ends.

®

If the results of the

Rankine-Gordon formula

be plotted for columns of

different materials, instructive curves are obtained. Fig. 237 shows the

curves for columns of cast-

iron, wrought-iron, and mild

steel with fixed ends. It

will be seen that for very

short columns cast-iron is

much stronger than either

wrought-iron or mild steel,

and that for ratios of L to

k less than 8o the cast-iron

columns are the stronger,

but for ratios of L to k
greater than 85 the mild

steel columns are the

stronger. Also for ratios

of L to ^ loss than 115

the cast-iron columns are

stronger than the wrought-

iron ones, but when the

ratio of L to k is greater

than 115 the wrought-iron

columns are stronger than the cast-iron ones. For all values of the

ratio of L to k the mild steel columns are stronger than those made of

wrought-iron.

Noth.—A defect in the theory of Arts. X56-168 is that the direct crushing
stress is neglected

;
but iu very lon]^ columns the direct stress is small com-

pared -with the bending stress,'while in short columns the direct biress m large
compared with the bending stress. .

COLUMNS. FIXED ENDS.
RANKINE FORMULAE.

A
Sd

—

.

L4.^

i
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Exercises X.

1. A straight bar of steel 40 inches in length, 1 inch broad, and^^ts bach in

thickness, is bent into the form of a bow, having an elastic deflection of S inches

in the middle, and the ends are united by the bow string. Taking the modulus
E=29,000,000 lbs. per square inch, what will be the tension on the string ?

[Inst.0.E.]

2. Apply the Rankine-Gordon formula to find the buckling load for a cast-

iron column 8 inches external diameter, 6 inches internal diameter, and 20 feet

long. The column has fixed ends.

3. A strut in a framed structure is formed of a steel pipe 6 inches external
diameter, and | inch thick; it is 10 feet long, and has pin connections at each
end. With a factor of safety of 5, to what load may it be submitted ? [Inst.O.E,]

4. Determine the value of the ratio h’h for which columns of cast-iron and
mild steel of the same cross section, with hinged ends, have the same strength by
the Ihuikine formula.

6. Plot crippling load, in tons per square inch, and ratio L/A, for ’ cast-iron

columns with hinged ends, {a) by the I^nkine-Gordon formula, (&) by Euler’s
formula, up to L//i'=200. Take B=6000 tons per square inch.

6. Find the proper diameter for a solid mild steel strut with pin ends, if its

length is 120 inches, and if it has to carry a total load of 20 tons with a factor of
safety of 7. Take the values of / and a (for flat ends) in the formula as 30 tons
per square inch, and respectively. [TJ.L.]

7. Three solid ca.st-iron columns, each 3 inches in diameter, and 10 feet long,
have their ends fixed, and each carries one-third of a load W. Find by the
Rankine-Gordon foi-mula the diameter of a single solid cast-iron column with
fixed ends to replace these three columns, and find the percentage saving in
weight of cast-iron.

8. A hollow cast-iron column has to be designed to support a total load of 130
tons

;
the column is to be 15 feet in length, and the internal diameter is to be

four-fifths of the external diameter, and it is desired to have a factor of safety
10. Find the e.xternal and internal diameters of the column if the crushing
load in tons per square inch for such a column is given by the formula

Crushing load in tons per square inch= , where L is the length

of the column in inches, and D is the external diameter in inches. [B.E.]
9. A hollow cast-iron column 20 feet long, with ends rigidly fixed, has

to carry safely a load of 60 tons. If the factor of safety is 6, and the
external diameter of the column is 8 inches, find the internal diameter.

10. A steel strut is built up of two T section bars (Fig. 23S)
riveted back to back

; the T’s are of the following section : 6
inches x 4| inches x inch. The ends of the strut are rigidly
secured, and its over-all length is 18 feet 6 inches. What gross
load can this strut carry if it is to have a factor of safety 6 ? By
the Rankine formula the buckling load in lbs. per square inch

of such a strut= - 48,000

l-k
T' 7L\a

sooooVF/

,
where L is the length of the

strut in inches, and h the least radifis of gyration of the section. [U.L.]
11. A column is built up of an I rolled joist 20 inches deep

; flanges 7|- inches
wide, and 1 inch thick; web ^inoh thick; with two l-inoh
plates 12 inches wide riveted to each flange (Fig. 239). Find
the least radius of gyration of the section. Taking a factor of
safety of 6, find the working, load if the column is 10 feet high

with fixed ends. Use <h,e formula
I—

I

Fig. 239.

buckling load in tons, A the cross sectional area in square inches, and X is
the ratio of the length to the least radius of gyration. [Inst.O.E.]

1 +
X«

30000

,where P is the
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12. A vertical mild steel post in a bridge consists of a central plate 18
inches X f inch, a pair of angles 4 inches x 4 inches xj inch at each '

. .

end of the plate, and a plate 12 inches wide by i inch thick con- '^IP'

nected to each pair of angles so as to form an I section (Fig. 240). I

Its length is 20 feet, and each end is firmly riveted to the flanges of the I

main girder. Find the safe load by Eankine’s formula. [Inst.C.E.]
13. A cast-iron column 10 feet long is fixed at the ends and has an -^-a—

I section 6 inches deep, with flanges 5 inches wide and web 1 inch Fig. 240.
thickl Find the thickness of the flanges so that with a factor of
safety of 6 this column will carry safely a load of 35 tons. Use the Bankine-
Gordon formula.

14. If P denotes the buckling load of a column by Euler’s formula, and W
denotes the buckling load of the same column by the Kankine-Gordon formula,
also if F denotes the crushing load of a very short column of the same section

PF
and same material, iihow that W

=p:j7|i
M the constant a in the Rankine-Gordon

formula is equal to for a column with fixed ends.

16._ A hollow cylindrical steel strut has to be designed for the following
conditions. Length 6 feet, axial load 12 tons, ratio of internal to external
diameter 0*8, factor of safety 10. Determine the necessary external diameter of
the strut and the thickness of the metal, if the ends of the strut are firmly built
in. Use the Rankine-Gordon formula, taking /=21 tons per square inch, and a
for rounded ends =a 1/7600. [U.L.]

1



CHAPTER XI

BEHAVIOUR OF MATERIALS IN THE TESTING
MACHINE

161. Nominal and Actual Stresses.—

sectional area a is placed in siinple tension

load P, then f, the direct stress produced, is g

The effect of the load is not only

to alter the length of the specimen,

but also its cross sectional area,

and if in the above ecpiation a is

the original area of the cross section,

then / is the nominal stress pro- "§

duced by the load P. If however

a is the actual area of the cross
|

section when the load P is on the |
then / is the actual stress

^specimen,

produced.

Lengths. Scale

Fig. 241.

JExtension. (in inches) indimhes

.'Fig. 242.:'

For loads within the elastic limit of the specimen the difference

between the original and actual areas of the cross section is so small that

it may be neglected. Beyond the elastic limit however, in the case of

ductile materials, the actual area of the cross section of the specimen may
differ considerably from the original area, and the actual stress may be

much greater than the nominal stress when the specimen is in tension,

and much less when in compression. The foregoing remarks are well

illustrated by Figs. 241, 242, and 243, wliich show the results of two
tests, one a tensile test, on a specimen of mild steel, and the other a
compression test 'on a specimen of wrought-iron. The full curves in

Figs. 242 and 243 sbow the relation between the nominal stress and the

strain produced, while' the dotted curves show the relation between the

actual stress and the strain produced. The specimens were priginally

Jj

TENSILE TEST

MILD STEEL.

;

1

nr
liomi —

z

ol _

it
1

TENSILE MILD

1TEST STEEL
——
Axis
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parallel, "but they did not remain so, as tlie load was increased beyond
the elastic limit, and in each case the actual area of the cross section is

taken as the area of the smallest section. The original and final outlines

of the mild steel specimen tested in tension are shown in Fig. 241, The
change in the form of the wrought-iron specimen in compression as the

load is increased is clearly shown in Fig. 243.

Referring to Fig. 242, it will be observed that the maximum nominal

stress is greater than the nominal stress at fracture, but the actual stress

at fracture is much greater than the maximum nominal stress.

In reports on tensile tests for commercial purposes, the maximum
nominal stress is sometimes called the ultimate or breaking stress

;
this

howmver is wrong, and it should either be called the maximum nominal
stress, or the maximum stress on the original area. When the term
maximum stress is used, maximum nominal stress is generally under-
stood.

There is no definite ultimate crushing stress for' ductile materials,

such as mild steel and wrought-iron, but it will be seen from Fig. 243
that the curve for the actual stress gets more nearly parallel to the strain

axis as the load is increased.

162. Relation of Elongation to Dimensions of Test Piece ^A study
of the following results of a test of a specimen of mild steel will lead to

D
h-l-23 *1+ 1*24 1-25 *) 1-26 4- 1*47 4- l-AS 4 1*254 1*23 1*254^ 1-24 -M

I
(I)

I

(2)
I

(3)
I

(4) , f5)^(6)
I

(7)
I

C8) , (9) (10)
|

-H-

t'
i ^ * ^

lengOis in inches-

j I" *- i*58 -H I a
Flo. 244.

some important conclusions. Before tesUng, the specime]i was murked off

carefully in half-inch lengths, and after being broken in tension tbci two
parts were put together, and the len^fis, given belo’W' tlie .specimen in
Fig. 244 were measured. The shortest ;bf' these, lengths, 1-58 iuthe.s, is
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the altered length of a 1 inch length on the specimen before testing, and
this length contains the

fracture near its centre.

The other lengths, in order,

are the altered lengths of

2, 4, 6, 8, and 10 inch

lengths respectively on the

specimen before testing,

and the fracture is approxi-

mately in the middle of

each of these lengths.

The altered lengths of the

original inch lengths num-
bered (1), (2), (3), etc._, are

given above the specimen

in Fig. 244, and the elongations of these inch lengths are plotted

in Fig. 245.

It will be seen that the elongation per inch is fairly uniform, except

for about 1| inches on each side of the fracture, and the elongation in

the immediate neighbourhood of the fracture is much greater than in any

other part of the specimen.

Coming next to the actual elongations and the elongations per cent,

of length in the 2, 4, G, 8, and 10 inch lengths, which contain the fracture

near their centres, the results are tabulated below.

Grange length, inches . 1 2 4 6 8 10

Elongation, inches 0-68 0*92 1*43 1*91 2‘40 2*87

Elongation, per cent. . 68-0 46*0 35*T
'

31-8 30*0 28*7

It will now be seen how important it is, in stating the elongation,

to give the gauge length on which it is taken. It is also very important

that the gauge length used in getting the elongation should contain the

fracture, and if possible the gauge length should contain the fracture

near its centre. For example, the elongation on the 4 inch length con-

taining the inch lengths numbered (1) to (4) in Fig. 244 is only 24‘5

per cent., while the elongation on the 4 inch length containing the fracture

near its centre is 35 '7 per cent.

To be able to select the gauge length so that it shall if possible contain

the fracture near its centre, it is desirable that the whole length of the

parallel part of the specimen be marked off in half-inch lengths.

When tests are made on specimens of the same material it is found

tJiat the elongation is influenced by the area of the cross section of the

specimen as well as by the gauge length.

The elongation may be divided into two parts, one, the general, and
the other, the local The general elongation takes place over the w^hole

length of the parallel part pf the'specimen, and is produced mainly before

the maximum load is, ]i^ehed.
,

This general elongation is practically

uniform over the len^h, and is' independent of the area of the cross section

of the specimen. After the maximum load is reached, local contraction
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sets in in the neighbourhood where the fracture will occur, and the

subsequent elongation is mainly in this neighbourhood. But the length

o^'er whicli the local extension takes place is greater the larger the area of

the cross section of the specimen, and is approximately proportional to

the diameter, or, in the case of non-circular sections, to the square root of

the area of the cross section.

Professor Unwin has shown * that within a considerable range of

dimensions, the percentage elongation e, on a gauge length I, of a specimen

whose cross sectional area is a, is given by the equation, e = + &, where

represents the local extension, and h the general extension, c and h

being constants for a given material.

The following are a few values for c and h, given on the authority of

Professor Unwin :

—

Material. b.

Mild steel plates not very thick, average values . . 70 18
Gun-metol (cast) 8*3 10*6

Roiled brass . . . . 101*6 9*7

Rolled copper 84 •
1
!

0*8

Annealed copper 126
'

1

35

163. Position of Fracture in a Tension Test Bar.—When a test

bar is grip2)ed at the ends the outer surface of the bar at the ends first

receives the tension, and this tension is transferred towards the axis of the

bar by means of the longitudinal shear stresses between the different

co-axial layers of material. It is therefore evident that at cross sections

near the ends of the bar the tensile stress will be greatest at the
outside, and that it will diminish towards the centre. But at sections

further and further from the ends the distribution of the tensile stress will

be more and more nearly uniform. Hence the section at which the
stress is most nearly uniform will be at the centre of the length of

the bar.

When a ductile material is loaded in tension it stretches, and the
tendency to stretch is greatest where the stress is greatest. But where
stretch occurs there must be a contraction of cross section, and the
greater the tendency to stretch, the greater is the tendency to contract.

Now if the stress is greater on the outside of a bar than on the inside,

the tendency of the outside to contract is opposed by the inside, where
the tendency to contract is less. Hence it is evident that contraction
will be greatest where the stress is most nearly uniform, and this is at
the centre of the length of the bar. But fracture will occur where the
contraction is greatest, therefore, a ,

bar of ductile material of uniform
strength should break at the centre, and this is what generally hapi^ens.

If the bar is not of uniforni. strength throughout it will of course
tend to fracture at its weakest Se^ioh,; but it will not break there unices
the difference between its strength ^at tlyat section and its strength at the

* Proceedings of tlic Institution of OiviZ Engineers, voL civ. p. ISO.
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ccntrL' iH sufficient to counteract tlie tendency to break at tlie centre, as

explained above.

In the case of brittle materials, where the contraction is negligible,

the position of the fracture is either at the weakest .section, or at the

.se(!tioTi on which the distribution of stress is most variable. The fracture

is therefore at the weakest section, or near one end.

164. Long versus Short Tension Test Bars.—^Every material is

more or less variable in quality, and test pieces taken from the same

piece will probably have different tenacities. In a long bar there will he

one part weaker than the remainder, and if this bar i.s tested as a whole,

it will probably fracture at the weakest part. But if a number of test

bars be cut from the long bar, only one of them will contain the original

weakest part. Hence the short bars will generally show a higher tenacity

than long ones. A familiar illustration of the above is found in boot-

lace.s. In tightening the lace it is more likely to break when the pull is

applied at the end than when the pull is applied locally at the boot.

165, Effect of Notches and Perforations on Tenacity of Test

Bars.—Eeducing the cross section of a bar by notching it, as shown at

(a) and (Z/), Fig. 246, or by perforating it, as shown at (c) and (cZ), will

evidently fix the position of the frac-

ture, and as the proha].)ility is in favour

of this not being at the section where the

material is weakest, the tenacity of the

notched or perforated bar will for. this

reason probably be higher than that of

the unaltered bar. Again, the notching

or perforating will evidently disturb the

distribution of the stress at the reduced

section, making it less uniform, with the result that the contraction of

area will be reduced. On this account, therefore, the tenacity would be
increased. On the other hand, however, the notch or perforation may
cause such an unequal distribution of stress that fracture may take

place in consequence and the tenacity be reduced. The effect of the
notch or perforation in reducing the tenacity will evidently he greater

the sharper the re-entrant angle formed by the notch or perforation,

and it will also be greater the more brittle the material, because a brittle

material does not yield sufficiently where the stress is greatest to throw
part of the stres.s on to the part of the bar where the stress is least.

Notching or perforating a bar of mild steel raises its tenacity, but
notching a piece of cast-iron lowers its tenacity very consideral)ly.

Another important point to consider is the effect of the notch or
perforation on the resilience of the bar, which is a measure of its power
to resist shocks. Let I be the length of a bar of uniform cross section a.

Let A be the area of the cross section of another bar of the same length,

but having an indefinitely narrow notch in it, the area of the section at

fLli

0
(c) (d)

TTT

the bottom of the notch a. Let/be the maximum tensile stress on

each bar. Then the stress on the second bar, except at the notch, is" • " A"' " '

The resilience of the bar is (see Art. 88, page 69). The
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resilience of the second bar =
2E \A'^ / 2AE

Hence
resilience of first bar _A

. resilience of second bar «
*

The unnotched bar has therefore a greater resilience than the notched
bar when the minimum or effective cross section is the same in both.

166. Fracture by Shearing in Tension and Compression Tests.

—

In Art, 140j p. 138, it was shown that a piece subjected to direct

tension or direct compression is also placed under shear, the shear stress

being a maximum in planes inclined at 45° to the axis of the specimen.
It was also shown that the intensity of the maximum shear stress is half

the intensity of the tensile or compressive stress on ifianes perpendicular
to the axis of the specimen.

Experimental evidence of the existence of this oblique shear stress in
tension and compression tests is found with various materials. For
example, if a test piece of mild steel be highly polished previous to
testing in tension, a series of lines inclined at about 60° to the axis of

the piece are clearly seen after the yield point is reached. If the piece
is cylindrical, the lines referred to form helices on the polished surface, as
shown roughly in Fig. 247. These lines, sometimes called LuM lines,

show that the molecular slip is taking place in the direction of shear
stress, and in the case of mild steel and other materials it is no doubt
the resistance to pure shear which determines the yield point.

The actual fracture of a piece of mild steel in tension also shows that
it really gives way by shear-

ing, as is shown in Fig. 248,

where the specimens are cylin- IlllilTTii linTriS <////////) a
:

drical, and the fractures partly tijJlJJM Mil I Tllfm
"

conical. Fig. 249 shows the m 1 JM
common form of fracture of

||| /I ll
a cylindrical piece of cast-iron I / I

tested in compression. The 11 V
|||

cast-iron gives way by shear-
Jy/

''™ ^TT^ril 1111/

ing obliquely, the inclination |||l 1

of the fracture to the axis of y
the specimen being about 35°.

Further evidence of the

shearing of a piece under a crushing load is found when testing
steel ball in compression between^ two. hard flat plates,

’ '

other balls. Where contact takes place aashl circular
on the ball, and these become the .bases of two
ball by shearing, and these cones arO

'* - '
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split into two or more pieces. The hall therefore gives way finally by

tearing. Fig. 250 shows a ball which has split into two piccc.s by a

crushing load .

irc^ii^g^

^

iii^^

^

one halt of the t 'f t
'

ball andtheother Fig. 2C0. Fig. 2Si.

to the other.

Fig. 251 shows a typical fracture of a cast-iron roller tested in com-

pression between two hard flat plates. Here wedges form by shearing,

and these finally split the roller. In the case illustrated, the splitting

was probably caused by the bottom wedge.

In actual fractures by shearing in tension and compression tests the

inclination of the plane of fracture to the axis is never 45°, although at

that angle the shear stress produced by the external load is greatest.

The reason why the fracture does not take place at 45° is that the resistance

to sliding at an oblique section is affected by the normal stress on that sec-

tion. The theory of the effect of the normal stress on an oblique section

in altering the inclination of the shear fracture is as follows. Re-
ferring to Fig. 182, p. 138, and using the notation of Art. 140, the

external load P causes a shear force ^ sin d cos B along CD per unit area

of CD, and also a forces cos^ Q normal to CD per unit area of CD. If s

is the normal cohesive force per unit area holding together the parts on
opposite sides of CD, then the resultant normal force on CD per unit

area is s ±jo cos^ where the upper sign applies to a compression test, and
the lower sign to a tension test. Assuming that the resistance to sliding

along CD per unit area is proportional to s ±p cos^ 0, and that it is equal

to g{s ±y) cos2 where p, s= tan is a coefficient of resistance to sliding,

then p sin B cos B = iJi.{s±p cos^ B), and this reduces to

_ 2/15 cos 4>

^ wi{26 + <f) + du(j>’

Hence p will be a minimum when sin(20 + is a maximum, that is, when
2^q:<^ = 90°, or when cot 20= +/*, where the upper sign applies to a
compression test, and the lower sign to a tension test. It follows from
the above that the value of 0 in a compression test is the complement of

its value in a tension test of the same material. *

167. Fracture by Tension in Torsion Tests.—When a cylindrical

specimen is subjected to simple torsion there is a pure shear stress in the

material in planes perpendicular to the axis, and also in planes containing

the axis, and in Art, 142, p. 140,' it was shown that at any point in the

material there is also a .pure tensile stress equal to the shear stress at

that poult, the direefaon of this tensile stress being at 45° to the shear

stresses. It may tWefore be, expected that when a specimen of a
material whose resistance to direct tension is less than its resistance to

pure shear is subjected to tdrsipn it wiU, give way in tension. Cast-iron

is such a material, and the form of the fracture of a hollow cylindrical
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apocimen of tlxis material when tested in torsion is shown in Fig, 252, It

will lie seen that the surface of the oblique fracture is a screw surface, the

edges of which are helices. The developments of the outside and inside

surfaces of the specimen after fracture are shown to the right in Fig. 252.

168. Hardening Effect of Overstraining.—When a ductile material

like mild steel is loaded beyond the yield point, and therefore given a

definite permanent set, and then unloaded, it is found that when the load

is again applied the yield point is higher than before. This is well

illustrated by Fig. 253, which is a stress strain diagram (the stress being

the nominal stress) for a bar of mild steel

tested in tension. The first loading pro-

duced a decided yield when the stress ^
'

reached 16-5 tons per square inch. ViTien v, /
the stress reached about 21*5 tons per .

square inch the load was almost entirely ^
removed, and then again immediately

iq

applied, with the result that the yield

point was found to be at about 22*2 tons p
5 ^

;

per square inch. The load was increased ^
until the stress was about 24 ‘4 tons per oI 1—b—A—

J

sqqare inch, when it was again almost FxImsUml in 10 inches
entirely removed. A third application of

^
the load showed a yield point at about
24'7 tons per square inch. The load was them continued until fn

occurred.

.
Compared with a test of the same material, in w

broken with one loading, the maximum and breakin
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If after each unloading an interval of a few hours is allowed before

the next application of the load, it is found that this has the effect of

raising the yield point still higher. If a bar which has been ov{;rst7'ained

be loaded below its yield point and the extensions measured witli a

delicate extensorneter, it is found that the elasticity of the bar is very

imperfectj but after a sufficient period of i-est the elasticity is restored.

The elasticity lost through overstraining a bar of mild steel may be

quickly restored by immersing the bar for a few minutes in boiling water.

Another effect of this heating is that the yield point is raised as much as

it would bo after a considerable period of rest.

For further information on the above subject the student is referred

to papers by Ewing in the Proceedings of the Royal Society, 1880 and
1895, also a i)aper by Muir in the Phil. Tram. Roy. Soc., 1899.

169. Effect of Fluctuating Loads.—General experience, and direct

experiments, have shown that when the load on a piece is made to vary

over a given range a sufficient number of times, fracture may take, place

at a much lower stress than the piece -would have originally stood under
a static load. For example, in one of Wohler’s tests on wrought-iron, the

tenacity under a static load was about 23 tons per square inch, but when
loaded and unloaded about 10 million times, the load in each case pro-

ducing a tensile stress of 15 ‘28 tons per square inch, the bar broke. In
another test on the same material the stress was made to vary from 8’6

tons per square inch in tension to S’G tons per square inch in compres-

sion, and the bar broke when the number of repetitions of the load was
about 19 ’2 millions.

Wohler was the first to investigate in a comprehensive manner the

effects of fluctuating loads on the strength of iron and steel. His
researches, which were carried on for about twelve years, embraced
loading and unloading, and also partial unloading in tension, repeated

bending in one direction and also in opposite directions, repeated twisting-

in one direction and also in opposite directions.*

Further researches on this subject have been conducted by Spangen-
berg, Bauschinger, Sir Benjamin Baker, Dr. J, H. Smith and Professor

Osborne Eeynolds, Dr. Stanton, and others. The subject is still being

investigated by a number of experimenters.

The general result of the numerous experiments which have been
made seems to be that the maximum stress at which fracture will occur

in any particular case depends to a largo extent on the range of the

fluctuation of stress as well as on the static strength of the material.

Various empirical formulae have been constructed to express the rela-

tion between the maximum stress at fracture after a very large m.imber
of repetitions of the load, the static strength of the material, and the

range of stress. One well-known formula is the following, given by
Unwin in his “ Machine Design,”

/max. = 4A + ~ nAf

where /mnjc. is the stress at which fracture will probably occur after a
sufficiently large number of -repetitions of the load, / is the static ultimate

* For details of Wohler’s tests Ibhe student may refer to Unwin’s Testing of
Materials of Oonstruptiaa,. and, also to Engineering, vol. xi. (1871).
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stress, A is tlie range of stress, and n is a coefficient depending on the

material. For ductile iron and ductile steel, the average value of is

about 1*5. For the harder and more brittle qualities, may be as high

as 2-2. In estimating the range of stress, if a tension is taken as positive,

then a compression must be taken as negative.

Tire following are examples of the application of the foregoing formula

to a bar of mild steel having a static tenacity of 26 tons per square inch.

= 1‘5.

(1) Kange of stress from /max. to 0. A=/max.

/uax. = “ l‘5 x 2^ax. Heiice /max. = 15-75 toiis per sq. in.

(2) Range of stress from /max. to l/max. ‘^ = 2/inax.

/nax. = i/nnx. + - 1 '5 X 26 X Hence/max. = 21‘43 tons per sq. in.
'

(3) Range of stress from/„ax. to -/max. A = 2/max.

/tiax. -b 1*5 X 26 Hcnce /max. = 8-67 tons per sq. in.

The safe working stress is obtained by dividing
,/max. hy a factor of

safety.

Other empirical formulas for fluctuating load stresses are given on

p. 252.

170. Fatigue of Metals.—The loss of strength which occurs when
a metal is subjected to a fluctuating load for a considerable time is

frequently said to be due to fatigue. It is necessary, how'ever, to dis-

tinguish between deterioration of strength due to mere fluctuation of

stress and deterioration due to shocks. It is w'ell known that a crane

chain, if kept in use for a long time, may fracture abruptly when carrying

a load less than that wffiich it has been in the habit of carrying. This

deterioration of strength is, however, probably due to a slow accumula-

tion of permanent set produced by shocks due to the sudden starting

or stopping of the load when raising or lowering (see Art. 88, p. 69, and
Art. 168, p. 177), and the 'chain becomes in consequence less able to

resi.st shocks. It has been found that the powder of the chain to resist

shocks is restored by annealing, and it is a common practice to anneal
crane chains at frequent intervals, say, once or twice a year. Unwin has
propo.sed to restrict the term fatigue to deterioration due to shocks which
is removable by annealing.

171. Mechanical Properties of Steel after Heat Treatment.

—

The sixth report to the alloys i*esearch committee of the 'Institution of

Mechanical Engineers by the late Sir William C. Roberts-Austen and
Professor William Gowland, relates to the heat treatment of steel.* This
vohnninous report contains a record of a large amount of research on the
effects of various kinds of heat treatment on the mechanical properties of

samples of steel containing different amounts of carbon. A few of the
results will be given here.

The table on page 181 gives the mayTTmiTn stress and the elonga-
tion obtained in tensile tests of the bars as j-eceived from the i-olls, and
also after the different kinds of heat treatment described. Additional

Proceedmgs of the Institution of Mechanical Engineers, 1904.
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results, and tlie results on the bars as received, are shown plotted in

Fig. 254.

The maximuTn stress is in tons per square inch of the original area of

the test pieces, and the elongation is the percentage elongation on a

length of 2 inches in each case. The reduced parallel part of each

specimen was inch in diameter before testing.

The full lines A, B, 0, D, and E show the maximum stresses.

The dotted lines a, h, c, dy and e show the elongations.

A. , a, refer to the lars as receivedfrom the rolls.

Ji, If refer to bars annealed at 900'^ G. for half-aTi-hour.

0, e, refer to bars soaked at 720° 0. for twelve hours.

B, df refer to bars quenched at 800° 0. in water at 20° G.

E, e, refer to bars quenched at 720° G. in oil at 80° G. and subsequently

reheated to Z50° G. .

EiU. 254.

iBars as received.—‘The maximum stress for the bars as received from
the rolls is about normal, but the elongation is extremely low. The low
elongation was found, after microscopic examination, to be due, to a
certain extent, to rapid cooling near a certain critical temperature.

Annealing.—The, test pieces were annealed as follows. “ The bars

were packed in lime in f-inch wrought-iron tubes, closed at each end by
screwed iron caps.' .These tubes were then packed in a large wrought-
iron tube, the ends of which were covered by wrought-iron plates. This
was placed in a closed ga^muffle, and a record of the temperature was
taken by means of two .thermo-couples attached to an autographic
recorder.” After attuning the temperature desired, the contents of the
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Tenacity and Elongation of Steel after Heat Treatment.

Carbon, per cent.

Bars as received from the rolls.

Maximum stress

Elongation

Bars annealed at 720° Gi, for half-an-hour.

.

1

20-16
I

26-52
1
28-80

|
32-82

|

39-96 1 43-98 I 39-30

. 44-50 36-00 32-50 29-00 23-00 20-00 22-00
Maximum stress

Elongation

Bars annealed at 1100° C. for half-an-hour.

Maximum stress

Elongation

Bars soaked at 620° O. for twelve hours.

Maximum stress

Elongation

Bars soaked at 900° G. for twelve hours.

Maximum stress

Elongation

Bars quenched at 900° G. in Water at 20° G.

.

I

32-34
j

49-92 1 70-32 1 55-44 I 61-98 1 26-04 1 21-60

. 28-20, 6-60 3-80 TOO 1-00 2-00 nil.

Maximum stress

Elongation

Bars quenched at 1200° G. in Water at 20° G.

.
I

45-29
'
72-78 ! 77-04

j

31-74 1 13-44 I
5-40

.
1

9-00 3-50
1

3-00 nil. nil. nil.

Maximum stress

Elongation

Bars quenched at 870° 0. in Oil at 80° G., and sulsequently reheated to 350° C.

Maximum stress . 1 24-60
|

36-12 I 41-13 1 64-65 I 78-69 I 90-68 ll02-52 1 90-57

Elongation .
.

|

39-60
|

28-60
j

24'50
j

26-00
j

23-60
j

10-50
j

7-00 5-50

at 900° G. in Oil at 80° (7., and subsequently reheated to 60{

s .1 24-66
I

30-13 1 31*24
|
83'71 I 50-44 1 62*68

|

49*10 I

. . . 40-70 80-00
i
26-20 27-20' 17*60 15-50 I

17*00

Abnormal result.
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muffle were kept at that temperature for the time required (half-an-hour

in these tests), the gas was then turned off, and the whole allowed to

cool slowly.

It will be observed that the general results of annealing are, reduction

of strength and increase of elongation of the steel when tested.

Soaking.~The difference between annealing and soaldng that in

the latter operation the bars are heated for a much longer time.

Hardening.—“ By heating steels to the hardening temperatures, some
or all of the iron carbide is dissolved in the iron, and the latter is re-

strained from reverting to its soft condition by sudden cooling. Within

certain limits, the more rapidly the heat is abstracted from the bar the

more effective will be the hardening.”

Referring to Fig. 254, and comparing the D, d lines with the A, a
lines, the effect of quenching the steels at 800° C. in water is to increase

the tenacity of all the steels considerably, but at the same time the

elongation is diminished, except in the case of the O’13 and O' 18 carbon

steels.

Tempering.— which has been hardened by quenching in water
or oil may be tempered, that is, its hardness may be reduced to any
required extent, by subsequent annealing at a temperature depending on
the degree of hardness required.

Oil hardening.—“ When steel is quenched in oil at 80° C., the effect

is to increase the tensile strength, but to a scjmewhat less extent than by
quenching in water at 20° C., and also at the same time to increase the

elastic limit and rather diminish the ductility.”

“The most suitable temperature for quenching steel, in order to

obtain the best combined results as regards tensile strength, elastic limit,

and elongation, is about 900° C., and the most suitable temperature for

reheating, when elongation, and conseqxrently -resistance to shock, is not
of paramount importance, is about 350° C. If, however, the steel be
required to withstand violent percussive action, as in a gun tube, then
reheating at a higher temperature, say 600° C., will be found to be
necessary, as such steel, when thermally treated in this way, although
possessing a relatively high tensile strength and elastic limit, nevertheless

has also a high percentage of elongation.”

The student is recommended to study carefully the results given in

the table on p. 181 and in Fig. 264, and to plot the results as directed in

Exercise 12, p. 190.

172. Tests of Copper-Zinc Alloys (Brasses).—The curves in Fig. 255
show the tenacity and extensibility of alloys containing different pro-

portions of copper and zinc. These curves have been reproduced, with
modifications as to scales, from the fourth report to the alloys research

committee of the Institution of Mechanical Engineers by Professor W. C.

Roberts-Austen. *
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174. Tests of Lead-Tin Alloys.—The results of tests on the tenacity

and extensibility of alloys containing different proportions of lead and tin

are shown plotted in Fig. 267.*

• 2,000

> z V
1 —

p / zr 7 siL.

10

;

jPe71

0

10 20 30 40 50 60 70 80 90 100 TYn.

^jlOO 90 80 70 60 50 40 30 20 10 0 lead.

FiCr. 2S7.

175. Tests of Alloys of Aluminium and Copper.—The eighth report
to the alloys research committee of the Institution of Mechanical Engineers
by Professor H. 0. H. Carpenter and Mr. C. A. Edwards contains a large

amount of information on the prox>erties of alloys of aluminium and
copper. Some of the results of the tests made will now be given. For
further particulars the student is referred to the full report, f

The results of tensile tests of specimens cast in sand moulds, and of
specimens cast in thick cast-iron moulds, are given in the following
table :

—

Alloy.
Alumin-
ium.

Sand Castings. Chill Castings.

Yield Point
Stress.

Ultimate
Stress.

Elonga-
tion on
2 inches.

Yield-Point
Stress.

Ultimate
Stress.

Elonga-
tion in
2 inches.

Ho. Per cent.
Tons per
s(}, inch.

Tons per
sq. inch.

Per cent.
Tons per
sq. inch.

Tons per
Per cent.

1 O’lO 3-8 11-6 46*0 4-1 11-53 46*0
2 1-06 3-0 13-4 52-0 6-2 11*8 53-0
8 2-10 3-4 13-6 63-5 4-6 13-7 64*5
4 2-99 3-8 14-5 60-0 6*8 13-8 60-0

6 4-05 3-6 16-7 83-0 4-9 17-1 82-0
6 6-07 4-3 18*1 75-0 7-1 18-1 60*5
7 6*76 4-8 17*8 67*0 6-0 18-8 61-0
8 6-73 4*8 18*66 ...$ ...§ 19-96 69-0

9 7-36 6*6 21*3 71-0 ...§ 21-68 84-0
10 8' 12 :

7-7 24*91 58-0 9-7 27-47 62-0
11 8 67 !

9-8 28-1 48-0 - § ,

.30-8
1

55-0
12 9-38 9-7 30*38 36-2 10-6

;
33- 98* 43-6

13 9-90 11-3 • 31*70
1 21-7 12 4 .36-93 30-5

14 10-78 14-1
, 29*62

1

9-0 16-9
i

86-73 9-0
15 11-78

:

140 25*48 ! 6-0 14-8 30-63 6-0
16 13-02; 19-75 . 19*76 1-0 25-06

: 26-06 nil.

The stresses are given on the original area.

? of the Imlittttwn c(f Mechanical Engineers, 1897, Plate 4.

7 Ibid., 1907, X Oonld not be measured. § Not taken.
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The specimens were turned to the forms and dimensions shown in

Figs. 258 and 259.

^ - -- - - --"d
— T

•5G4
i

4
“

i

Chill

- 2‘^-

The next table shows the results of tests on specimens turned out of

rolled bars -^4 inch diameter. These rolled bars were made as follows.

Billets 3 inches in diameter and about 20 inches long were cast in
cast-iron moulds. These billets were first turned in a lathe, and the
diameter thus reduced to 2^| inches. They were then heated to
about' 800° C. (1472° F.) and rolled down, first to 1|- inches diameter,
and then to -H- inch diameter. The gauge length of the specimens
was 2 inches.

Alloy. Aluminium.
Yield-
Point
Stress.

Ultimate
Stress.

Elongation
on 2 inches.

Reduction
of Area.

Weight
per
Cubic
Foot.

No. Per cent.
Tons per
sq. inch.

Tons per
sq. inch.

Percent. Per cent. lbs.

1 0‘10 6-9 14-50 65-5 90-71 666
2 1-06 6-9 15-88 61-0 88-63 548
3 2-10 8-6 17-46 56-5 89-66 637
4 2‘99 11-6

,

19-79 57-2 86-11 528

6 4-05 11-3 23-80 67-0 83-27 618
6 5-07 11-4 26-41 69-2 77-80 510
7 6-76 11-8 28-40 74-2 76-93 503
8 6:73 10-4 28-85 71-0 75-02 499

9
"'

7-36
,

10-6 29 -

G8 72-6 74-34 492
10 8*12 13-0 83-22 . 51-5 60-40 487

'Wi ' 8'67 11-1 36-67 38-0 60-66 482
'

12 9-88
; ,

17 -7
'

38-00 34-0 33-60 477

1.3 9-90 14-8 38-10 28-8 80-80
'^'-

47S'''r

14 10'78 15-4 38-62 14-0 18-60 466 V

16 11 73 12-6 83-85 8-6 15-37 460
13-02 37-14 2-0 1-87 461

Ihg. 260 .shows stre.«s-.strain diagrams taken from longer specimens
prc]),ired from the -^;:f-inch rolled bars. The parallel portion wa.s 10-5

inches long and 0‘564 inch diameter, and the gauge length was 8 inches.

The immbers on the curves arc the descriptive numbers of the alloys. It

will be obsoTM'd that the various diagrams are displaced to the right, so
that the zero ])oiut3 of elongation are at the points showing the percentage
of aluminitim in the respective alloys.
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Fig. 260.

The results of torsion tests on a number of these alloys are shown
plotted in Fig. 261.

176. Tables of Strength and Elasticity of Materials.—The tables

which follow give op^roximMe average values of the ultimate strength

and modulus of elasticity of various materials.

Ultimate Crushing Strength in Tons per Square Inch.

Cast-iron .
-

.

'

.46 Granite .... . 6
Brass, cast .

;
Brick, London stock . 1

Timber . . . .

'

.
'

;
" 8 ,, Staffordshire bine

Concrete.... . 8
Sandstone . • .

'

, . 8 . 0’5
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ITHimate Tensile Strength in Tons per Sgvm'e Inch,

Modulus of Elasticity in Tons pet' Square Trudi.

Direofe. Transverse.

Oast-iron .

Wrooght-iron .

Steel

Copper, oast

,, rolled .

Brass
Gun-metal
Phosphor bronze
Timber .

1 . In a tensile test of a wrought-iron bar, the following observations were
made: W=load in tons, a!= estension in inches in a length of 8 inches,

e{=smallest diameter of bar —
in inches. 9-24 was the load ^ ’

q 13.go 12-78
at the yield point, Iohi was
the maximum load, and 12’78 x 0 O‘J.76 0*66 0'975 1*56 2*40

<*, OfK; 0-8M P-888
0-809 0-028

at the end of the “yield.*' a 'i --. - —W-;—
t-,

Plot a> and the nominal stress l0ad,S-oi,'i^j:t^,(aa:ea|, also x and the actual stress

(load actual area of least section). Scales.-—Stresses, 1 inch to 6 tons per square
inch

;
times full size.

Cast-iron . . , . 8 Aluminium, cast . . . . 5
Wrought-iron . 23 „ rolled . . . 8
Mild steel . . . 28 Delta metal, cast . 20
Steel castings . . . . 30 „ rolled 30
Steel wire . . . 80 Manganese bronze, cast . . 25
Copper, cast . . 10 „ „ rolled . 30

„ rolled or forged . 14 Muntz metal . . . 22

„ wire, annealed . 18 Naval brass . . . . 24
Brass, cast . . . . 11 Phosphor bronze, cast

.

16

,, rolled . , . 20 Leather . . . . . 2
Gun-metal or bronze . . 14 Timber. . . 6

Ultimate Shearing Strength in Tons per Square Inch.

Cast-iron . 12 Gun-metal. . . . . 16

Wrought-iron, across fibre . . 19 Yellow pine, across fibre . 2

Mild steel

along fibre . . 10 „ „ along fibre .

f
. 22 Oak, across fibre

Brass . . 10 „ along fibre i
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2. In a tensile test of a mild steel bar, tbe following observations \vi

= load in tons, a5=extension in a length of : 8 inches in inches, d
2 made

:

5mallest

value of X (0'24) was at the end of the “yield.” Plot a: and the nominal stress,

also X and the actual stress. Scales.—Stresses, 1 inch to 5 tons per square
inch

; a:, 2J times full size.
'

3.

In a tensile test of a mild steel bar, the following observations were
made: Diameter of bar, unloaded, 0‘748 inch, W=Ioad in tons, »= extension, in

inches, on a length of 8 inches. Load at elastic limit, 6 tons. Maximum load,

12'54 tons.

() Plot W and a; up to W=6 and a:=0'0082. Scales.—W, 1 inch to 1 ton ;

£8, 1000 times full size.

() Draw the straight line which most nearly contains the points in (a), and
calculate from it the modulus of elasticity in lbs. per square inch.

(o) Calculate the load, in tons, necessary to elongate the bar 0‘006 inch.

((i) How many ft.-lbs. of work have been done in stretching the bar 0*0082

inch?
(fi) Plot W and x from no load up to the breaking point. Scales.—W, 1 inch

to 2 tons ; x, 2^ times full size.

(/) Determine the total work done, in ft.-lbs., in breaking the bar.

Ig) Plot X and the nominal stress, also x and the actual stress. Scales.

—

Stresses, 1 inch to 6 tons per square inch
; x, 2J times full size. Assume volume

of bar constant in finding cross section up to maximum load. Assume also that
the contracted section at fracture is 0*43 of the original section.

4.

A cylindrical piece of mild steel was tested in compression. The load W,
in tons, acted on the ends of the piece. The mean diameters of the piece at the
top, middle, and bottom of its length were di, da. and dg inches respectively, and
its length was t inches. Values of these dimensions for various values of W are
given in the following table :—

Under the greatest load the piece was free from cracks.

Calculate the nominal and actual compressive stresses on the smallest sections,

and plot the results in tbe manner shown in Fig. 243, p. 171. Scales.—Linear,
twice full size. Stresses: 1 inch to ,20 tons per square inch.

5.

A test piece of steel boiler plate of rectangular section 1|- inches wide and
I- inch thick, when tested fqr elongation, gave, after fracture, the following
results:— '

,

"

w 1 2 3 4 5 6 6*81 “ yield” point.

X 0*0014 0*0027 0*0040 0*0055 0*0068 0*0082 0*18 at end of “yield.”

W 7*5
!

9*0 10*5 12*0 12*54 12*25 10*25 Breaking load.

X 0*19 0*27 0*55 1*05 1*75

1

2*10 2*42 Total extension.

diameter of bar in

inches. 10*64 was W 0 10*64 13*81 15*07 15*64 15*(50 12*97
the load at the yield

pjoint, 15*64 was the £C 0 0*24
1

0*60 1*02 1*57 2*12 2*79

maximum load, and d 0*906 0*891 0*871 0*851 0*825 0*799 0*588
12*97 was the break-
ing load. The second
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Gauge length {1), inohea 4 6

Elongation (c), per cent, 37-8 31-8

Plot on squared paper e and where a is the area of the cross section of

the bar in square inches. Draw the straight line which most nearly contains all

the points, and find the values of the constants c and b in the equation to the

line, which is e=:3 -
-I- 6. Apply the equation to find the probable elongation

per cent, in 8 inches of a test piece of the same material 1 inch wide and | inch
thick,

6, A bar of mild steel 10 inches long and IJ inches in diameter has a groove
turned on it at the centre of its length, the grtiove being J inch wide and i inch
deep. Another bar of the same material lias the same length and a uniform
diameter of 1 inch. Compare the resilience of the second bar with that of the

first for the same maximum stress, the bars being loaded in tension.

7, The averages of the results of numerous tests of the crushing strength of

hard steel balls are given in the following table :

—

inches

where d is the diameter of the ball, and W the crushing load. The halls were
tested between two hard steel plates. Calculate for each size of bail the stress

/in the formula W»=~dy. Plot / and dl, also W and d. Scales.—For d, eight

times full size; for/, 1 inch to 10 tons per square inch
;
for W, 1 inch to 2 tons.

Show that an expression of the form/= a - gives approximately the relation

between / and d in the above results, where a and b are constants, and find

the values of these constants. Hence the relation between W and d is

8.

The following table gives the results of crushing tests on cast-iron rollers

tested between ste^ plates :

—

inches ^ I f i 1

inches f 1 1^ 1
J-

. tons 4-32 6-90 9*95 • 12-70 17-11

cZ= diameter of roller, length of roller, W=: crushing load.' Plot W and dy.1,

and find the most approximate value of o in the expression W^cdl for the above
results. Scales.—For cZ x Z, 1 inch to J square inch

;
for W, 1 inch to 6 tons.

9. A cylindrical' piece of cast-iron 0-727 inch in diameter and 2 inches lon^
was tested in compression, the load being axial, 'fhe piece gave way by-

shearing in a plane inclined at, 37“ to the axis when the crushing lofid wiis

22-91 tons. Neglecting iho nlicraiion in the diameter of the piece, calcnlaie The

intensity of the shear stress in the piano of fracture. Wliat is the value in l.his

case of the coefficient ^ used in Art. 16G, p. 175?
10. Same as Exercise S), except that the angle was 33“ instead of 37“, and the

crushing load was 19’25 toms instead of 22-91 tons.

11. The load on a cerlain steel tie-bar in abridge truss varies from 11 tons to

21 tons (both tensions). If the tenacity of the material is 28 tons per square

inch, and the cuetfieient in the formula given on p. 178 is 1-60, what must be



190 APPLIED MEOHANIOS

the area of the cross section of the bar if the maximum stress allowed on it is

one-fourth of the maximum stress due to the above fluctuating load ?

12. Plot on squared paper in the manner shown in Fig. 264, p. 180, the results

in the table on p. 181 and in Fig. 254, grouping the results on separate diagrams
as follows:—(1) Annealed bars; (2) soaked bars; (3) bars quenched in water;

(4) bars quenched in oil. Show also on each diagram the results of the tests on
the bar.s as received from the rolls. Scales.—Carbon, 1 inch to 0-2 per cent.

;

stress, 1 inch to 10 tons per square inch ; elongation, 1 inch to 10 per cent.

Examine all the results carefully, and discuss the effects of the different kinds of

heat treatment on the different steels.
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CHAPTER XII

177. Stress Diagrams for Framed Structures.—It will be assumed
that the framed structures considered are made up of bars which are

connected l>y frictionless pin joints at their ends. It will also be assumed
that the loads on the structure are concentrated at the joints. If a bar

carries a load uniformly distributed over its length tliis load is divided

into two equal parts, and one part is jdaced at each end of the bar. If a

bar carries a load concentrated at an intermediate point, this load is

divided into two parts, which are to one another as the distances of the

load from the ends of the bar
;
these parts are then placed one at each

end of the bar, the greater part being at that end of the bar which is

nearest to the original load.

In studying the equilibrium of a structure, two kinds of forces

have to be considered, (1) the external forces, which for the whole
structure must balance one another, and (2) the internal forces. As
a consequence of the two assumptions mentioned at the beginning

of this Article, the bars forming the structure are subjected either

to direct compression or to direct tension under the action of the

external forces. It follows, therefore, that the lines of action of

the internal forces are the lines which represent the bars on the

diagram of the structure ( called the frame diagram). At any joint,

therefore, the forces acting are the internal forces acting along the

bars meeting at that joint, and the external forces, if there are any,

acting at that joint. »

If a sufficient number of the forces acting at any joint are known, the

polygon of forces for that joint can be drawn and the unknown forces

determined.

The general method, of drawing the complete stress diagram for

a framed structure will be understood by reference to the example
worked out in Fig. 262. A simple roof truss is shown cariying

a load AB at its apex. The other external forces are the reactions

BC and CA at the supports. The internal forces are the force.s

acting along the bars AD, BP, and CD. The lines of action of all

the forces are known, but AB is the only force w'hose magnitude is

known as yet.

At each joint there-are three forces acting, and the polygon of forces

for each joint is therefore a triangle. The triangle of forces for the joint

2 or for the joint 3 cannot yet be drawm, because the inagnitudcs of all

the forces at these joints are as yet .renown, but the triangle of f(jrces

for the joint 1 may be drawn, and thi^ is shown at (w). This triangle

determines the magnitudes bd and da of the internal forces in the bars
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BD and DA respectively. The sense of these forces is also deter-

mined, and it will be observed that the internal forces in the bars

BD and DA both act towards the joint 1, therefore these bars are

in compression. In drawing the triangle (ni) the forces have been

taken in the order in which they occur in going round the joint 1

in the watch-hand direction, beginning with the known force AB.
Beginning with BA, and going round the joint in the opposite direc-

tion, the triangle (s), which is similar to (rn) but differently situated,

is obtained.

Passing next to the joint 2, the three forces acting there are known
in direction, and the magnitude of one of them, BD, has been determined
by the drawing of the triangle (m) or the triangle (s). Beginning with
DB, and taking the forces in the order in which they occur in going
round the joint in the watch-hand direction, the triangle of forces {%)
is drawn. If the, forces, be taken in the order in which they occur
in going round the joint in the opposite direction, beginning with
BD, the triangle (m) is obtained. Proceeding next to the joint 3,

the triangle (o) is obtained when the forces are taken in the watch-
hand order, ahd tlm; triangle' (v) is obtained when the forces are taken in

the opposite order;.'

The constructionf o| the three triangles (m), {ii), and (o), or the three

triangles (.9), (m), 'ahl determines the magnitude and sense of each of

the three internal forces, and also -the magnitudes and sense of the
external forces BC and OAv
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It is obvious that the triangles (w) and (o) may be appiiejd to the

triangle (m) so as to form the figure (r), and this figure gives all the

results which were found from the separate triangles (to), (w), and (o),

and this figure (r) is the complete stress diagram for the given framed

structure. The figure (r) may of course be drawn at once without

drawing the triangles (m), («), and (o). It should, however, be noticed that

in order that the force polygons for the different joints may be combined

into one diagram, these polygons must be drawn by taking the forces in the

order in which they occur in going round each joint in the mme direction.

(r) is the form of the stress diagram when the forces are taken in the

order in which they occur when going round each joint in the watch-

hand direction, and (to) is the form of the diagram when the order is

reversed.

178. Example.—^A roof truss carrying a load at each joint is shown
in Fig. 263. The loads are in pounds. The total load is 10,000 lbs.,

and since the loads are placed symmetrically about the centre of the truss,

it is obvious that the reaction at each support is 5000 lbs.. In cases

where the loading is not symmetrical, the reactions at the supports may
be deterniined by means of a funicular polygon.

The line of loads ahcdefghlia is first drawn. Starting with the joint

ABLKA at the left-hand support, the polygon of forces alllca is drawm.
Proceeding next to the joint BO'MLB, Ihe' polygon of forces hendb is

drawn. The polygon of forces ImnhU for the joint LMNUKL may now
be drawn, and for practical purpose^ no naore of the stress diagram need
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be drawn, since the truss is symmetrical, and symmetrically loaded. The
complete stress diagram for the whole truss is, however, shown in Fig.

263. The results are tabulated under the heading “dead load” in the

table on p. 196.

179. Wind Pressure.-—The force exerted by the wind on a plane

surface at right angles to the direction of the wind may amount to about

50 lbs. per square foot of surface. When the surface is inclined at an
angle Q to the direction of the wind, the normal pressure on the surface

is usually determined by Hutton’s formula, which is

^
= (sin 0)i'S4cos0-i

or log
^
= (l'84 cos 0 - 1) log sin 0,

where p is the normal pressure, and P is the pressure on a plane at right

angles to tlie dii'ection of the wind. Values of jo-rP for various values

of B are given in the following table :

—

6 10° 16° 20° 25° 80° 35°

p/P 0-241 0-360 0-467 0-503 0-668 0-764

e 40° 46° 60° 60° 70° 80°

?>/P 0-834 0-901 0'952 1-012 1-023

1

1-010

When d= 90°, p= P.

180. Stress Diagrams for Wind Pressure.—^It is usual to assume
that the direction of the wind is horizontal, and that its maximum
pressure on a plane at right angles to its direction is 50 lbs. per

square foot. The inclination of a roof being known, the normal pres-

sure of the wind on it may be determined by the formula given in

the preceding Article. It is assumed that the wind acts on one side

of the structure • only at one time. The total load due to the wind
pressure is divided up into parts, which are placed at the joints, as

explained in Art. 177.

Figs. 264 and 265 show the stress diagrams for the wind pressure on
the roof truss whose dimensions are given in Fig. 263. The truss is

assumed to be fixed rigidly at the right-hand end and simply supported

at the other end, so that it may expand and contract freely with changes
of temperature. The reaction at the left-hand end must therefore be

vertical, and the line of the reaction at the right-hand end must therefore

pass through the point where the resultant of the wind pressure cuts the

line of the reaction at the left-hand end.
' The directioiis of the reactions having been fixed, the load polygon
adede can be drawn; and upon this the stress diagram is built, as in Fig.

263, which showfS th^ ^tress' diagram for the same truss under the dead
load.

The stresses in the various bars of the truss due to the dead load and
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No. of

Bar

(Fip. 2m).

Dead
Load,

' W-
;

mi'. 288)

Wind on
Left.

. -P

{I'ip:. 2(54)

Wind on
Eight,

Q
(Fig. 266)

Maximum Stress.

1 1.371.8 9180 6900 W + P 22895

2 12820 9180 6900 W-f-P 22000

8 12820 4980 11100 W + Q 23920

4 1371.'> 4980 moo W + Q 24816

6 12450 1253 12528 W + Q 24978

8 84.38 1006 5031 W + Q 11469

7 12450 7517 6264 W + P 19967

8 1789 3800 0 W + P 6389

9 8906 6677 1566 W + P 13483

10 6906 313 7mo W + Q 147.^

11 17S9 0 3(500 W + Q 5389

181. The Method of Sections.—Conceive that a framed structure is

divided into two parts by cutting three bars A, B, and C. Next suppose

that one of tliose parts is removed, and
that external forces P, Q, and S are

| aJ^P
applied to the bars A, B, and C respee-

tively, so as to balance the internal
|\

forces in tliese bars, then the part of the
^ ^

structure which remains (Fig. 267) will X
evidently be in equilibrium.

If moments of all the external forces
;

acting on the part of the structure under "

consideration be taken about the point
.

O, where the bars A and B intersect,

then the moment of S will balance the resultant moment of all the

remaining external forces; and since the moments of P and Q are

zero, and the other forces are known, their resultant moment can be

determined, as in Art. 60, p. 43, and therefore the moment of S is

found. Again, since the perpendicplar distance of S from 0, is known,
therefore S can be found. If in constructing the resultant moment of

the known extfjmal forces the pole distance be made equal to y, then the

line -which (measured with the force scale), multiplied by the pole dis-

tance, gives the resultant moment, will, -v^hon measured with the force

scale, give the magnitude of S.

Having found S, the force P may be found in like manner by taking

moments about another point in the bar B (say at the intersection of B
and C). Lastly, the force Q may be determined by taking moments
about a point outside tljie bar B-

The forces P and Q- may, ho-weyer, be determined by the })olygou of

external forces after S has been found.

Another method of finding S is by means of the polygon of forcesmeans
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and a fiinLcnlar i)olygon, the latter having one angiii

oxplaiiuMl in the latter ])art of Art. 57, p, 38.

182. The Three-Hinged Arch.-—If the ends of a rt

are secured to foundations by hinged joints, and there
joint at an intermediate .

point, say, at the middle

of the truss, such a truss

is known as a three-kinged

arch, and it is said to be

constructed on the three-

hinged system. The de-

termination of the stresses

in the various bars of such

a truss may be proceeded

with as in an ordinary

truss as soon as the re-

actions at the hinges are

determined.

One method of find-

ing the reactions at the

hinges is as follows.

Fig. 268 shows a truss

hinged at A, B, and C. The resultant load on the part AB is the force

P, and the resultant load on the part BC is the force Q. First neglect the

load acting on the part BC. The part BC is then under the action of two
forces only, viz. the reactions at B and C, and these forces must balance

one another, and will therefore act in opposite directions along the straight

line BC. The truss as a whole is now under the action of three forces,

viz. the force P, the reaction T^ at C, which acts along GB, and the

reaction at A. Since these three forces are in equilibrium, and since

the lines of action of two of them, T, and P, meet at m, therefore the line

of action of the third one, Sj, must be Am. By means of the triangle of

forces the magnitudes of Si and Ti can be determined.

Next neglect the load on the partAB, and consider the load Q on the part

BC. This load Q will cause reactions S^ and Tg at A and B respectively,

and these reactions may be found in the same way as Si and Tj were

found.

When both loads P and Q act, it is evident that the reaction at A will

be the resultant of Sj and Sg, and the reaction at B will be the resultant

of Tj and Tg,

The reaction of the part AB on the part GE at B will be the force

which will balance the force Q and the reaction at C, and the reaction of

the part CB on the part AB at B will bo the force which will balance the

force P and the reaction at A. These two reactions wall, of course, be

equal and opposite.

When the truss is symmetrical about a vertical centre line, and Is

symmetrically loaded, the reactions at.B willhe horizontal, and the line

of action of the reaction at A wiU be the line joining A with the jioint cd

intersection of the line of action,of the resultant load on rlit! half truss

AB with the horizontal line through B. The direction of the reaction at

C is found in like manner.
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Exercises XII.

1~8. Draw the stress diagrams for the structures shown in Pig. 2G9. Measure
t!ie results, and either tabulate them or mark them on the frame diagram. Indi-

cate on the frame d,iagram the members which are in compression by lining them
in with thick lines. In addition to determining the results graphically, they
should also be found by calculation.

1. Span = 24 feet. The loads are as follows; AB = BF=250 lbs,,

BO =CD=DE=600 lbs.

2. Span = 80 feet. The dead loads are as follows: AB=:GH= 400 lbs.,

BO =£CD= DE= BF=PG= 800 lbs. The wind pressure is to be taken at 6000 lbs.,

acting at right angles to, and distributed over, the sloping surface as follows

;

2000 lbs. at each of tho intermediate joints, and 1000 lbs. at the top and bottom
joints. The reactions at the supports due to the wind pressure are to be assumed
to be parallel. Tabulate the stresses due to (1) dead load, (2) wind on left,

(3) wind on right, and state also the maximum stress in each bar.

8. Span =3 48 feet. The loads are as follows : AB=GH = 500 lbs,, each of the
other loads =1000 lbs.

4. A wall crane. The bar BO Is horizontal, and 10 feet long. The bar BD
bisects the anp;le ABO, and is 3 feet 9 inches long. The distance AB is 8
feet. The chain passes over a puUoy at 0, as shown, and supports a weightW of
1000 lbs.

5. Pent roof truss projecting 18 feet from the wall. Each load shown is 1000 lbs.

_
6. Warren girder of 40 feet span. Case (o), There is a load of 10 tons at the

joint BJKLD. Case (b). There is a load of 8 tons at the joint BJKLD, and a
load of 6 tons at the joint CNOPB, Case (c). There is a load of 6 tons at each
of the joints in the bottom, boom,

7. Span, 48 feet. Load AB^load GH=3 tons. Each of the other loads
shown=6 tons,

8. Curb roof truss of 48 feet span. The loads AB and JK are each 600 lbs.,
and each of the other IpadS shown is 1000 lbs. Case (a). Take the truss as
shown. Case {&), Suppose the hax.LS to be removed, and that the truss is

converted into a three-mng'Od arch, as explained in Art. 182. Determine the
reactions^ at the hinges, anja Ihe stresses in the various members,

9. A jointed frame,
_
shown tn jFig. 270, is subjected to six forces, acting one

at each joint. The directions of^ the forces bisect the angles marked, and the
magnitudes of three of thein are given in the sketch. Find, graphically or other-
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and draw bending moment and shear diagiiams for this frame,
two riders weighs 150 lbs,, 30 lbs. of the weight of each rider
be home at the driving axhj centres. Regarding the frame as
draw a coraplute force diagram for it.

each of the
assumed to

e structure,

[B.E.]
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wise, the magnitudes of the unknown forces X, Y, Z, and deduce the force in
the member AB. [U.L.]

\
m

\[p [0 [M ^

—
M

10 . In the truss shown (Fig, 271), AB is a beam member. The links AE, EG,
GF, and FB are equal, and the links EO and FD connect the Joints E and F to
the points 0 and D of the beam member. The reaction at B is vertical. Di-aw
to scale, diagrams of bending moment and shear force for the beam member
AB. fU.L.]

11. The span
of the frame given
in Fig. 272 is 57
feet, the depth
LM is 7 feet, and
the distance NO is tt,-,.,

1*8 feet. There
are loads of 2 tons at P, 4 tons at 0, and 2 tons at M. Find the stresses in the
members. [U.L.]

12. A truss is as shown in Fig.
"""

Each top joint carries a load

the top boom is divided into

segments. The length of the horizon-

tal tie-rod is half the span. Deter-
mine the ratio of depth to span so 073
that the tension in all the tie-rods

«•• •

shall be the same, and verify your result by drawing a force diagram. [U.L.]
13. The sketch (Fig. 274) shows the frame of a tandem bicycle. Calculate

:• 273.

^ and iW IW IW jW jW
equal - ^nT V

"J
'

rizon-

Deter-
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14. A Bollman truss is shown in Fig. 275. The vertical struts divide the
span into six etpial parts. The truss carries a uniformly distributed load of
1 ton per foot run, and
a single load of 10 ton.s U-.—
at 20 feet from tbe left- Al B C
hand support. Find the
forces, in tons, in the
various members. Note
that the sloping m(im-
bers have joints at their
ends only. The top
member is really a
beam, but in working this problem the beam may be as.sumed to have pin joints .

at the junctions with the vertical struts.

^
^ Bollman truss, if ti=number of equal panels in the truss,

ct-=depth of the truss, Z=span, and w=intensity of the uniformly distributed

load, then the horizontal stress in the top member is [U.L.]

eiirht
vertical struts divide the span intoeight equal iwrts. 1 here is a load of 8 tons at the top of each vertical strut. Find

Fig. 276.



composed. Tlie framewc
which span from suppoi
the imrlim, longitudinal

beams which run from
truss to truss along the
roof; (3) the rafters, sash
bat's, etc,, which rest

upon the purlins, and to

which the covering pro-

per is fixed
; (4) the mnd

ties, which prevent longi-

tudinal distortion of the

roof by the wind.

In Fig. 277, which
shows, in oblique projec-

tion, the framing of a
roof, TT ... are the
main trusses or princi-

pals, PP . . . the pur- 277.

lins, WW the wind ties, and C the roof covering.
‘ EE is called the

rituje of the roof, and the low^er longitudinal edges are called the eaves.
184. Iron Eoof Trusses.—-Eoof trusses may be made of wood, but

iron or steel principals are superior in nearly every respect for spans of
any considerable size. Figs. 278-290 represent the more common types
of iron or steel roof trusses. They are all composed of the following
rnfiTnliftra nr norfa . / 1 \ _i -1- . .. ji 1

®

M
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inomliers of a truss should either meet at a point or form a triangle.

All members of the truss should cither be simple tics or struts. Struts

should bo as short as jtossiblo, and as many members as possible should

be in tension.

The feet of the; i)rincipal rafters rest in shoes, which rest in turn upon
nmll plates, bolted to the walls or other al)ixtments.

185. Forms of Roof Trusses.—Figs. 278-283 represent six of the

commoner forms of *' King-rod ” and “ Queen-rod ” trusses. The member
depending from the apex at the junction of the principal rafters is called

the Icing-rod, while the other ver-

tical suspension rods are called

qtieen-rods.

Kg.^ 378 shows tho simptet
form or iron roof truss. The prin-

cipal rafters are only su])ported at their ends, and a single king-rod with the

tie rod complete the framing. This design may be used for spans up to

15 feet. Tn Fig. 279 each princijial rafter is divided into two equal

panels by a scicondary brace (a strut), and the span may bo increased to

about 25 feet.

The design shown in Fig, 280 may bo used for spans up to 30 feet.

By dividing each principal rafter into three equal panels, and adding

two queen-rods in addition to the king-rod, as shown in Fig. 281, the
span may be from 35 feet to 46 feet.

The design shown in Fig. 282 is sometimes called an English truss.
The principal rafters

are each divided into

four equal panels. This \ /
truss may be used for

spans up to 60 feet.
|

\| \1/
|

The saw-tooth or

MJorfeAup is shown „
in Fig. 283, This form
of truss is extensively used for the roofs of weaving sheds and the like.
The slopes of the rafters are unequal, the covering on the lesser slope
being slates or tiles, while that on the

^

greater slope is glass to light the in-

terior. The truss shown may be used \
for spans of from ,20 feet to 35 feet. \

King and queen-rOd root trusses, \ \
having vertical members, are very
suitable for hipped , ?roofs, They 283.

have the disadvanta^ that the long braces are struts and the short
ones ties. This is someiames obviated by sloping the diagonals in the
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other direction, as sliown in Eig. 284. The verticals, except the centre
one then become struts, and the diagonals ties.

Fra. 284. .PiG, 285.

_ Figs. 285-288 show the more frequent types of trussed rafter roofs.
The principal rafters are supported by trusses, consisting of struts and

the struts, which are

usually perpendicular -
to the rafters, are

^

short. For a given span and a given system of
probably makes a lighter roof than any other tyf

The design shown in Fig. 285 is

used for small spans up to, say, 20 or ^30 feet. The design shown in Fig.
286 may be used for spans up to 40
feet, and that in Fig. 287 up to
45 feet. The truss shown in Fig, 288
is known as the French, Belgian, or Finh truss.
design for trusses of from 40 to 60 feet span. I

shown dotted, is often introduci
Twn tvnnci +wt
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shown in Fig. 289 has curved rafters, and may have a span of from 20

to -iO fc(‘t. The sickle-shaped truss, showm in Fig. 290, is of a type

suitable for large .spans of, say, from 40 to 100 feet.

For very large spauvS, arched principals are iised. The abutments

must tlnni bo made strfuig (.mougli to carry the thrust of the arch. The

span may, liowever, be divided, and combinations of simple roof trusse.s

used.

186. Eoof Coverings.

—

^mr, iu sheets, about ...b-inch thick, laid upon

boarding -witli wooden rolls, forms a light covering. The joints must be

arrangcid to allow free expansion and contraction of the metal with

cliangcis of temperature, while still remaining w'ater-tight. The sheets

are 7 to 8 feet long and about 3 feet wdde.

CnrrwjatpA iron is much used as a roof covering. For small spans,

not exceeding 10 feet, it may be simply arched, and used without any
main trnsst^s, the free imds being held in at intervals by tie rods, or

simply .screwed to tind)cr wall plates. On larger .spans curved angle or

tee-irouH are introduced as rafters to give support and stiffness. If, how-
ever, the span exceeds 10 feet, a prf>perly designed roof truss should be
used ; the sheets of corrugated iron are then laid upon juirlims. The
sheets of corrugated iron vary from (> to 8 feet in length, 2 to 3 feet in

width, and from 24 to 16 T.K.W.C. thick (0’022 to 0'0C4 inch). The
corrugations vary in width from 3 to 6 inches centre to centre, the depth

being about one-fourth of the width.

The s];)an of the .slieots dojiends upon the depth of the corrugations,

the thickness of the metal, and the weight per square foot to be carried.

The following formula may be used. L = where L - .span in feet,

t ~ thickness of metal in inches, d = depth of corrugations in inches, and
w weight per square foot to he supported.

The sheets may bo laid directly on the purlins, the corrugations

following the slope of the roof. The lap of the horizontal joints should
not he less than 6 inches, and these joints .should come directly over the

purlins. 'VSTiere two sheets join along their sides, at least one complete
corrugation should overlap, and the two sheets .should be fastened to-

gether by screw bolts or rivets pitched about 9 inches apart.

If the purlins are of wood, the corrugated iron may bo fastened to

them directly by means of screws or by stirrup bolts, as shown at (b),

Fig. 291, If angle iron purlins are employed, the sheets are best fixed

by means of hook bolts, as shown at (a), Fig. 291. These liook bolts are
commonly about inch in diameter. All bolts and rivets should pass
through the ridges of the corrugations, and should he provided with
wa.shers to prevent leakage. ' A flat bar, or SQm6time.s an angle bar, is

often introduced at the eaves, running along the length of tlic roof, and
hold, down by the lowest row of bolts. This prevents the wind from
tearing the^ corrugated • iron' from the roof should it get beneath the
sheets. This wind tie is shown at (6), Fig. 291.

Large slates (Duchess, 24 inches x 12 inches, or other sizes) are often
used for the covering of iron roof& These may be laid trpon boarding
and nailed in the usual way, or light angle iron purlins may he fixed to the
rafters, and on these the slates are laid and tlion Avired on, as .shown at
(e), Fig. 291. These %ngle iron purlins may be about 1| in. x 1| in, x ^ in.
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wlieii tlie distance between the rafters does not exceed 8 feet, or
2 in. X 2 in. x in. when that distance is increased to 10 feet.

Tiles of great variety are nsed for roof coverings. They are sup-
ported in the same way as slates. Tiles are heavy, and they require the
roof to be of high pitch.

Glass is largely used as a roof covering. Many roofs have glass sky-
lights, while some are entirely covered by glass. The shorter slope of a
.saw-tooth roof and many railway station roofs have glass covering.s. The

glass may be laid in sash bars of wood or tee-iron, with putty. Iron sash

bars, however, expand and contract more than the glass with changes of

temperature, and the putty is liable to crack. Hence many systems of

glazing without putty have been introduc'ed.

Glass sheets suitable for roofing vary in width from 12 to 20 inches,

and in thickness from | inch to inch. They are made in lengths up to

6 feet. About 3 inches of lap should be allowed between tw(j .shcet.^.

Tee-iron sash bars vary from 1 ,inch to 2 finches in depth, and from to

inch in thickness.
‘

'

187. Details of Roof Trusses,—^^he various ])arts of roof trusses

should be made
„

plain and simple as possible. Forging and welding
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various members intersect at a point. This is a condition -which is too

often neglected in practice.

Sections of rafters are shown in the tipper part of Fig. 292. A toe

section is the most common form for small roofs. Double angles and

built up sections are used for larger spans. A rafter must be of a form

enabling it to act as a s-tiut, arid at the same time affording convenient

attachment for the secbndai^ memhors and purlins.

At the ridge or apex tlm r0ers are united by double gussets, which
also form the fastening fpr the braces which are attached there. The
trasses should be tied together at.tiie apex, either by the purlins placed
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Sections of Ties.

TieBar.

Tie between Trusses.

QueenBoU.

Foot ofQueenBoU.

^Ftfe in TieBoA for QueenBoU.

nwead.

Left handed thread



Fig. 295.

truss rests upon a wall a stone templet is provided for the shoe to rest

upon
;
Lewis or rag bolts let in with lead form a suitable holding. When

the shoe is to slide, slotted holes are provided for the bolts. Sliding

shoes often rest upon sole plates.

Ties and their connections are shown in Fig. 294. Flat bars placed

with their widths in the plane of the truss form good ties. Round, bars

may look neater, but they are more costly than flat bars as ties, especially

for large sizes. -Angle and toe bars work in well for ties of large section.

With fiats, angles, etc., the joints are usually made by means of gussets

with rivets or bolts. In the case of round tie bars, forked ends or eyes

may be forged on them to make pin joints. Another practice is to screw

the ends of round tie bars, and the ends are sometimes staved up before

screwing in order to save weight. Adjustment, may be obtained by

making a cottered' joint, or by .cutting the rod and introducing a turn-

buckle. With good '(vorkmansMp suoh' adjustment should be un necessary.

At the foot of the king-rod a tie between ^the trasses is often introduced;

this prevents lateral movement of thfe ?tie;rod'S.

Fig. 295 shows cross sections .and fixings for purlins.

there, or by a special ridge member. Examples of ridge joints and

methods of connecting the secondary braces to the rafters are shown in

Fig. 292.

Furtlier detail illustrations, mainly relating to struts and shoes, are

given in Fig. 293, Struts are usually angles or tees, or combinations of

them. A simple and efficient strut is formed of two flat Inrs, or two

bars of other
_
suitable section, held apart by distance pieces suitably

si)aced. Such a strut must be arranged to carry the total load upon it

while acting as a whole, and must also he strong enough between the dis-

tance pieces to resist local buckling. The attachment of struts to the rafters

i.s usually by means of gussets, but they may also be attaclu'd directly.

Angles, tees, etc., are sometimes joggled at the ends to suit the rafter.

Shoos may he made of cast-iron, but built up shoes from rolled

sections are common. They must hold the end of the rafter firmly,

allow convenient attachment for the tie bar, and afford suitable bearing

for the truss. The axes of the tie bar and rafter should meet at a point

on the line of the vertical reaction from the wall or support. When the

DESIGN OF STRUCTURES
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S('vi!ral fftrins of joints f<3i- jnirlius art; shown in Pig. ‘296.

Two methods of introducing longitudinal wind bracing are shown in

188.

Weight of Roof Coverings.—For the purpose of estimating

approximately the weight to bo carried by a roof truss, the particulars

given in the following table may be used. The weights given are in

pounds per square foot of covered area.

IJ Slates, large

34 „ medium
Sheet zinc .

Corrugated
Tiles, plain

Pantiles 12 Boarding, 1 inch thick

189, Pitch and Slope of a Roof.—The ratio of the rise to the span
is called the pitch of a roof. If the roof is symmetrical and the slope or

inclination is denoted by $, then tan 0 «= rise + half the span. The min-
imum slopie for a roof depends on the nature of the covering, and is roughly
5“ for zinc,. 11“ for corrupted iron, 22“ for largo slates, 26“ for pantiles

and medium sized 30“ for siriall slates, and 45“ for plain tiles.

190. Procedure In iPosdgning- a Roof.—The method of procedure
in getting out the designs’ fot' a roof may now be briefly given.

Decide upon the type of truss^ This will depend upon the various
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oonditions whicli tlie roof lias to satisfy, the type of Imilding it has to

cover, the S])aii, whether the ends are to he hipped or not, etn.

Settle the type of roof covering, and arrange for a suitable snpi)ort

for it,, seeing that the proposed distance apart of the purlins works in

with the secondary bracing of the truss chosen.

The pitch should next be fixed. This depends largely on the type of

covering to be used.

Decide wliether the tie rod is to be cambered or not. Tins depends
upon the conditions of the case, whether the roof is to support a ceiling,

whether head room is a necessity, etc. The advantages of a camber are,

shorter struts, greater head room, and better appearance. Speaking
generally, it is better to give the tie rod a small camber if possible.

Draw an outline diagram of the truss. The proportions should please

the eye.

Fix the distance apart of the principals. This Avill depend to some
extent on the type of roof covering, purlins, etc. Usually it may be

made from one-eighth to one-fourth of the span. The larger the interval

chosen, the larger the ratio of the least lateral dimension of the struts to

their length, and they will therefore be lighter in proportion to their

strength. Too large a pitch of principals involves heavy purlins and
increases the cost.

Find the loadsupon the truss. These are; (1) The weight of the

principal. (2) The weight of the covering. (3) The weight of snow upon
the roof. (4) The weight of the ceiling, if any, carried by the trusses.

(1) is often neglected, but in large roofs it should be allowed for. (2)

• can be approximately estimated (see table, p. 210), Allowance should

also be made for the weight of the purlins, rafters, etc. (3) can be

taken at about 6 lbs, per square foot of area covered in the British Isles.

(4) must be estimated approximately, the weight being carried from the

lower joints of the roof. For wind pressure, see Arts. 179 and 180,

p. 194.

. The loads should now be divided up, and the resxilting forces at each

of the joints found. It is well to keep the loads at the joints due to the

wind pressure separate from the others.

Choose next the methods of support for the ends of the trusses.

Usually one end is left free, to allow the principal to expand and contract

with changes of temperature. The reaction at this end is then assumed

to be vertical.

Find the stresses in the members, either graphically or analytically,

or preferably by both methods. The dead load stresses should be found,

the stresses with the wind pressure on one side and then on the other,

and the tlirei' sets of figures .should be coiubiiicd, as shown on p. "I9fi.

of the various members can now be ascertained b\ the

ordinary rnle>. It is safer to assume that all the strut.s are hinged at tin;

endsi^^^^^^^ abo that members in which the stress reverse.-^ are ('apnblo of

m the I'ON'O'sed load, although it may bo smaller than the

norma^^^^ Tse a low’ working stress for these memhers. Use also

a low stress for membovs whicb are welded.

Design the joints. Arrange sufl0.cient rivets, bolt.s, or pins to take

the stress from ibe bars on to the gussets Where a gusset conncct.s one

or more ties or struts to a ra/tci-, bear in mind that the total shearing
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force ou the rivets connecting the giiaset to the rafter is the resultant

of tfie fon-es acting along the various members, other tluiu the I'lifter

itself, connccteil to the gusset.

Design the shoo and whatever other details of the truss ha-\'o not

already been arrangtsl for.

Fix the size of the purlins, treating them as beams carrying their

load from rafter to rafter, and arrange for suitable joints in tlieiu.

Settle any further details of the covering which may be necessary.

Arrange for suitable wind ties if it is deemed prudent to lit these.

Make complete working drawings of the whole roof, seeing that

all the jtarts go together properly, can be easily made, and are in every

way suitablo for the functions which they have to perform.

Exercises XIII.

In the. foUvxoing exerenes the various memhers must le proportioned
_

according

to the loads v’hicJi fhti/ have to carry, and working dimdngs of the various details

should he made.

Span, 20 feet. Rise at centre,

Assume that the truss has to
1. Design for a king-rod roof truss (Fig. !

5 feet. Distance between principals, 6 feet,

support a total load of 2 tons per “ square” acting verti-

cally. (A “square” is 100 square feet of area covered.)

The following sections are to be used.—Rafters, tee;

struts, angle
;

ties, ilat. Material to be ndld steel, and
the joints to be riveted.

2. Design a roof suitable for covering a shed with
open ends. The span between the supports is 35 feet,

and the trusses are to be placed 8 feet apart. The principal rafters have a
rise of 10 feet, and the tie bar has a camber of 2 feet. The form of truss to
housed is .shown in Fig 299, The covering is to be corrugated iron on angle iron
purlins. The dead weight upon the roof may be assumed in the first instance
to be 10 lbs, per square foot. Snow, 6 lbs. per square foot, and horizontal wind
pressure 50 lbs. per square foot. Lateral wind bracing is to be provided.
Rolled steel sections and riveted joints are to be used.

Fig, 298.

1
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28 lbs. per square foot. One end of the truss ia to be firmly bolted down, and
the other to be capable of sliding. Eolled steel sections only to be used, with
riveted joints.

5. Design a queen-rod roof truss with vertical struts of the form and
dimensions shown in Fig. 301. Distance apart of principals, 10 feet. Take the
total dead weight of the roof as 20 lbs. per
square foot, horizontal wind pressure as 50
lbs. per square foot, and snow as 6 lbs. per /
square foot. One end of the truss to be free A "X xlV-.
to slide. The struts to he formed of flats, .---t/ 1/ 1/^
with distance pieces. The ties also to be fr

~~~
formed of flats.

ou —>1

6. Design -for a sicMe-sbaped roof truss Fia. 301.

of the form shown in Fig. 290, p. 203. The
span is 100 feet. The total riise is 25 feet, and the bottom chord has a rise of
10 feet. There are eight equal segments in the top chord, and seven equal
segments in the bottom chord. The trusses are 20 feet apart. Take the dead
load as 18 lbs. per square foot. Snow, 6 lbs, per square foot. Horizontal wind
pressure, 50 lbs. per square foot. One end <if the truss is bolted down, and
the other slides.

_

Use rolled steel sections only.
7. The principals of a steel roof for a dock shed are of the form sketched in

Fig. 302. The rafters are

equally divided at the joints,
JL

and a vertical load of 1 j
tons acta at each top joint.

The principals are sup- . —W jSr—

i

ported on girders 8 inches
. jkif/X / "iS\ /AtL

wide. Draw the force dia- \/ j \J \/
gram for the roof, and a ^ ^

tabulate your results, dis- ^ ~ “^7

tinguishiug between ties r

and struts. Design also «n«>
the joints at A and B.

Fid. 302.

Choose your own stresses, and draw the details one-quarter full size. [U.L.]

8. The tie rod of a roof truss is connected to the foot by two clip plates, and
by a cotter joint with two gibs. The diameter of the tie rod is inches.

Design this joint for equal
strength throughout. The

j

...

type of joint is indicated in
)

(' — A , T ZD
\

the sketch (Fig. 803). Draw,
) J ^ i

full size, plan and elevation,
j

-t—g

and any necessary sections. —
The drawings must be fully

: Fig. 303.
dimensioned, and finished

off neatly in pencil. All calculations must be fully worked out, and must be
handed in with your drawings, [U.L.]



CHAPTER XIV

DESIGN OF STRUCTURES—PLATE GIRDERS

191. Beams and Girders.—In (Jhaptor VII. it iias been .shown that

the straining actions at any cross .section of a beam, due to any .sy.stcm of

vertical loading upon it, may be resolved into two di.stinct effects, namely,

a bending action and a shearing action. It has also been shown that, for

ecorK)my, beams are made with a cross section shaped like the letter I, in

which case the toi) and bottom flanges may, for jnactical purpose.s, be

assumed tc» resist tlie bending moment, whilst the web takes the shearing

force.

Tlie concentration of the material into a web and flanges may be

obtained by using a rolled steel joist or channel, and these - may be

combined with plates for stronger sections. Again, separate plates may
bo used for the web and flanges, which are united by angles. Another

form is obtained by substituting diagonal bracing or lattice work of bars

for the plate web.

192. Beams of Rolled Joists or Channels and Plates.—The most

common form of beam in use for short span.s is the rolled steel joist

Fia. 304.

shown at (a), Fig. 304. The standard sections for rolled steel joi.sts are
numerous, and range from 3 inches deep by 1-| inches wide, weighing
4 lbs, per foot of length, to 24 inches deep by 7^ inches wide, weighing
100 lbs. per foot of len^h. These joists can generally be obtained from
stock in lengths of every foot from 10 feet to 40 feet for ordinary sections.
For convenience in rolling, the flanges are tapered in section, as shown,
the angle between the inside of the flange and the web being 98°. Should
the load require it, two or more of these joists may be placed side by
side, and they may also be strengthened by having plates riveted to their
flanges, a.s shown at'(i), i[ri!), and (e), Fig. .304. A beam, formed of two
channels connected by plates, is shown, at («),- Fig. 304.

193. Oonnectioiis between Rolled Joists.—When two or more joists
are used side by side, without connecting flange plates, cast-iron separalors,

. c -1 1
' ' < -
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a concentrated load occurs on the beam.

A joint between two lengths of joists is made n :
—

by means of fish plates, as shown in Eig. 306, ^ F ^
and if there is any bending moment where this

~

joint is made, cover straps on the flanges should

be added, as shown by the dotted lines. c =
Angle connections between horizontal joists ^

at right angles to one another are shown in mtmmma irnrnm

l^ig. 307. Angle connections between horizontal
^Qg

joists and joists used as columns are shown in

Figs. 308 and 309 . In these various connections, where the load on one
beam is transmitted to another, or to a column, through rivets or bolts.

care must be taken that the rivet or bolt section is sufficient to transmit

the load. Many of these details are, however, standardised by the manu-

facturers, and provided that tfle- standard connections a

carrying the loads which will come upon fthem, they si

in preference to specially designed ones. : 'f' i'
:

'

194, Parallel Girders and Girders,, af ,
Variable Dej

(jirJer/t, iis their name implies, have tlieir flanges parallel I
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and they are therefore of constant depth throughout their length. Hog-

haeb'tf ffinkrt) have a curved top boom, and fish-bellied girders have a

curved bottom boom, as shown in Fig. 310, The effect of curving one

boom is to incrcas(3 the depth of the girder towards the centre, where the

bending moment is greatest. This permits of the cross section of the

booms biuiig kept more nearly con.stant. Except under special circum-

stances, it is generally better and cheaper to use a parallel girder than
one of variable depth, tlie cro.ss section of the flanges being varied to

a])proximately suit the bending moment.. Fish-bellied girders are usually

adopted for ovta’liead travellers of largo span. Hog-backed girders are

frecpiently used for large span railway bridges.

195. Plate Girders.—When the depth of a girder exceeds a foot, but
is loss than the limiting depth for a rolled joist, it is frequently more
economical to build it up of plates

and angles rather than use a rolled “taSSJiBSSS*"
joist, and when the depth exceeds ill I H
the limiting depth for rolled joists, "I* • I"

the -built up girder must be used. I
I

Types of built up plate girders are I I

shown in Figs. IHl and 312. For I
|

smaller spans and lighter loads, one I
I

web plate and one or two flange I i
plates may be sufllcient, while for I I

larger spans and Imavier loads two, l|| I
ll

or even three, web plates and many ^ 8l

more than one web plate is used, as fTTr sn fw m*?

in Fig. 312, the girder is called a
box girder. The box type is more suitable for large than for small

girders, and it is better only to employ this type when there is sufficient

room inside for the girder to be properly painted, and so protected from
corrosion. Care must also be taken that the girder can he properly riveted

up, a not altogether unnecessary caution.

The depth of Ihe girder must never be less than l'20th of the span.
For economy, the depth should be 1-1 2th to 1-lOtli of the span. The
breadth varies from l.t20th to, l-50th of the span, depending on the
amount of lateral support the girder gets. If there is uo lateral support,
tlie breadth should noi 'be less than l-20th of the span, whilst if it is

well supported laterally, hay by dosely spaced cross girders, this dimen-
sion might bo diminished to,l-40th or l-50th of the span.
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.196. Booms or Flanges.—The booms, or flanges, of built up girders

fu-e almost invariably made up of fiats* or plates. These are united to

O ^ Q ©~
.9..

Q 0

_o_ '.

9
~. d © © b o ©J Q o o

Q Q'.Q Q 0/0

FiO. 313.

the 'web plates by angles, which of course act with the plates in resisting

the bending moments.

The boom plates are not all of the same length, but are curtailed as

the bending moment falls off. The usual graphical method for determin-

ing the length of the flange plates is shown in Fig. 331, p. 227. Care

should be taken that

the angles and plates are

of convenient lengths.

When there are many
—

—

plates in a boom, the Fio. 314.

joints in them should be

grouped, where possible, under one cover, as shown in Fig. 313. It is,

however, sometimes convenient to make one flange plate form the cover

for the joint of another, as shown in Fig. 314.

Joints in the flange angles are made with round hack covers, and are

arranged as shown in Fig. 315.

In the type of grouped joint shown in Fig. 313, a single cover is used

and is placed on the outside, hence the rivets in the joint, although they

n

Q QZQ> Q>
{

pass through several plates, are' only in single shear. A.n underneath

flange plate or angle must not be regarded as forming a cover to the join 1

in a plate above it, for it has its owp ' load, tp- carry, and cannot act as a

flange plato and also as a cover at the same time.

* are n.-irrow plates, rolled to definite widths, usually noi exceeding
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Viirionw iufja.nH are adopted to place the rivets in a flan^fo joint in

double shear. I’he rivets wliicli do not pass tliruugli the llange angles

may be [)lac(;d in double shear by the addition of covers underneath the

,

flange ])lates, as shown in Fig. 316. The addition of round back covers

to the angles, as shown in Fig. 317, will place the remainder of the

rivets in double shear, but these angle covers cannot act as just stated

Cover.—N Cover.—s _ ^ ^ . y-. ^

and also act as covers to a joint in the flange angles at the same time.

The underneath cover may extend rigid across the flange, as shown in

Fig. 318, which is a soc.tion of the flange in the neighbourhood of the

joint. This, however, prevents the flange angles being placed directly

on tlio flange plates, and where the covers do not occur, packing pieces

have to be introduced, as shown in Fig. 319. These packing pieces

cannot, however, be counted as forming part of the flange section, at any
rate in the neighbourhood of a joint.

The thickness of each flange plate should not be less than | inch or

greater than | inch. Four | inch plates, or three I inch plates, make a
much better flange than two | inch plates, supposing the required flange

thickness to be 1| inches.

197. Web Plat0S.~-The web in small plate girders consists of a
single plate suitably stiffened to resist the shearing forces. Except for

very small and unim- ^ ^ ^ ^ ^
portant girders, it is

not desirable to make * * * *i* ** *

the web plate less than • •
;

« •

f inch thick. On the
; i

other liand, the thick-
• •

I

• • m

ness of a single web • •
| ^

plate should in general .1

not exceed | inch,
• •

j

• • ^
When more than • • I • • Padmg. i

one plate is required —i ®
to form the web, the .

different plates are ^

^

—
united by butt joints —— S"
with double cover

straps, as in Fig. 320,

which sliows a vertical joint in a web. Sometimes stiffeners are utilised
to do duty as covers, a* shown in Fig. 321. This figure also shows how a
change in the thickne® of. to Web plate may bo effected. Such changes,
made with the idea of prd]p^i'6nihg the thickness of the web to the shear
stresses, are only adv^^bl© in large and important girders, or when
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many of a type are required. It is often more economical to liave tlie

same web tliickuess througliout, especially in small spans, wliore the web
plate can be obtained in one piece, than to use plates of ditfcrent thickness

and special joints.

198. Web Stiffeners,—^To prevent buckling and twisting it is neces-

sary to give web plates lateral support. This is done by riveting to

them at intervals angle- or tee-section bars placed, vertically. Fig, 322

Fio. 322,

shows examples of stifFeners applied to single web girders. When the

stiffeners are straight and not set in to meet the web plate, intermediate

packing pieces are introduced. Stiffeners

formed of plates and angles are shown on ^
the main girders in Figs. 328 and 329,

[

p. 223. S

Box girders should have diaphragm
plates fitted between the webs at intervals,

as shown in Fig. 323, This ensures that

the cross section of the girder remains

rectangular, and that all the parts bend
together. Manholes must be provided so

that the space enclosed may be got at.

The distance app,rt of the stiffeners is

determined by the shearing force upon the

web. it^ is necessary, however, to place

a stiffener wherever a local load occurs

upon the girder.

No satisfactory theory for the spacing

of the web stiffeners has yet been formu-

lated, and the rules which will be given

presently are almost entirely empirical. In
Chapter IX. it was shown that a shear

stress in one direction must be accompanied
by another of the same intensity, but in ,a

direction at right angles to that of the first.

\ecUon



ill compression along one diagonal, and in tension along tlie other. Since the

thin plate is innch less able to withstand the crumpling tendency of the

compression than the direct tension, it is nsnal to consider the web as if

composi‘(l of a number of parallel strips inclined at 45° terminated either

by the stitfenors or by the flange angles, and acting as struts- This con-

sideration establishes a relation between the thickness of the web and its

unsupported length. The shear force at any one section is assumed to be

uniformly distributed over the. depth of the web, which is very nearly

correct (see Fig. 203, p, 150). This determines the shearing stress

and the diagonal compressive stress, which is equal to it, and hence the

load upon the strut. The foregoing reasoning leads to the construction

of fcrinuhe such as are given below. It will be observed that these

fonunhe are of the form of the Kankine-Gordon formula for struts.

S = safe shearing force in tons per inch of depth at any section,

found by dividing the total shearing force, in tons, at the

section, by the over-all depth of the web plate there in

inches.

t — thickne.HS of web plate in inches

(I = horizontal distance between centre lines of stiffeners, or vertical

distance between centre lines of rivets in the boom angles, in

inches, whichever is least.

Another rule, due to Mr. Theodore Cooper, reduces to the following,

Trm
_

\
"

'

'

3000i(2

In any case, S must not exceed it
Preferably proceed graphically, as shown in Fig. 330, p, 226. Draw

the shear per inch of depth diagram found as above. Plot on this lines

parallel to the datum line representing the possible shear per inch of

depth of I inch, inch, ^ inch, etc., jdates, corresponding to the pro-

posed spacing of the stiffeners, as found by one of the formula} given
above. An examination of such a diagram will show, either the limits

between which a given thickness of web plate may be used with a given
spacing of the stiffeners, or the limits between which a given spacing of
the stiffeners may be used for a given thickness of web plate. This
matter is further considered in connection -with the worked example,
Art. 204, p. 223.

199. Riveting of Plate Girders.—For ordinary everyday work
punched holes, -jy inch greater in diameter than the rivets, are usually
specified. In first-class work the holes are punched inch to ^ inch
smaller than the rivets, and reamered to size after the work is bolted
together. The bolts are then removed, and the burrs formed by the
reamer taken off, after which the work is riveted up.

The riveting in the Joints qf the plates in the booms must be designed
to carry the tensioh or compression which exists in the plates they unite.
The riveting through

, the angles connecting the boom plates to the web

APPLIEB MECHANICS
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plate iri deteriniued by the shearing forces tending to slide the boom over

the web. Where the shearing force is small, the pitch may be large, but
near the ends of the girder, or where the shearing force is large, closer

riveting must be adopted. It is sometimes even neee.ssary to adopt zig-

zag riveting, or larger rivets at places where the shearing force becomes
very great. It is not economical, however, to make many changes

;
two

different diameters or two different pitches may be regarded as the limit.

The riveting in the vertical joints of the web itself must be made
capable of withstanding not only the shearing forces in the web, but also

the stress in the web plate, due to the bendingmoment, for although the

boom may be considered as carrying the bending moment, there is also

a bending stress in the web. In fact, the stress in the outer fibres of

the web is the same as that in the boom.
Roughly, the size of the rivets may be as follows. For plates under

f inch thick, f inch rivets. For plates from |- inch to ^ inch thick,

|- inch rivets. For plates from inch to f inch thick, |- inch rivets.

In each case the hole is inch larger than the rivet. These are about

the usual proportions for punched work, and will serve as a guide.

When many plates are to be united, larger rivets should be used.

The pitch of the rivets should not he less than three diameters, or

greater than sixteen times the thickness of the thinnest outside plate.

Unless it is absolutely impossible, simple pitches 3, 3|', 4, 4|, 6, or

6 inches should be adopted. It is not advisable to go above 6 inches if

the work is exposed to the weather.

The longitudinal pitch is easiest determined graphically. Since the

shear stress in the web is uniformly distributed, or practically so, over

its depth, and the shear in two directions at right angles to one another

is the same, the shearing force per inch-run, which the longitudinal rows

of rivets must carry, is equal at any point to the shearing force per inch

of depth there. The shear per inch of depth diagram, already referred

to (Fig. 330, p. 226), can therefore be used to determine the pitch of the

longitudinal riveting. Let P be the safe load on a single rivet, and p
the pitch of the row, then V/pis the shear per inch of depth or length it

will safely carry. Set this up on the diagram as a line parallel to the

base line for a number of different pitches. The points of intersection of

these horizontal lines with the shear per inch of depth diagram deter-

mine the points to w-hich each pitch must extend. This question is

further considered in connection with the worked example. Article 204,

p. 223.

200, Ends of Girders—^Bearings for Girders.—The ends of girders

arc specially formed to carry the reactions. Special web stiffiming is

provided to spread the load over the depth of the web jjlato. Examples

are shown in Figs. 324 and 325. When the end of a girder is ciirricd

on a wall, a stone templet is built into the wall to give a strung support

for the girder. Between the stone templet and the girder a Imir fdt or

sheet lead packing is placed, in order that the pressure Ijctwccn the giwloi'

and the stone may be properly distribute4* It is better to limit the

length of the bearing surface by riveting culled a bolKier

plaie, to the under side of the bottofipL-fisiug&i as showji in Figs. 324

and 325. .

The safe bearing pressure between the gird(.*r and its supports wll
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bed plates are bolted down to the stone tenijjlec. At (a), in Fig. 326, the
holding down bolts for the bed plate are shown passing through the
bolster plate, the bolt holes in the bolster plate being elongated to permit
of the girder sliding a small, amount.

For spans of over SO feet, bearings similar to those shown in Figs.
368 and 369 would be used.

201. Connection of Cross Girders to Main Girders.—Figs. 327,
328, and 329 show methods of attachment of cross girders to main

W"

depend on the nature of the material on which the girder rests, and is

usually limited in the ease of stone to from 12 to 20 tons per. square

foot. The Side bearing pressure, between the stone and brickwork set in

Fig. 324. PlO. 325.

cement may bo taken at from 6 to 1 0 tons per square foot, and between

stone and brickwork in morbu at from 4 to 5 tons per square foot.

Quo end, and sometimes both ends, of a girder are left free to slide,

so that a certain amount of expansion or contraction can take place with

changes of temperature.

For large spans, say, of 60 feet and upwards, cast-iron bed plates are

provided, on which the ends slide. These bed plates are usually sunk
into the stone templet a small distance, as shown in Fig. 326. These



gives some support to tlie cross girder, the end of the latter is securely

riveted to the web of the former.

202. Weight of Plate Girders.—An estimate of the probable weight

of a plate girder may be made by means of Unwin’s formula.

W= total external distributed weight in tons (exclusive of girder).

w= weight of girder itself in tons.

I = actual span in feet.

/= stress in booms in tons per square inch,

ratio of span to depth.

c= coeflRcient varying from 1400 to 1500 for small plate girders,

and varying from 1500 to 1800 for large plate girders.

WZr

cf~lr

Wl -

As a check, the following rough rule is given, w ~ .

203. Camber and Deflection.—Girders are usually given a slight

camber while being built, so that they just become straight when in place

and loaded. A common allowance for camber is | inch to ^ inch per

10 feet of span. In calculating the deflection, take E, the modulus of

elasticity, equal to 9000 tons per square inch, for riveted structures.

204. Plate Girder—Worked Example.—The method of procedure

in designing a plate girder will be shown by working out a practical

example.

It is required to design a plate girder sudi as might be u.sed to carry

a heavy flour, the clear .sjwn being 36 feet, it is to carry twelve loads of

6 tons cat'll, .spaced 3 feet centre to centre. An inexpensive design is

rcqnirt'd, and it is not desirable to take up much head i-oom.

Typii.—Paralhd flanges. Single ’web plate. Puiiehcrl holes. Material,

mild steel. This will make the cheapest design.
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;it L'lich end, .suj)|insiug the girder to rest on' stone templets. Wall plato.s

1 foot (j inches srpiare would give a bearing iirea of 2;| .square feet at

(‘aeli end, and tlio actual .spii.ii or the distance between the reaction.s would

then be ;i,bout o7 feet G inche.s,

Df'pfh anil Witlfh.—The juiniruum dt'pth would be of 117 feet G

inches, siiy 22 inches. It would be desiralile for economy to go to -jV of

.*17 feet G indies, siiy 37 inches. Since head room is valuable, a com-

]n’omise of iiliout 30 inches will be tried, .say 24 inches between the centre

lines of rivets in the llange angles. The girder i.s, it may lie supposed,

fairly avoU .sup[iorted laterally by the cross girdens which bring on the

loads, iind a width of .}^ to rdcr The .span may be taken, say a flange

width of not le.ss than 12 inches.

WeJyht.—Using Unwin’s formula (p. 223). W = 72 tons. 1=371- ft.

r = 37h'2l^ — 15. c = 1500. /— 7 tons per square inch.

72x37|xl5
''^"rr)b0x 7--37|-x is'

• 4*07 tons.

As a round figure, the weiglit of the girder will be taken as 4 tons.

End limnwjK and Erart Span .—The total weight is 72 + 4 = 76 tons.

Each end reaction will be 38 tons. If wall jilates 18 inches by 18 inches

be used, tlu^ liearing pressure on each stone templet will be practically 17

tons yier Sfjuave foot. A hard stone will safely carry this. The actual

span may therefore be taken a.s 36 + 1| — 37|- feet,

Bnndiwj Moment and. Shearing Force EiagramH.—These can now be

drawn, ami are shown in Fig, 331, p. 227.

The maximum bending moment is at the centre, and is 44-40 inch-tons,

and the maximum shearing force is at the ends, and is 38 toms.

Thickne^iii and Stijfening of Web.—’rho depth of the girder between
the centre lijims of the flange angles is 24 inches. The depth of the wel>

plate may therefore be taken at about 28 inches, and this is constant

throughout the spam The shear per inch depth diagram is at once set

out (Fig. 330, p. 226). Its vah.ie at the extreme end i.s 38/28 == 1-3G tons.

A.s the loads brought on by the cross girders are at intervals of 3 foot, this

decides that stiflemn-s must bn placed at 3 feet intervals under the loads,

and it remains to be .seen whether further .stifl'enoi'.s will lie required.

Oomsideriug the panels between the stiffeners under the loads, the

dimension d in the formula-i on p, 220 is 24 inehe.s, the vertical di.stance

between the centre lines of the rows of rivets in the boom angles and the

web. Putting d=%i inches in the flust instance, and giving /, the web
thickness, the values | inch, inch, and 4 inch, S from the formula
given is 0'73, 1'07, and 1‘47 tons respectively, and the.se are plotted on
the shear per inch of depth diagram (Fig. 330). It is now evident that

except at the extreme ends a f g- inch plate is of ample strength. Near
the centre a | inch plate would suftice. A change of thickness however,
entailing, as it would, two web joints, would probably co.st more than the

inctal saved, unless of course many similar girders arc retjuired. If a
inch plate is to he adopted, extra stiffening must be used near the ends.

The mo.st convenient way to carry this out is to put inteinnediate stiffeners

between tho.se under the load.s, reducing d to 18 inches. A -| inch plate

would then stand IT tons per inch of depth, and a inch plate 1-54

tons. A -/g- inch plate will therefore serve, a inch plate being too weak.
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Extra KtifTcnitig to make a | incli plate suitable is not advisable for three

reasons-—the mieessary stiffeners would be awkward to get in, the stress

pen; square ineli would approach very near to the limit, and, what is even
jnore iinjiortant, the web liveting in the f inch plate would be very difficult

to design. On the other hand, it need hardly be pointed out that the extra

stiffeners required by the inch plate will be much cheaper than if a |-

inch plate wei-e used with no extra stiffening. A inch web plate will

thei'efore be used, stiffened as shown.

Longitudinal Rimting in Web and Flanges.— |- inch rivets in if inch

holes will be adopted. The value of a rivet in single shear at 5 tons per

square inch shearing stress is 2*59 tons. A rivet in double shear bearing

in a inch plate will carry 3‘55 tons, the bearing stress being limited to

10 tons per square inch. Dealing first with the single row in double

shear through the web plate, a 3 inch pitch represents a shear per inch of

depth (or length) of 1*18 tons, a 4 inch pitch 0'89 tons, and a 6 inch pitch

0‘59 tons. A 5 inch pitch will not work in between the stiffeners, and
need not l)o further considered. The above values are set up in the

diagram as thin full lines. It is norv seen that a 3 inch pitch must
extend from the end of the girder to A, a 4 inch pitch from A to B, and
a 6 inch pitch from B to the centre. Since too many changes are not

desirable, a 3 inch pitch will be adopted extending to B, and a 6 inch

pitch from B to the centre. Over the last two panels, near the end, a 3

inch pitch with the same size of rivets is inadequate. A closer pitch

means zig-zagging the rivets and a deeper flange angle, and thickening

the web plate is not desirable, as has already been seen. The third

alternative is to use larger rivets. There are only a few larger rivets

required, and probably the cheapest way out of the difficulty will

be to punch all the holes alike and then reamer the few holes at

the ends out to
-I

inch diameter. The load upon one of these | inch

rivets at 3 inches pitch is 3 x 1'36 = 4’1 tons. Its bearing area is

0*383 square inch, and the bearing stress will therefore be 10*7 tons per

square inch, but since in these reamerod holes the rivets will be in

much better condition than in the ordinary punched holes, this may be
allowed.

The riveting in the flanges joining the flange plates and angles is

determined in exactly the same manner as for the wmb, except that there

are two rows of rivets in single shear, instead of one row in double shear.

The possible pitches are shoAvn on the same diagram as dotted lines. It

must be remembered when choosing the pitch that the rivets should
zig-zag with those in the w'eb. 3 inch and 6 inch pitches only are

admissible. The 3 inch pitch will extend from the end to C, and the 6

inch from G to the centre. This will necessitate one odd 4| inch pitch,

shown in the plan of the girder. No larger rivets are necessary, the

3 inch pitch giving ample strength.

Boom Section .—The distance between the centres of gravity of the

flanges may be taken roughly as that over the backs of the angles.

If angle.s 4 inches x 4 inches x | inch be used, punched 2^ inches from
the back, this will be 24 -f 4| — 28J inches. Using this figure, draw the
diagram (Fig, 331), showing the force in the boom everywhere (got by
dividing the ordinates of the bending moment diagram by 28 1 inches).

The force in a boom at the centre is roughly 160 tons. The stress being





6tons

\6tBm
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/iiniitsd to 7 tons per square inch, the best section, found after a number

of trials, is as follows:—

Two angles 4 inches x 4 indies x J inch, less one -] 5- inch

rivet hole in each . . . . • • . = 46 tons

Three Hats 1 2 inches x | inch, less two { § inch rivet holes

in each . . . . . . • • . = S2 tons

One Hat 12 inches x inch, less two inch rivet holes = 32 tons

Total . . 160 tons

Setting these ott' upon the diagram, the necessary length of each plate

is at once apparent. The inch plate placed outside must be 18 feet

G inches long, the next two |- inch plates 24 feet and 29 feet long, while

tile inside plate and the angles will he carried the full length of the

girder. It will bo observed that an extra rivet pitch or two have been

allowed in the various lengths.

Tti this design the top boom will be made of exactly the same
pattern, length of plates, etc., as the bottom boom ; that is to say, the

rivet holes will be subtracted from the area of the section both for

compression and tension. If it is thought desirable to take the area of

the com}>ression boom as the gross area, not subtracting the rivet holes,

another diagram of the same ty[)e for the compression boom will bo

necessary. It is doubtful in the present case if such alteration would
save money.

Set out the Girder.—Btort with two horizontal centre lines 24 inches

apart. Erect tlie centre linos of the stiffeners. Next put in the rivets,

those in the flanges being staggered with regard to those in the web,

due regard being paid to local conditions, taking on of cross girders, etc.,

remembering that a simple uniform pitch is to be aimed at. Next, on

this skeleton outline, put in the outlinos of the plates and angles.

Joints.—The longe.st boom jflate in the design has a length of

38 feet 5|- inches. It will be advisable to make a joint in this, although

it might possibly be obtained in one piece. This joint will be placed so

that the outer f inch plate produced will form a cover. The cover

being single, the rivets are in single shear, each worth 2 ‘5 9 tons, and
since the cut plate was worth 27^- tons, 12 rivets will be required through

each half of the cover, as shown.

If the joint occurs in the bottom boom to the left of the centre of the

girder, it may be placed to the right in the top flange.

The web plate will also be made in two pieces, and the joint placed at

the centre, whore the shear is least. If the joint be designed to carry tlie

shearing force only, the shear per inch of depth diagram which determined
the longitudinal riveting will determine that in the transverse seam also.

It will be seen that a 6 inch pitch Avould be more than sufficient at the

joint under consideration. Actually a single riveted butt joint witli double
cover straps and rivets of 4 inches pitch will be used as shown.

Stiffening at Ends.—The reaction at each end is .38 tons. A bolster

plate 1 foot square will bo riveted to the bottom of the girder at each end
to limit the span, and between this and the wall plate sheet lead is ])lac!cd.

Tlie reaction must be distributed over the depth of the wffi) plate through
the vertical stiffening at the end. There are S rivets in the end
angles, and 7 in the first stiffener. The load on each of these rivets is
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38 4 15 = 2’53 tons; they are in double shear, and, as has been shown,
eiich is wortli 3 '55 tons. But the load is not equally divided over the

rivets, and therefore a margin is desirable. If the area of the cross

section of the stiffening be worked out, it will be found that the direct

stress is small Taking only the end plate 12 inches xf inch, and the

two end angles 4 inches x 4 inches x | inch into account, it is 3-2 tons

per square inch.

Each stiffener under a load must distribute a load of 6 tons over

the depth of the web. Through each passes 7 rivets, and if a section

4 inches x 3 inches x | inch be used, the direct stress will be less than

1 ton per square inch.

Moymnt of Inertia, and Moment of Resistance of Cross Section.—

-

Subtracting the rivet holes from both flanges and allowing for the middle
1 foot 8 inches of the web only at 33 per cent, efficiency, that is, the worth
of the riveted joint (the joint is weakest in compression between the

rivets and plates), the moment of inertia of the central cross section is

found to be 9740 (inche.s)l Since the distance of the extreme fibres

from the neutral axis is 15El inches, the modulus of the 'section is

9740 -r 15*81 = 616 (inches)^. Hence the maximum stress at the central

cross section is 4440 — 616 = 7*2 tons per square inch, which exceeds the

limit. The explanation of this is, that in so deep a flange the variation of

stress between the outer and inner fibres is considerable, a point often

overlooked when the approximate method is applied, and this shows the

necessity of calculating the moment of resistance everywhere. It will be

found necessary to increase the thickness of the outer plate from yV
to \ inch. The moment of inertia of the central cross section will then

become 10,060 (inches)^, and the moment of resistance will increase

to 634 (inches)^, which will reduce the maximum stress to 7 tons

per square inch.

The moment of resistance diagram is plotted on the base line of the

bending moment diagram (Fig. 331), and it will be seen that the former

lies entirely outside the latter.

The moment of inertia diagram is also plotted on the base line of the

bending moment diagram (Fig. 331).

Deflection and Camhei\—Assuming that M -f I is constant through-

4440
out the girder (a rough approximation) and equal to

ML^ 4440 X 450^
deflection = = g x 9()()0l< lW60

“ inches. This deflection is

of the span, which may be considered as reasonable.

If |- inch of camber be allowed per 10 feet of span the total camber
recjuired is 1|- inches, agreeing fairly well with the estimated deflection.

Actual Weight of Girder—The weight of the girder as designed

is 4 tons 0 cwt. 2 qrs. 13 lbs., showing that the estimated weight is

sufficiently accurate.

Exercises XIV.

1. A steel plate web girder with parallel booms, 100 feet long, is to support

a dead load of f ton, and a rolling load of 1J tons per foot-run. Select a suitable

depth, and assuming suitable working stresses, desugn the centre section and the

longitudinal section of the booms, taking 30 feet as the maximum length of
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})]nfco. Di'sigii jilso tile, cover plate for one of the boom joints, and show the

ai-iierul urrjina’ement of stiffeners. Scale for section, I inch to 1 foot. Horizontal

.'-(•.ale for liooms, 1 inch to o feet. [U'L.J

2. A Imilt-up steel plate girder has the following cross sectional dimensions :

- I’lit! (langfs cunaisb of three plates, each | inch thick and 1(5 inches wide
;

the web consists of one plate, 45 inches deep and § inch thick; the web and
the llaiiges art; connected together by angles 4 inches by 4 inches by J inch. If

the exfi'irnal shear force at a particular vertical section of this girder is 112 tons,

determine («) 'J’fie intensity of the shear stress in the horizontal plane of the

sect,ion in -whhdi the web plate meets the flange plates, (h) The proper pitch to

a(iopfc for the
1 J inch rivets used to connect together the web and the flanges, if

t,he intensity of the. shear, stress in them is not to exceed 4 tons per square

iucli. [U.L.1

3. Draw the M/f diagram for tlie plate girder in tlie worked example (Art. 204).

I’ind grai)liic!illy from this the actual deflection curve of the girder. Measure
tlie maximum f’leflection. Show by how much the deflection Curve differs from
an arc of a circle.

4. riot 1,hu shear distribution curve for an end cross section of the plate

girder in the worked example (Art. 204). What is the ratio of the mean to

maximum slioar stress? Compare each with the shear per inch of depth
assumed.

6.

Design the grouped joint for three ! inch steel plates I (5 inches wide.
Diameier of rivets, | inch. Holes i)unched and reamered. A single outside
cover to be employed. The holes in the flanges to be staggered. Calculate
(he various eflie.iencies of the joint. What saving of metal is there over three
separatii joints ?

6. A rolled steel joist is continuous over three spans. One extreme end is

built lirmly into an abutment, while the other may be taken as freely supported.
The load carried is 1 ton per foot-run. The two outer spans are each 10 feet,

and the centre span is 12 feet. What are the loads on the piers? Draw the
bending moineni, and shea.ring for(;e diagrams. Design the beam.

7. Design a plat.e web girder of the fish-belliod type .suitable for an overhead
traveller of .'lO feet span. There are two such girders upon wdiich the traversing
carriage runs. The maximum weight to be lifted is 40 tons, aud the weight of
the traverser may be taken as 4 tons.

8. A three-girder bridge, to carry a double line of rails, has a clear span of
3() feta, and the girders have a length of bearing at each end of 2 feet (5 inches.
The girders are to be of tlie plate web type. The flooring is to be trough form,
weighing about 7 cwt. jier foot-run of the whole widtli of the bridge. The
permanent way, including rails, sleepers, etc., may be taken as equal to KiO
pounds per foot-run for each line of rails. Estimate in any way you please the
approxima(,e weight of the main girders, and determine the maximum bending
moments and shear on each of the side girders and on the central girder for the
above dead loads, and for a live load of 40 cwt. per foot-run per single line of

rails. Choose your own working stresses, and design a suitable cross section
for the centres and ends of the central girder and for one of the side girders.

Determine tlie necessary nitch of rivets in hotb cases. [U.L.]
9. Design for a double track railway bridge. Span between bearings, GO

feet. There arc to be two main girders, spaced 26 feet apart, centre to centre.

The deck of the bridge, is carried by cross girders placed at about 7 feet to 8

feet pitch, and consists of trough flooring running longitudinally. The .sleepers

are laid transversely. The deadweight of the floor may be taken as 1^ cwt.
per square foot, and the equivalent uniform live load at 2 tons per foot-run for
each line of way. The maximum load on one axle may be assumed as 20 tons.



CHAPTER XV
DESIGN OF STRUCTURES—BRACED GIRDERS

205. Open Web or Braced G-irders.

—

v;eh coders include all those

in which the web is constructed of separate bars or members instead of

a continuous plate. In such girders the tensile and compressive stresses

to which the shear has been shown to be equivalent are carried by ties

and struts specially designed to take them.

Open web girders are lighter than corresponding plate w’eb girders.

The metal in the open web is better dispo.sed, and the girder presents less

surface to the force of the wind.

Above 60 to 80 feet span open Aveb girders are preferable in most

cases to plate web girders, and in very large s])ans they are a necessity.

Very light girders also are often made of the open web type.

Open web girders are, however, more costly per ton than plate web
girders, and the latter are therefore less expensive for small spans carry-

ing heavy loads.

It is sometimes convenient to construct the web of a girder partly as

a plate web and partly as an open web. If the shear is very large, say,

at the ends, the bracing and connections are sometimes very difficult to

design. In such cases it may be more convenient to use a plate web.

Near the centre, however, or where the shear is small, it may be more

economical to carry it by means of ties and struts. Such a girder is

termed a semi-plate v;eh girder. This form is, however, not much used,

except in special cases.

206. TsTpes of Open Web Girders.—The web bracing takes many
diverse forms, from which the various types mainly take their names.

Examples are show'u in Figs. 332 to 347.

In the type known as the Warren girder (Figs. 332 to 335), the web
braces form the sides of isosceles triangles, whose bases are parts of the

booms. The web members are inclined at 60° to the booms in Figs. 332

Fig. 332. Fig. 333. FiG. 334. Fig. 335.

and 333, and at 45° in Figs. 334 and 335. Vertical members shown

dotted in Figs. 334 and 335 are introduced to add further support to

the roadway. In Figs, 332 and 334 the floor or deck of the bridge is

at th.e bottom, and the traffic would pass between the main girders. In

Figs. 333 and 335 the deck is on the top.

A Pratt or Whipple-Murphy truss is shown in Fig.. 336. This is

sometimes called an N truss. The web bracing, is oompb^ed of vertical
- ‘I
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iiiicl aiii,y.>n;il luoinbtii’s alternately. The diagonals are usually, though

Tint m‘i‘t*ssi»rily, jtlanid at 45“. The shorter vertical inemhers are struts,

and tlie loiigiT diagonals ties. The truss is shown inverted in Fig, 337

to get the deck on the top.

A inodific;ation of the Pratt truss, with the diagonals sloping the

other way, and known as the Hoice trim, is used in America. It is

usually construeted mainly of timber. The verticals, which are now

ties, are wrought-iron or steel holts, and the diagonals, which are now

struts, are of wood.

lA)r long and heavy spans, duplicate systems of web bracing are used.

z7Z"l
\ "I

•

]xxx;3>^

LinvUla truss (Fig.

340) is obtained. Fig,

.341 shows the same
truss with a slightly

If tw(.* Wfirren girders of the form shown, in Fig., 334 be taken, and one

is inverted juid superposed on the other, a Lattice girder (Fig. 338) is

formed. If two N trusses of the foiun shown in Fig, 336 bo similarly

treated, the lattice girder shown in Fig. 339 is obtained, which is the

girder of Fig. 338 with the verticals of Fig. 334 left in. The function

of these verticals is to equalise the load between the two systems. In

the type shown in Fig, 338, two diagonals in the same bay do not carry

the same stress
;

iii the type shown in Fig. 339, they should. In actual

bridges it is doubtful if these verticals really act as they are supposed

to do.

If two N trusses he superposed, cue being moved half a bay along

relative to tlie other, a
,,,

Fig, 340. Fig. 341. Fw. 342,

different end ]>ost. Fig, 342 shows the Linville truss inverted to get the

deck on the top.

In designing girders with duplicate wob systems it is usual to separate

the two .systems, and to design each on the assumption that it carries

one half of the load, though this assumption is not .strictly correct. The
two are then again superpo.sed, and the stresses combined in those mem-
bers which are made to coincide.

S(.»metimes two girders of the type shown in Fig. 338 are cond)iried,

one being moved half a hay along relative to the other. Buch a combina-
tion is termed a double lattice girder.

In small girders the web is often composed of a number of diagonal
bars lattice braced, as shown in

Fig. .343. Such a web may he
looked upon as a multiple lattice

girder. The bracing usually con-

sists of flat bars, which are made
wider and thicker toward the points of support. The usual assumption
when designing such a web is to make the diagonals cut by any vertical

section of such size that, the vertical shear force at the section will be
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equal to the vertical component of the sum of the safe loads in all the
diagonals cut. Vertical stiffeners similar to those used in plate girders

are usually introduced, and for similar reasons,

So far the types of open web girders referred to have parallel booms.
For very large spans it may be more economical to curve one, or even
both, of the booms. Girders with curved booms are more expensive per
ton than corresponding ones with straight booms, and should not be
employed when parallel booms are suitable. Most of the types of web
bracing already referred to can be used in girders with curved booms.

A girder with the top boom of i>arabolic form and the other straight

(Fig. 344) is termed a how-sk'mg girder, from its similarity to a bow and
string. Such a girder, carrying only a uniform dead load, would, theoreti-

cally, require no diagonal bracing in the web. Since all bridges have to

support both non-uniform and rolling loads, in practice diagonalisation

becomes necessary, as shown in Pig. 344. This form maybe inverted,

when the “ bow ” becomes a suspension chain.

The type sometimes called the loii: and chain girder is shown in Fig.

346. It is the bow and inverted bow or suspension chain girder types
combined, the object being to neutralise the thrust of the arched bow by

the tension in the chain. Practically, it is a girder with two curved

booms. The \veb bracing is usually of the tyj;>e shown. The bridge

floor is carried by suspen.sion rods, as shown.

Fig. 346 illustrates a type of truss common in America for large

spans. The web bracing is of the lattice type. Fig. 347 shows the

Linville type of truss applied to a large span.

A type of girder common in English railway practice is illustrated in

the wmrked example, Art. 227, pp. 248-258.

207. Counterhracmg.—The function of the ties and struts which

form the bracing of an open Aveb girder being to take the shear stress, it

follows that if this shear stress be reversed in direction at any part of the

girder, the tics become struts and the struts become ties at that part.

Now, it was shown in Art. 107, p. 100, that a travelling load added to

the dead load wall have the effect of reversing the direction of the shear

stress over a portion of the girder. In a plate web this reversal of

stress is of little or no consequence, but in an open web it is obvious that

provision must be made for it. The struts will, as a rule act well as ties,

but cither the ties must be designed to carry the compressive Stress, that

is, to act as struts, or else special members must be introduced to cari'y

the reversed stress. These special mmnbers, which • are diagonal tics
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sloping tlie other way to the ordinary diagonal ties, are called counter-

hracm. The dotted lines in Fig. 344 represent counterbraces.

In duplicate systems of w’eb bracing a member of the second syvstem

will carry the reversed stress. In Linville trusses the bracing near the

centre takes the form shown in Fig. 347,

208. Booms of Open Web Girders.—The booms or flanges of open

web girders are usually somew'hat similar in form to those of plate w'eb

girders, being made up of a number of horizontal plates. They difier,

however, in liaving one or more vertical plates, called stringer or curtain

plates, Avhich are connected to the flange plates by angles, and which

form coTivenient attachments for the Aveb bracing. The boom, in fact, is

usually of a T or LJ section, as shown in Figs. 348 and 349. In the

compressicm boom the lower edges of the stringer plates are often stiflened

by angles, as shown in Fig, 351, to prevent it from buckling. Occasion-

ally channels are used instead of these plates and angles, as shown in

Fig. 350. To prevent distortion LJ sections may be fitted with diaphragm
plates, as shown in Fig. 362.

HITl^e Plates^rfl
'-Flange Angles.-'

'^StringerPlates!

U d

A type of boom sometimes
adopted is shown in Figs.

353, 354, and 365. Instead

of placing the flange plates

horizontally they are placed

vertically. Combinations with
angles and channels are also

used. In American practice

these vertical plates become eye-bars in the tension flange, as shown
in Fig. 375, p. 245. This type possesses the advantage that it is a

most convenient form to get a really good connection with the web
bracing and for the attachment of the , cross girders. Also, it does not
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hold, the rain, as does the LJ form, raless specially drained. The two
halves of this form of boom are usually connected together by light

secondary bracing, as sliown in Figs. 353 and 365.

Fig. 355 shows a convenient form of boom for a light girder. It

consists of four angles held apart by short plates at intervals.

The cross section of the boom is proportioned

to the stress which it has to carry, exactly as in a
plate web girder. The graphical method shown
in Fig. 331, p. 227, may be used to obtain the

length of the flange plates, angles, etc.

If the lateral dimensions of the compression

boom are small compared with its length, it should be examined as a
strut hinged at the panel points. Generally, this is unnecessary.

209. Joints in Boom Plates.—The joints in the horizontal flange

plates are formed exactly as in the case of plate web girders, and similar

calculations are necessary. The flange angle joints are also similar, being

constructed with round back covers. The joints in the stringer plates are

usually butt joints with double covers, as shown in Fig. 34-9, sufficient

rivet section being used to develop the full net strength of the plate. A
grouped joint for a boom with vertical flange plates is shown in Fig. 353.

210. Riveting in the Booms.—The riveting in the booms should lie

of a regular uniform pitch. As far as pos.sible the rivets should be

arranged to break pitch across the width, i>articularly in the tension boom,

so as not to weaken the boom more than is unavoidable. A 4 inch pitch

is the most common, but the pitch shoidd not exceed 6 inches where
there is a likelihood of water getting between the plates, nor in any ease

should the pitch be more than sixteen times the thickness of the outside

plate in the compression boom.
Since the stress in the boom is transferred from the web bracing on to

the stringer plate, and thence through the flange angle.s tc the flange

plates, sufficient rivets must be placed through the flange angles to

transfer this stress on to the flange plates within a reasonable distance

along the length of the flange.

211. Web Bracing.—The web bracing is constructed of the ordinary

rolled sections, used singly or in combination. For ties, flats are most

commonly used. If, however, lateral stiffness is desired, or if the stress

is likely to be reversed, a channel or other suitable section may be

employed. If the reversed stress is small in amount, two flat bars con-

nected by secondary bracing, as shown in Fig. 357, may be used. Each
of the flat bars must, however, be capable

of carrying one-half of the load when con-

sidered as a column bending between the

points of secondary support. This condition

usually determines the spacing of the cast-

iron distance pieces.

For a light tie a single flat bar is best,

and for a light strut a single angle or tee

bar is most suitable (Fig. 356).

The usual sections suitable for heavier struts are shown in Figs. 358,

359, 360, 362, 304, and 365, A strong and light strut is formed by
connecting together two or more simple struts by secondary bracing, as

Fia. 356.
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the radii of gyration of tlie section about axes perpendicular to these

directions are as nearly as possible equal.

The parts of a built up strut between the jioints of attachment of the

secondary bracing should be examined as separate short columns hinged
at their ends.

Secondary bracing usually consists of light flat bars, 2 inches to 2|
inches iu width, and I inch to f inch in thickness. Light angles about
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Sectmi at AB.
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iruilip.s >: 21 indies are also nsecL Various forms of secondary liracing

ai’e shown in the illustrations of this section.

Tlie stTess(!.s in the web members are found from, tlui stress diagrams

(see Gimptei' XI L), and thih* cross sections determined by the rules iur ties

and struts.

Where the (sonnections between a strut and tlie booms are stitF

riveted joints, and the boom sections are also stiff and ca}>ablc of with-

standing considerable bending and distorting moments, the strut may be

considered as fixed at its ends, or nearly so. It is safer, ho\vever, in

order to allow for any imperfection in the manner of fixing to take the

effective length of the strut as, say, times its real length.

212. Connection of Web Bracing to Booms.—In English practice

riveted joints are almost invariably used for connecting the web braces to

the booms. Examples are shown in preceding illustrations. In America,

pin joints, such as shown in Fig. 375, are common.
If the number of rivets required in the ends of the web members is

not too large, these members may be attached directly to the stringer

plates, as shown in Figs. 356, 360, and 362, Often this is not possible,

and gussets are introduced, as shown in Figs. 363, 364, and 365. In

Figs. 364 and 36 .5 the rivets in the ties are placed in double shear by
the use of cover plates.

The following conditions should be observed when designing joint

connections ;

—

(a) Sufficient rivet section should be provided in each member to

take the load on it. If gussets are used, sufficient rivets must pass
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thrcmgli the gusset and stringer plate to take the load from the gusset

and transfer it to the boom.

(b) The axes of each member (boom included) should meet at a
point.

(e) The rivets in each member should be symmetrically grouped

about its centre line.

(d) A tension member should not be weakened to a greater extent than
one rivet hole.

(e) The rivets should be spaced at a convenient and uniform pitch.

Those in the web members should not be permitted to upset the

uniformity of pitch of the boom riveting.

(/) The centres of the rivets should not be less than three diameters

apart, or closer to the edge of the plate than diameters.

Too often in actual practice the above conditions are not all com-
plied with. Sometimes a compromise has to be made, but with a little

care and ingenuity much may be done towards satisfying all the con-

ditions.

213. End Posts.—The end struts of bridge trusses are termed e7id

posts. They have to carry the whole reaction due to the load on the

girder, and are therefore of more massive construction than the ordinary

struts
j in fact, they are frequently of similar cross section to the com-

pression boom.
Details of two inclined posts are shown in Figs. 366, 367, and 368.

A vertical end post is shown in Fig. 384, p. 254. In some inverted

trusses, however, the end member is a tie, which may be of the usual

form.
: ;

214. Bearings.—Beneath the feet of the end posts t^e placed the

bearings. An example of a roller bearing is shown in Fig. 369, which



Fig. 368.
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presents the standard practice of Mr. George A. Morrison, the cele-

ated American bridge engineer. This bearing is fully illustrated aiid

P. 3“.^ 3'h]

described in the Tramactims of the Armrimn Society of Mechanical

Engineers for 1893. The following particulars and table of diruensions

are taken from Mr. Morrison’s paper :

—

Side of

Hooker
Plate (&).

Inches.

Safe Load at

3000 lbs. per
Jjinear Inch.

Lbs.

Number Number

koSL. ii°L.

Total

Bearing.

Inches.

The rail plate rests on a cast-iron bed, plate, not shown in Pig,
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Above ihe vullers is the top bearing, which is a steel casting carrying

the. roe.ker ])Iatc, which carries the top j)late. The bolster, or the bottom

clioi'd, is placed on the top plate, to which it is bolted rigidly. The
!•( Hiker ]date is square in plan, its bearing surfaces being cylindrical, of

radii o(pxid to the side of the plate. A rocking motion is possible in

any direction, and the bearing may be depended on to distribute the

weight not only uniformly over the several rollers, but uniformly over

tht! length of each I’oller.

__rt-(6+l-5) + __ Span
C tl-.

The roller bearing provides for the longitudinal expansion and con-

traction of the structure due to variations of temperature. Such
provision is, however, only necessary at one end of the truss. At the

other and a fixed bearing, or one which provides for rocking motion only,

is provided. A form similar to that shown in Fig. 369, but without the

rollers, may be used for the fixed eud. Another form is shown in

Fig. 368.

215. Bridge Floors.—The floor of a bridge may be carried on the

top of the niain girders, or it may be attached to the bottom flanges of

these girders. In the former case the traffic passes over the main girders,

and the bridge is called a “ deck ” hridge ; in the latter case the traffic

passes between the main gmlers, and the bridge is then called a
’‘through” bridge.

216. Railway Bridge Floors—Cross Girders.—The weight of the

bridge platform and the rolling train load is transmitted to the main
girders by cro.ss girders, which are usually shallow', plate web girders

spaced at intervals along the main girders, and placed transversely to

them. Figs. 327, 328, and 329, p. 223, show the common means of

attachment if the main girders arc of the plate web type.

tJommon methods of attaching cross girders to main girders of the

open web type arc shown in Figs. 370, 371, and 372. Figs. 370 and
371 apply to through bridges, and Fig. 372 to deck bridges. In Fig.

370 tbe cross girder rests on the flange of the main girdSr directly, while
in Fig, 371 it is .slung below. Tlie latter method has the advantage
that the load is transmitted directly to the centre of the main truss, and
does not tend to twist the flange.

The minimum spacing of the cross girders should be from 7 to 8 feet,

that is, not les.s than the dhstance apart of the driving axles of tbe

lieaviest locomotive crossing the bridge. This spacing, how'ever, may be
much increased in large spans. In any case, cross girders may only be
attached to the main girders at panel points.

Each cross girder must be capable of carrying its sbai'e of tbe dead
load of the bridge platform, together with the heaviest live axle load
which may come upon it. Cross girders are usually assumed to be freely

supported at tbe ends.

217. Rail Bearers.—Spanning between tbe cross girders, and placed
directly beneath the rails, are longitudinal girders called rail hearers or

stringers. For a 4 feet 8|- inches gauge these rail bearers wmuld be spaced
about 5 feet, centre to centre. The rail bearers carry the weight of the

platform and the axle loads on to the cross girders, to which they are
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'

iittfiftlk'd. 272 .shows the method of connoctiiiif the nu) bearers to

-
' the eros.s girders, [i'or a further illustration of rail bearers, see Pig. 28t),

j). 2r>i). Pail bearers are designed in a similar manner to the ero.ss girdm-s.

218. Floor Plating.—Upon the double system of girders, made up

of the cross girders and rail hearers, i.s placed the deck proper, which

consists either of flat or buckled floor plates, and upon which the ballast

rests. The thickness of these plates varies with their area and the weight

supported, but is usually about f inch.

219. Ballast and Sleepers.— Ballast consi.sting of broken stone

asjhalt i.s spread over the floor plating to a depth of 3 inches. Above
thi.s and under the sleepers at least 4 inches of hard ballast is placed.

The sleepers are of pine, 9 feet long, 10 inches wide, and 5 inches

thick, spaced at about 3 feet centre to centre. If head room is limited,

the .sleepers may be placed longitudinally and bolted down directly to the

floor plating above the rail bearers. This method has the disadvantage

that it breaks the continuity of the permanent way system.

To prevent the ballast spreading, vertical plates, called ballast guards,

are fitted (.see Fig. 38(5, p. 25(5), Provision must also be made to confine

the ballast at the end of the bridge. Suitable drainage arrangements to

carry off water from the bridge fioor are also necessary.

220. Trough Floors.—Instead of flat or buckled plate.s, trough sec-

tions of various forms may be employed.

Fig. 374 shows a common form. In this

case rail bearers are unnecessary, the troughs

running longitudinally, and resting upon the

cros.s girdens, to which they transmit the load.

With plate web girders, the cross girders them-
selves may also be dispensed with, and the troughs are then laid trans-

versely and attached directly to the main girders.

The troughs are designed as beams,, the total moment of resistance of
those which actually bear the load being equated to the bending moment
upon them. Dimemsions and moments of resistance of trough flooring

are given in the various makers’ catalogues.

221.

^

Widths of Kailway Bridges.—-With a .single line of rads, the
clear width between the parapets should be 15 feet, A double lino

running between two main girders requires 26 feet, the distance between
the roads being 6 feet.

'

222. Eoad Bridges.—The flooring takes much the same form as that
of railway bridges. It must, however, be capable of carrying a live load,

consisting of heavy traction engines and other vehicles, anywhere upon
the surface of the road. The various forms of trough flooring arc very
suitable. Very small bridges my even be made without main girders,

longitudinal troughs carrying the load from abutment to abutment.
The widths of road bridges correspond to those of the road.s which

they serve.

223. Example ofAmerican Practice.—Fig. 375 illustrates the details
of a type of bridge common in America. The line diagram near the top
of the figure shows a portion of the truss, and details of the joints at
A, G, D, and E are shown to a larger scale. It Avill be observed' that the
tension members are eye-bars, which are connected to the other members
by pin joints.

Fig. 374.
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It may Lfj noted here that in American practice the ratio of depth to

span couimouly adopted is larger than is usual in British practice.

224. Wind Pressure.—In what follows, the direction of the mnd is

.supposed tit be horizontal. In estimating the effect of wind pressure on

a bridge, two alternative cases should be considered, (a) When the

bridge i.s unloaded, and a wind pressure of 56 lbs. per .square foot is

acting on it. (A)When a train is crossing, and a wind pressure of 30 lbs.

per square foot is acting on both the bridge and train. The wind

pre.s.sure on the moving train forms a travelling load acting laterally on

the structure.

The area n]i()n which the wind acts maybe estimated as follows. For

a single liat l)ar or a solid body like the floor system, the face area pre-

sented to till) Avind may be taken. When two bars lie, the one directly

behind th(', other, but from two to three diameters apart, the combined

area maybe taken as one and a half times that of a single bar. If, how-

ever, the distance between them i.s relatively great, the, combined area

presented is twice that of one. For example, the area presented by two
tiii.s, one liehind the other, in the same panel of a lattice truss, Avoukl be
one and a. half times the face area of one, but the total wind pressure on
the tAA'o gii’ders of the bridge would be t\Aice that on one. In a plate

girder Ijridge, liowevei-, the windAvard girder may be assumed to .shield

the lecAvard girder to an extent depending on their di.stancG apart The
train .surface may be taken as 10 square feet per foot-run, and the

travelling wind load is then 300 lb.s. per foot-run.

225. Wind Girder.—The lateral Avind load is supported by a girder

formed by bracing together tAvo of

the main booms in a horizontal

plane, usually that of tlie bridge

floor. Sometimes the other two
booms ave also .similarly braced

together, then the tAvo girders .so

formed share the load.

If the bridge floor consists of continuous plating, this may be looked

Fig, 377.

upon as forming the 'web of the wind girder. Frequently, hoAvcver, a

Fig. 376.
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separate and distinct braced web is provided. Eig. 376 is a skeleton

diagram of such a web, this being of lattice pattern, since the wind may
blow in either direction. Eig. 377 shows in detail the connection of the

wind braces to the bottom

flange or boom at A, vX/X. \ /
and Fig. 378 shows two

methods of connecting the

wind braces at their in-

tersection B.

The stresses in the

wind girder under both n^X ''''/
conditions (a) and {b) X
(Art. 224) are determined Fig. 378.

in the usual manner,

and the web members designed to carry them. The stre.sses in

the booms due to the wind are suitably combined with those due to

other causes, and the booms are designed to carry the resultant

stresses. All the wind pressure stresses should be treated as live load

stresses.

226. Overhead and Sway Bracing.—In through ” bridges the top

booms are often connected together by overhead bracing. If head room

is limited, this overhead bracing takes the form of a curved girder, such
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between the two main girders the wind pressure acting on the lu'idge. It

1 1 1 1 Sway Bracing. 1 1 I
|i

380.

also iias the eilect of resisting tlie distortion of the bridge due to the
defletjtion of the cross girders as the —.=—
travelling load jtasses. --1'^

When the trusses are too low
||

I

to admit of any overhead bracing, ij

gussets may be introduced instead,
1

1

conneoting the vertical members I

with the cross girders, as shown in
l

Fig. 1170, p. 243. IJif"
To resist lateral distortion, C --.

deck bridges are invariably braced,

as shown in Fig. 381. Sec also Fig. 372, p. 243.

227. Open Web Girder Bridge—Worked Escample.—To indicate

the method of procedure, the design of an open web girder bridge to

fulfil the following conditions will be considered. Type—.single track,

through bridge. /S>aw—150 feet. TraveUiny load—n train of “eight-
wheeled” coache.s, headed by three locomotives of the typo shown in

Fig. 382.

j

23-6"
j H€hV6V+H-8-3*j'-^

{

(+ 5l’_0" 4« 51-7^'

Coach. Locomotive.

Fig. 382.

Type of Main Oirclet'g.—As, typical of normal British ])racticti for
spans of tho length given and carrying such a load, an N girder with
curved top flange will bo adopted.

Actual Npan.—Fix as accurately as possible tho actual span of the
girder. Where rocking bearings are employed it is tho distance from
centre to centre of the pins, in this ca.se 150 feet exactly. This .span
will be used for all calculations.

DejJth of Girder and Number of Panels.—The depth at the centre of
the .span should be from one-twelfth to one-eighth of tho span, the number
of panels being chosen to correspond, due consideration having been given
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if) the spacing of the cross girders. Fig. 383 shows an outline of the

t russ as decided upon. The depth at the centre is 12 feet 6 inches, at

the ends 7 feet 6 inches, and there are twenty panels, each 7 feet 6 inches

in length.
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8

centres]

9 '0 ’

1

Outline of Main Gird&rs and Gross Section.—Draw an outline of the

bridge, showing the centre lines of the various members. Draw also an
approximate cross section at the centre, showing the cross girders, rail

bearers, flooring, etc. See Fig. 386, p. 256. Reference to an existing

bridge is here desirable.

,

Lengths of Memhers.—Calculate the leiigtlis of the centre lines of all

the members of the main girders and tabulate them. See stress sheet,

p. 257.

Travelling Load Effects.—Determine the maximum bending moment
and shearing force diagrams, and also the equivalent uniform load due to

the specified travelling load. The tracing paper method described in

Art. 106, p. 98, may be used.

When the travelling load crosses the bridge the bending moment
rises to a maximum of 4800 foot-tons, the equivalent uniform load being

256 tons. The maximum shear force occurs at the ends of the span, and
is 133 tons.

Weight of Bridge.—The dead load due to the weight of the bridge

and its floor must be estimated as closely as possible, basing the calcula-

tion if possible on an existing design. The following will indicate the

method.

The area of bridge floor covered with ballast will be taken as

150 feet X 11 1 feet (see cx’oss section, p. 256). The weight of the bridge

floor, exclusive of cross girders, is therefore-—

Tons. ,

150 feet of permanent way, including rails, chairs, and sleepers 11-0

3 inches of broken stone asphalt @ 140 lbs. per cubic foot 27-0

4 inches of ballast under sleepers @ 120 ,, „ . 30-8

5 inches of ballast around sleepers @ 120 „ „ . 30'1

f inch flooring plates, ballast guards, and fixings . . 17-1

Timber foot paths . . . . . , , . 3'8

Rail bearers {rolled steel Joists @ 67 lbs. per foot-run) . 8-4

Total . . . 128-i

There are 20 panels and 21 cross girders. The dead load per cross

girder is therefore 6 -4 tons. Takiifg the maximum live load a cross

,

girder to bo the heaviest axle load 17’4 tons, and the equivalent uniform
load as 1 1 times this, and doubling this la'^r figure to reduce it to a
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ilmd load, tlia total equivalent uniform dead load upon a cross girder is

6*4
-i- 52*2 “ nS-O tons.

iii Using Unwin’s formula (p. 223), assuming a ratio of depth to span

of and a (ioastant of 1500 for steel plate web girders; the span

being about 16 feet, and the stress limited to 7 tons per square inch
;
the

weight of each cross girder is 1*1 tons. Add 10 per cent, for gussets and

histenings at the ends. Hence the dead weight carried by the main

girders, exclusive of their own weight, is

—

Tons.

Bridge floor . . . . . . . . . • 128*2

21 cross girders . . ... .... 25*4

Overhead wind bracing, etc., say . . . ... 5
‘0

.

Total . . . Issi

The total e(|uivalent uniform load on the two main girders is therefore

1 59 + 256 = 41 tons, exclusive of their own weight. Applying Unwin’s

formula, the span being 150 feet, depth at centre 12| feet, and taking

thej safe working stress in compression at 5| tons per square inch, and
the constant at 1900 for steel open web girders of the type under con-

sideration, the weight of tlie two inain girders is 87 tons.

Hence th(^ fotal dead load on the main girders is 159 + 87 = 246 tons.

Unit Load ^^tresses.—Find the stress in each member of the main
girders with unit load at each panel point, preferably both graphically

and analytically. Tabulate on the stress sheet.

Dead Load. Stresses.—Tabulate also the stress in each member due
to the actual dead loads at the panel points. This stress is 6*2 times the

unit load stress, since the total dead load is 246 tons, and there are 2 x 20
panels.

Mcuhtium Live Load Sh'esses in the Booms.—Find the maximum
stresses in the boom members due to the live load. These will occur

when the bridge is fully covered, and are obtained from the equivalent

uniform load, wdiich is 256 tons. The corresponding load at each panel

point i.s 6*4 toms, and the stresses in the boom members are tlierefore 6*4

times the unit load stre.sses; they can therefore now he tabulated.

Maxhmim Live Load Stresses in the Weh Members.—Th(j maximum
live load stresses in the web members must be obtained from the maxi-

mum shear force diagram (not 6*4 times the unit load stresses). Tabulate

these stresses both for the front and back of the travelling load, giving to

each its correct sign.

Wind Load, Calculate and tabulate the w'ind load stresses

under both conditions {a) and (h), Art. 224, p. 246.

Under condition (a) the exposed area is

—

Sq. BT.
Twice the face area of the upper flange 450
The face area of the lower flange and floor system . , . 420
Three times the face area of the verticals .... 480
Three times the face area of the diagonals .... 530

Total . . .

The distributed wind load .at 56 lbs. per square foot is therefore

47 tons.
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Under <;(jndi.tuiu (h) the exposed area is—
Sq. Ft.

The area of the upper flange . . . . . . 225
The face area of the lower flange and floor system . . . 420
One and a half times the area of the verticals . . . 240
One and a half times the area of the diagonals . . . 265

Total . . . 11.W

The distributed wind load at 30 lbs. per square foot is therefore

16 tons. The rolling wind load at 300 lbs. per foot-run is 20 tons.

Hence the total wind load under these conditions is 36 tons.

In estimating the above areas reference may be made to an existing

bridge, or since, in this case, the wind stresses will only affect the lower

booms, the scantlings of the other members of the main girders may be
calculated and their actual areas used.

The two l)ottoin ilauges of the main girders wHcli constitute the

booms of the wind girder are 18 feet centre to centre. Having found

the total wind load, the stresses due to it under both conditions (a) and
(ft) can be calculated.

Maximum, and Minimum Stresses.—All the stresses under each con-

dition of loading are now tabulated. The maximum and minimum stress

in each bar and the ratio is next determined. The
maximum stress

maximum stress in a bar is the greatest stress whatsoever in one direc-

tion which can come on it. The minimum stress is the least stress in

the same direction, or should the stress reverse, the greatest stress

in the opi)osite direction. In the latter case the minimum stress is

negative.

In finding the maximum and minimum stresses, however, care must
be taken that they are the values between which the stresses actually

alternate. Two examples taken from the stress sheet will be here

considered.

Bar 10, tension boom. The maximum stress will occur when
the bridge is fully covered by a train and is made up of dead
load stress = -1-184 ‘9, live load stress = -p 190*9, and wind load stress

= -1-37*5, total 413*3 tons. The minimum stress occurs when the

bridge is quite empty and no wind blowing, and is -f 184*9 tons. The
stress will evidently alternate between these values, and their ratio

is -{- 0*44.

Bar 40, web member. When the bridge is empty, the stress in this

bar is +6*6 tons. As a train rolls on the stress steadily decreases

until the front of the train reaches the panel, when it has become
+ 6*6 - 16*1 = - 9*5 tons. It now begins to increase until, the rear of

the train having just passed the panel, it reaches a positive maximum of

+ 6*6 + 22*7= +29*3 tons, decreasing again to +6*6 tons as the train

rolls off the bridge. The stress therefore alternates between a maxi-
mum of +29*3 tons and a minimum of -9*5 tons, and their ratio

is -0*32.

Working Stresses .—The safe working stress in a member depends not

only on the maximum stress in it, but also on the range through which
the stress alternates. Various methods and formulse, based cJnefly on
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* J^or a full discussion of this subject the student is referred to Professur
Olaxton Pidler’s k-eatise on “ Bridge Construction.’*

ex])eriment.s, have been proposed to take this fact into account.*

the two following may be used :—

•

/“Safe working stress in the bar in. tons per square inch.

,, , . minimum stress
r ~ the ratio r-

maximum stress

Claxton Fuller's Formula (slightly modified in form).—For the flanges

9
of girders up to 100 feet span and for all web members, /= ^—- for

7
members, and,

^ ^
for compression members.

9
the flanges of girders over 100 feet span, /=|-|—^ for tension

7
and, /= - for compression members.

llie hemuhardt-Wayratieh Formula ,

—

/= 5^1 + for tension members.

The gross area of com})ressioii members is to be taken, and suitable

allowance made for tlie tendency of long stmts to buckle.

The working stresses found by either, or both, of these formulas

tabulated on the stress sheet.

Gross t^ections of Mtmibers .—Using the safe working stresses as found
above, design the members of the main truss in the following order :

—

Tension Boom.—Find the neces.sary area at the centre, and determine

the section there. Set out a diagi-am similar to the lower part of Fig.

331, p. 1127, showing the variation in the force in the boom throughout
its length, and show on this diagram the worth of each element in the

boom section, using the safe working stress in each panel in turn, after

deducting the area lo.st through rivet holes. This diagram deteimines

the number and length of the boom plates.

Compression Aootw.—Make a similar diagram for the compression
boom, using, however, the gross area of the section. In the present

design there is no need to malcc any allowance for buckling.

Joints in Booms,—Arrange for suitable grouped joints in the booms.
The proposed lengths of plates should be shown on the diagrams. They
must of course be convenient from a practical point of view. Design
the riveted joints and find their efficiencies. They must equal in strength

the plates which they connect. The safe working shear stress may bo
taken as 0*8 of the safe working stress in the bar. The safe working
bearing stress may be double that of the shear stress.

Diagonal Ties.—Find a suitable section, distributing the load over
one, two, or four bars as may appear necessary. Design the liveted joint

in the end of the tie. If the stress reverses in a tie it becomes a strut,

and it must also be considered as such.
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Example. Bar 32, Maximum load, 151’7 tons. Safe working
stress, 5'9 tons (Glaxton Eidler), or 6*2 tons (Laiinliardt-Weyraucli).

Try four bars 1 1 inches wide by I inch thick.

Net area (less one rivet hole) = 25 *3 square inches.

Actual stress in tension = 151*7 ~ 25*3— 6 tons per square inch.

Number of rivets required, 15 of inch diameter.

Minimum efficiency, 90*4 per cent, (tearing at second row, and shear-

ing at first). Equivalent stress, 6*1 tons per square inch.

Gomfpremon Members.—^Allowance may be made for the lengths of

the struts by the following modification of the Rankine-Gordon formula.

Using the notation of Art. 160, p. 166,/=?-|^l

Secondary flexure in a strut braced as that shown in Fig. 384, p. 254,

need not be considered.

To find the number of rivets in the end of the strut, the safe working

stress for shear may be taken as 0*8 of the safe Avorking stress in the

bar, and the safe bearing pressure as double the safe shear stress.

Example. Bar 22. Maximum load, 95*3 tons. Calculated length,

8*45 feet. Equivalent length, 8*45 x 1*6 = 13*5 feet. Assume a section

consisting of two B.S. channels, No. 19, 23*65 lbs. per foot-run, to each

of which is riveted a plate 10 inches x | inch (see Fig. 384, p. 254).

Area of section = 23*8 square inches.. Minimum 1 = 286, and /r^ = 12,

both in inch units.

Safe stress, 4*5 tons per square inch (Glaxton Fidler).

„ „ 5*5 „ „ „ (Launhardt-Weyrauch).

Actual stress =

23-80 =4*3 tons per square inch.
\ 36000 X 12 j

^ ^

3*6 tons per squareSafe stress in single shear on rivets= 0*8 x 4*5 =

inch. Number of rivets required = 43.

Gmsets.—These should be thicker than the members which thej

unite, and of suitable shape to allow of good connections. The numbei

of rivets through the ties and struts has already been determined. The

number of rivets through the gussets into the boom is found as follows.

The dead load which a gusset adds to the boom is determined from the

dead load stress diagram, and the live load which it adds is found from

the' maximum shear force diagram. From these the minimum and

maximum stresses and their ratio can be obtained. The safe working

shear stress may be taken as eight-tenths of the safe working com
pressive stress, as found by the formulae on p. 252.

Where a cross girder is attached to a gusset the additional load which

it adds, including dead, live, and wind loads, must be compounded with

that from the struts and ties, allowing for the fact that part of it will be

in a direction perpendicular to the flange. The safe working stress can

thus be determined, and then the number of rivets required. There wall

bo local bending moments on the gusseia and the rivets in them in

almost every case, and it is well to err on the side of liberality when
designing th.em.

Outline drawing of Main Girders,-—This can now be made. The

centre lines are first set out, and the sections of the members shown npoii

them. Next the riveting is arranged, care being .taken to get uniform
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pitdicR, R\ut«‘ililo joints, and pi-ovision for tlie attachment of the cross

girders, etc. Some details may need revision. From this drawing the

working drawings may be made.

To eoniplfde tlie bridge the folio-wing calculations are necessary.

Gross Girders awl Rail These carry a definite portion of

the bridge floor and a live load, consisting of one or more of the heaviest

wheel loads. Design them as plate web girders (]). 211)), doubling the

live load to redvxce it to an equivalent dead load. The v-orking stress

may be taken at 7| tons per square inch in tension.

Floor Plating.—This may be considered as carrying a certain dead



DESIGN OF STRTJaTURES 255

load per unit area in rectangular panels. The shear stress due to wind

loads must also be examined. Practically, the thickness would be about

f inch. As few sizes of plates as possible should be used (two only in
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Suitable connections to the cross girders an<l rail bearerstbe exainpki).

sbonld bo am
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i
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"^
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tile wind load on the windward girder to the leeward girder. The form

shown in Fig. ‘ITO, p. 347, would be suitable in this example.

The Holier and Fixed Bearin<j& and any other details will complete

the design for the superstructure.

The probable dellnction, necessary camber, quantities and weights will

complete, the calculations.

Should the finished weight come out much in excess of that estimated,

it will be necessary to re-de.sign the structure to allow for this.

Exercises XV.

1. A road bridge is 80 feet long and 15 feet clear width between the main
Each main girder is of the Warren type, and is divided into eight equal

10 feet each. The weight per foot-run of eac.h main girder may be taken
the total weight of cross girdens, flooring, etc., per foot-run as

gird<T has to be designed to support a crowd of people weighing 1 ewt,

square foot of roadway, and also to be strong enough to sustain a traction

engine. The wlieol base of the Iratstion engine may be taken as 14 feet, and the

loads on the axkw are 7 and 15 tons respectively, Estiinale the greatest force to

wiiioh ejRch member is subjected. Also sketch a section of the booms and,

starting from a point of support, proceed to dei.ermine the scantling of the
members and to design the joint,s. Choose your own material, working stresses,

and scales. Your calculations must he handed in with your drawings. [U.L.]

2. Design for a single track railway bridge. Span, 120 feet. Ratio of depth
to span, 'J’he girders to be of uniform depth, divided into ten equal panels.

Web bracing to be of N type. The bridge is to carry a uniform travelling load
of 2 tons per foot-run, the maximum axle load being iS tons.

3. Fig. 387 shows a hinged lifting bridge. The span is 40 feet, and it is

divided into five equal
hays, each of 8 feet length.

The bridge load is

equivalent to a uniformly
distributed dead load of f
of a ton per foot-run, and to

a uniformly distributed live

load of ^ ton per foot-run.

Determine, (a) the stresses

in the various bars of the
bridge when it is closed and fully loaded; (ft) when it is being lifted and is just

clear of the free support, carrying then, of course, only the dead load.

Choose your own working stresses, and design tiie top and bottom booms.
All drawings to be neatly finished in pencil and fully dimensioned. All calcula-

tions must be handed in with the drawings. [U.L.]
'4. Fig, 388 shows a bowstring girder for a proposed road bridge, which has

also to carry a tram linej the span of the bridge is 140 feet, the depth at the
centre 26 feet 6

inches
;

width of

bridge from centre

to centre of main gir-

ders, 18 feet. The
dead load is to be
1300 lbs. per lineal

foot, the live load
3000 lbs- per lineal

foot. Determine in any way you please the stresses in each memlxu’ of the
girder due to dead and live loads. Design the top and bottom booms. You
are not required to draw the section of the booms, but to determine the necessary
cross sectional area, and to sketch the sections. [U^L.]

6. Design for a single track railway bridge of the American typo (see p! 245).
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To be of 160 feet span divided into eight equal panels. Ratio of depth to span,

To carry a train consisting of locomotives of the type shown in Fig. 389.

Fia. 389.

6. Design for a single track railway bridge of the type shown in the worked
example (pp. 248-358). To be of 160 feet span. Ratio of depth to span about i\.
To carry a train of locomotives of the type shown in Fig. 390.

Fia. 390,

7. Design for a double^ track railway bridge of the Whipple-Murphy type.
Span, 200 feet. It is required to carry trains of locomotives of the tvpe shown
in Fig. 390.
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2UUCTI0N AND LUBRICATION

228, Sliding Friction—Coefficient of Friction.—Friction is tlio

resistance which comes into action w'hen one ]>ody is made to slide over

another, 'flie force of frirfion (F) is the least force, acting jjarallel to

the sliding surfaces of the bo(lie.s in contact, which will cause the one

body to slide over the other. If Q is the mutual normal pre.ssure

between the bodies in ccaitact, the ratio F/Q is called the coeficient of

friction, and i.s denoted by //.. The following table give.s some value,s of

/4 for moderate pre.s,sure.s and low .speeds ;
—

Wood on wood, dry . . 0'2r) to O-.O

„ „ soaped . ()• 1 ,. (>2

,, „ greased 0'02 ,,
()•!

Metal on wood, dry . . ()'2 „ O-fi

Metal on metal, dry . . 0-15 ,, Odl

,, „ oiled inter-

mittently .... . 0-07 ,,
0'08

)
Metal on metal, oiled con-

j

tinuously ..... 0'04 ,, O-OG

Leather on wood, dry . Odt to O'o

Leather on metal, dry . ()-8 ,, 0’(5

„ wet . 0-30

„ „ greased 0‘23

„ „ oiled . OIC

Hemp rope.s on metal, dry 0-2 to 0-34

„ ,, ,, greased 0'15

The foregoing values of /a niu.st be taken as approximate only. The
results of experiments on friction are very discordant. It has been found
that the coefficient of friction depends on the material of the sliding

bodies, the state of their surfaces as regard.s .smoothness, the intensity of

the pressure between the surfaces, the velocity of sliding, the nature and
quantity of the lubricant and the manner in which it is applied, and
also on the temperature.

The friction at starting from rest or statical friction is greater than
the friction of motion, anti depends oti the hardnes.s of the bodies and
the length of time during wliich they have been in contact.

The so-called fa/Pi! offriction are—(1) The force, of friction is directly

pro])ortioiial to the pressure between tbe surfaces in contact. (2) The
force of friction is independent of the extent of tbe surfaces in contact.

(3) The force of friction is independent of the velocity of sliding. 'J'liese

“ laws ” are approximately true when the intensity f)f the ])re.ssmx; between
the surfaces is moderate, and when the speed of .sliding is low.

229. Eelations between the Forces on a Sliding Body.—Consider
first the ease of a body A of weight W resting on a fixed horixiontal plane
(Fig. 391). A is at rest under the action of two forces; (1) W, the

pressure of A on the plane
; (2) R, the pres.sure of the plane on A, In

• this case R is obviously equal and opposite to W. Suppose next that a
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Fig. 391. Fig. 392.

Iiorizontal force P is applied to A, as shown in Fig. 392, and suppose

tlnat, on account of the friction between A and the plane, A remains at

rest. P and W have a resultant S which makes
an angle /i with the normal to the plane and

tan ^ = P/W, also S= ^P^TW- W/cos /3. To
lialance the force S there must be an equal and
opposite force R exerted by the plane on A. If the

force P be increased and A still remains at rest, R
will increase, and so will the angle p. When P is

increased until A begins to move, then P/W = ft, by the definition of fi,

and the angle /S* will have its maximum value 4>, where tan ^ = ft. The
angle </> is the angle Avhich R makes with the normal to the plane when
sliding begins, and is called the fnetion angle, the limiting angle of
remlance or the limiting angle of reaction.

If the plane be tilted up through an angle /3 and A remains at rest
” on the plane (Fig. 393), R, the reaction of the plane on A, must balance

W, and must therefore make an angle with the normal to the

plane equal to yS. The normal pressure of A on the plane

is W cos /3, and P, the component of W parallel to the

plane, is W sin /3. If the angle ^ be increased until A
begins to slide down the plane, P will then be equal to

gW cos /3 = W sin /S, lienee /x = tan /? — tan
<f>,

and <jE>,

which has been called the friction angle, is also the maximum
inclination which the plane can have consistent with the

body A remaining at rest, or it is the minimum inclination wdiich the

plane can have consistent with the body sliding down the plane by the

force of gravity. This inclination of the plane is called

the angle of repose, and it is the same as the friction

angle.

Next let A be beginning to .slide on a horizontal

plane, the force P being inclined at an angle 6 to

the hoi’izontal (Fig. 394). The forces P, W. and R
are in equilibrium, and R must be inclined to the

normal to the plane at an angle
~

Fig. 394.

From the triangle of forces,

P _ sin cf) __
sin ^W "

sin (90 + (9 - <^)
’~
cos (6^ - ^)’

Hence for given values of W aiul </>, P will be least when cos ((9-4) is

greatest, that is, when 0 = 4? the direction of P wull then be perpen-

dicular to that of R.

Consider next the case where a body of weight W is pulled up
a plane which is inclined at an angle a

to the horizontal by a force P acting

parallel to the plane (Fig. 39f)), the motion
being uniform. The forces which balance

one another are P, W, and R, the latter

force making an angle 4. the nor-

mal to the plane. From the triangle of forces

^'-P'

a+d)

P

Fig. 395.

(“ + 4) siti (“ + 4) „ sin g cos 4 + cos a sin 4

:

W sin (90 - 4)
”

cos 4 cos 4
^sm a + fi cos a.

i:ill
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Jf A, h, and I hi* tlio base AC, lieiglit BC, and length AB of the plane

respeetivoly, then sin a •= 7i/^ and coRa^h/l, therefore + and

iV W/j, + whieh shows the mrk done in drawing a body up

an inclined, plane is equal to the. work done in lifting it against gravity

through a height equal to the height of the plane, plus the work done in

drawing it alrmg the base of the plane against friction. This is a useful

rule to remember.

TIero it may be jjointed out that when a is comparatively small, as

it generally is for most roads and railways, it is

sufficiently accurate to assume that the base and
length of the plane are equal.

A case of the inclined plane which is import-

ant in connection with the theory of the screw,

is that in whicli the force P is parallel to the

base of the plane (Fig. 396). The triangle of forces shows that

P--Wtan(a + i/>).

230. Efficiency of the Inclined Plane,—The efficiency of any machine
hoing the ratio of the useful work done to the total work, this must be
the same as the I’atiu of the effort when friction is neglected to the effort

when frii'tion is eonsiihn'ed. Taking the case of the inclined plane shown
in Fig. 395, where the effort P acts parallel to the plane, it has been

shown that P =^ when friction is considered. If d) = 0,
cos (p

P^W sin tt, which is the value of the effort when friction is neglected.

Hence the efficiency in this case is
sin(a+^)

For the case shown in Fig. 396, where the eftbrt is horizontal, tlie

efficiency is

? j

— .4 !

tan(a + ^>)’

231, Friction of Screws,- -The connection between the inclined
plane and the screw is shown clearly by
Figs. 397 to 401. In Fig. 397 is shown
a cylinder with one turn of a helix

traced on its surface
3
the dotted right

angled triangle is the development of
^

the portion of the surface of the
cylinder which is below the helix, p ird -

being the pitch of the helix, a its in- Fig. 397,

clination, and d the diameter of the cylinder, tan a^^pf-wd.
In Fig. 398 the inclined plane and the body sliding on it arc two

similar wedges which, when bent round a cylinder, as shown in Fig. 399,
produce a form of screw and nut.

The connection between the inclined plane and a square double
threaded screw and imt is shown in Figs. 400 and 401.

The force P in Figs. 398 to 401 is shown acting parallel to the base
of the inclined plane or perpendicular to the axis of the screw, and in the
case of the screw, P acts at a distance from the axis equal to the mean
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radius of ilie sf.rew. In oacli case, W being the load carried by the nut,

P
. / ,

tana + tan«/j » +
W ' ' 1 - tan a tan ^ ird - jip

In practice the screw is usually rotated in the nut or the nut on the
screw by a force Q acting on a wheel or lever of radius r attached to the
screw or nut, and 'Pd -- 2Qr.

I’o reverse the motion of the screw or nut and lower the load W the
effort P is reversed, and its value is then P= 'W tan - a). When 4> is

greater than a, P has a positive value, but when ^ is less than a, P is

negative, that is, it must act in the same direction for lowering as for

raising, and if left to itself the load W will reverse the motion.

In the case of a screw thread of triangular section (Fig. 402), if R,
the normal pressure on the thread, be resolved into tivo

components, W parallel to the axis and S perpendicular to

the axis of the screw, then R= W/cos^, where is the

complement of the inclination of the side of the section

of the thread to the axis. Now the friction is propor-

tional to R
;
hence for a triangular thread tan must be

increased to n tan where 1/cos /S, and

P _ tan a 4- tan <;i!) p+ npnrd

W 1-n tan a tan <f~7rd~ npp * FiU. 402.

Also, since c/) is generally a small angle, and n is less than in ordinary

p
cases, n tan </j = tan nearly, then ^= tan (a+ n4>) approximately. In

the Whitworth thread 2j8= 65'’, and %=«1*13. In the Sellers thread

2^ = 60°, and 1*15.
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232. Efficiency of Screws.— Th?-ead.~—8mee fclie efficiency

is ilie ratio of the effort without friction to the effort with friction,

officiencv^ r - ; this is a maximum when a = 45°-'^, and the
tan (a + <jb)^ ^

maximum elliciency is

tan^46 + |j
^l+tan|y

Putting tan = and tan a—pfTrd, where y? is the pitch and d the

moan diameter of the screw, then efficiency = '

The reversed efficiency, that is, the efficiency when W becomes the

tan («•-</>),,.. . ,—

7

! this- is a maximum wheneffort and P the resistance, is

a — 45°+ iy, and the maximum efficiency is
- - which is the

"
. . .

tan (45 + 1)
same as the maximum direct efficiency. '

Wp
Triawjidar Thread.—Without friction P =W tan tt=s

With friction l-n tan a tan </> rrd- n[ip

tan a(l - n tan a tan <f) p(7rd ~ nfip)

tana + TOtan^ Trd{p + Jifivd)

rnv 1 • • tana-7itan<i Td(p — nuTrd)
The reversed efficiency IS V t-.

- /•
tana(l+ntantttan<j!j) y)(7rc« +

The efficiencies of square and triangular threaded screws have been
calculated for various

values of a and three •

different values of p,
and the results have ^

been plotted in Fig. •*

403. ' The full curves g
relate to the square

threads, and the dotted ps

curves to the triangular al^

threads. It will bo >-

seen that for the same z-
values of a and the ^
efficiency of the tri- £

;

angular thread is not ^
much less than that

*

of the square thread

;

the difference is greater

the greater the value

of fi, but where fi = 0*3,

the greatest difference

is only about 4 per cent.

Hence, efficiency

5 10 15 20 25 30 35 40 45
ANGLE a IN DEGREES,
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233. Friction of Pivots and Collars,—A thrust along the axis of a

sluift is taken up Ijy a pivot or collar hearing, A pivot must be on the

end of a shaft, but a collar may be at any part of the length of the shaft.

Tlie rubljing surface of a pivot or collar may be any surface of revolution,

the axis being the axis of the shaft. In the case of a pivot, the rubbing

surface is generally either flat or conical. In a collar, the rubbing surface

is generally flat.

In the present state of knowledge on the subject of friction, it is

impossible to determine a correct expression for the friction of a pivot or

collar. There is first of all the question of the distribution of the ])ressure

on the rubbing surface to consider. When the bearing is new and there

is perfect contact over the whole of the bearing surface, it is probable tliat

the j>ressure is uniformly distributed, but since parts of the surface are at

difierent distances from the axis, they must be moving with different

velocities, and there is therefore, very probably, unequal wear, which will

at once cause a redistribution of the pressure, and unequal distribution

of pressure accompanied by different velocities will almost certainly

result in variation in the coefficient of friction at different distances

from the axis.

In what follows expressions will be found for the friction of pivots

and collars on the assumption that the coefficient of friction is constant,

and that either the pressure is uniformly distributed, or that the wear is

uniform over the rubbing smlaces, and is directly proportional to the

pressure and to the velocity. To say that the wear is uniform and
directly proportional to the pressure and to the velocity is equivalent to

stating that the jn’oduct of the pressure and velocity is constant, or that

the product of the pressure and radius is constant, because the velocity is

proportional to the distance from the axis.

P == total axial load carried by pivot or collar.

p ~ intensity of normal pressure on rubbing surfaces when uniform,

or at radius r when variable.

= radius of an indefinitely narrow ring of the surface, and dr

its width,

M = moment of friction on pivot or collar.

Case I. Flat Pivot (Fig. 404).—(a) Uniform

pressure p = -^.y. Load on ring of radius r and width ^
dr^^pirrdr. Moment of friction on

M - ipp'.

JO
IppTT-^ =

{h) Uniform wear,

ring ~ 'iTrpi'dr = 2Trcdr.

Let pr ~ c. Load on

r^'i P ^
Totiil load = I* = 27rc

j

di'= 27ra\ ,
therefore c = 2^^^

'

, , „ „ . . . „ , 2u7rPrdr 'pT^rdr
Moment ot friction oniung-27rcgmr== ----

2
';^-7--=

rjo n 2
^
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IPCase il. Flat (Jollar or Ra-

ctiKml Footstep (Fig. 405),

—

Unilonu iimssiire. Procmling

for a flat ]>ivot.

Moiuoiit oi friction on ring ,,

fr2H<— 2n2>~r^d>')

f^’i r{ - '/ ilU = 2/y )3r 1
_

r-dr=

,
P

'*“* - r»)'

2MP(?-i’ - rii)

tlioref(n'c iVI = 40 ri.

(/>) ITniform wear. Let 2
’?’= c. Lna,d on ring= 27r2^/vfr= 27rcvin

f'l P
Total load = P = 27reJ _

dr = 2Tre(/'^ - r.,), tliereforc c =
2t(N"~-“)

*

Moment of friction on ring = 27r(74?Yii'r
fiVrdr

,2
To ine-rease tlit‘ amonnt of i-nbPing surface, and so diminish the

intensity of the prt'ssuro, it is better to use two or more collars, as shown
at (rt), Fig* 405, rather than have one large collar.

Case ILL Qoniral Pivot (Fig. 406),

—

(a) Uniform

pressure. Area of surface of cone = -^-~h •

TTl^
P=/> sin

,
therefore p = as for a

fiat pivot. The normal pressure on the surface of the cone

is therefore independent of the angle at the vortex of the

Load on ring _ 2pTrrdr

sin O'

Moment of friction on ring =
sin p

sin 6}q sin /9’ 3 3 sin (9

‘

Uniform wear. From the above and Case I. it follows that

2 sm^
GABis lY. Gonicai OoUar (Fig, —

407).—It is obvious from the pre- j

ceding cases that in this case JuZ

ter unite.

pressure, and

M = foruniform wear-
2 sm p



FRICTION AND LUBRICATION 2G7

Goinparixig the diifereiit cases for 'unifortn pressure aud unifonu wear,
it will be seen that the moment of friction for uniform pressure is

3 1I {
^ moment for uniform wear, and when - 0, this

ratio becomes
3'

I ootstep or Pivot bearings are frequently fitted with loose discs, as
shown in Fig. 408. Under normal conditions these
discs will all rotate in the same direction, but with
difiercnt velocities, consequently the relative velocity
between tin; pivot and the disc next it, or between two
discs, will be less than between the pivot and a fixed
bearing. The total moment of friction is, however,
])robably not altered by the presence of the discs. If,

however, one of the discs should heat up and seize, the
next will act and give the first a better chance of cooling.
A similar arrangement may be applied to collar bearing.s._ — Fig. 408.

234.^ Schiele’s Pivot,—The form of pivot known as Schiele’s 'pivot
was^ designed to give uniform wear in the (lireetion of the axis with
uniform pressure, the coefficient of friction being assumed to be constant.
Let A (lig. 409) be a point on the surface of the pivot, r the radius, and
AB the tangent at A, YY being the axis. Let AC be the amount of
vortical wear taking place at A

;
then if CD be drawn parallel to and AD

perpoiidicular to AB, AD will be the auiount of wear normal to the
surface of the pivot at A. Let = tlie intensity of the pressure normal
to the surface of the pivot, p being assumed to be constant. The wearAD is assumed to be proportional to p and to the velocity of rubbing at
A, and therefore AD is proportional to^ir. Let AD^Jepr, where h is a
constant. By similar triangles

AO
•

AD = , therefore AC = = hp • AB.

Hence if AC is to be the same for every point on the iiivot .surface, AB
inust be constant. The curve which has the
property that its tangent AB is of constant
length is known as the tractrix, and also as the
anti-friction curve.

It is evident that if a pivot wears equally in
the direction of its axis it will preserve its shape,
and there is a better chance of p, the intensity of
the pressure, remaining uniform; also if p is
uniform, the lubricant is more likely to remain
between the rubbing surfaces.

The curve EAF will never meet the axis YY,
conseqimntly this form of pivot cannothe brought
to a point and have its proper shape to the end,

To find the moment of the friction of a Schiele pivot, consider a ring
of the surface of radius r and width dr measured at right angles to the

axis. The area of this ring is == SvrZcZr, where Moment

Fig. 409.

of friction on ring = ^Trlpprdr.

111



APPLIED MECHANICS

H ence M — 1 rdr
— ~ ^'1 )

The ijortion of the load P "carried by tlie ring of radius r, already

refern ‘d to, is

Srr sin B~ 2Trprdr, therefore P==2ir/j
sin a C'

rdr= 7r])(^rf - rl).

MY

Henee M = /xP/, and this will be smaller, the smaller I is. Taking

f = M =/aPrj.
^

For a flat pivot it was shown that for uniform pressure M =

and for uniform wear jV[ = |/tPrj. It would therefore appear that the

friction of the Schiele pivot is greater than that of the flat pivot, but it

is claimed for the Schiele pivot that the wear

a,nd pressure being uniform at every point, the

surfaces ahvays fit one another, and the lubricant

is not forced out.

An approximate inetliod of drawing the

tractrix is .shown in Fig. 410, Take points a,

A fV p4c., on the axis YY. The distances ab,

b(% etc,, may be made etiual to about one-tenth

of The constant length of the tangent

is taken = rtA~f — rj. With centre b and
radius •= I describe an arc to cut aA at

rrcr. no.

fl
;
join With eentr<} c and radius = I describe an arc to cut fdl

at C
;
join rC, and so on. A, B, 0, etc., may be taken as points on the

tractrix.

It may be mentioned that a tractrix is the invcdute of a catenary, a

fact which suggests a method of drawing the curve.

A simple mechanical method of drawing the tractrix accurately is

shown in Fig. 411. CD is an arm carrying a steel pin E with rounded
ends, and a jiencil F, the lead of which is very

hard and sharpened to a knife edge, the edge

being slightly convex in the direction of its

length. The di.stance between the axes of the

j)in E and pencil F is equal to f, the length of

the tangent of the tractrix to be drawn. The
edge of the pencil point lies in the plane of the

axes of the pin and pencil. The arm CD carries

a weight W as shown
; this weight may weigh

about one pound. A straight-edge HK is placed

with one edge parallel to the axis YY, and at a

distance from it equal to the radius of the pin E.

Holding the straight-edge HK firmly with one
hand, the pin E, held loosely between the thumb
and fore-finger of the other hand, is draAvn

along the edge of the Straight-edge, tlie pin

being Icept vertical. The pencil F traces ont the tractrix AB. It is

essential that the drawing edge of the pencil shall Ik; sc sharp that it

JSL
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will only nioyo easily over the paper in the direction of the edge.

Instead of a drawing pencil, a piece of steel hawig a razor edge may
l:»o used.

‘

235. Tower’s Experiments on the Friction of Pivot and Collar

Bearings. —- The table below gives the results of the e.x.poriiuents

on tlie friction of a pivot bearing carried out

by AEr. Beauchamp Tower, and described in the

fourth report of the Research Committee of

the Institution of Mechanical Engineers on fric-

tion.* The pivot experimented with was of steel

3 inches in diameter, and flat ended. The bear-

ing, which was of manganese bronze, is shown
in Fig. 412. The oil was introduced, as shown,

through a single central hole, and distributed over

the bearing by a single diametrical groove, terminating at each end
within th of an inch of the circumference of the bearing. It was found

that the oil circulated automatically, the pivot and bearing acting like

a centrifugal pump.
The coefficients of friction in the table below w'ere calculated

from the observed frictional moments, on the assumption that the mean
leverage of the friction was two-thirds of the radius of the pivot, which

wo^ild be correct if the pressure on the bearing w'as uniformly dis-

tributed, and the friction was independent of the velocity. The circula-

tion of the oil varied from 20 to 56 drops per minute at the lowest speed

to a continuous stream at the higher speeds.

Load in Lbs. per Squares Inch.

Revs. —
per 20 40 60 80

1

100 120 140 16C

Min.

Coeliicients of Friction.

50 0*0196 0*0147 0*0167 0*0181
j

0*0219 0*0221 ...

128 0*0080 0*0054 0*0053 0*0063 !
0*0077 0*0083 0*0093 1

0*0 i 13

191 0*0102 0*0061 0*0051 0*0046
i
0*0044 0*0052 0*0062

!

0*0068

290 0*0178 0-0107 0*0078 0*0064
j

0*0056 0*0048 0*0046 1

1

0*0044

353 O'OIOT 0*0096 0*0073 0*0063
j

0*0057 0*0053 0*0053 1
0*0054

The results of Air. Tower’s experiments on the friction of a collar

bearing t sliowed that the friction in this type of bearing is practically

independent of the speed. The adjoining table gives the moan values of

the coefficient of friction (/t) obtained with different intensities of

pressure ip) on the

bearing ring, in lbs.

per square inch. The

mean leverage of the

friction was taken

as the mean radius of the ring. It was found in these experiments that

the greatest load which the bearing would carry was 75 IbS. per square

* Proceedings of the I'n/stit'uiion of MeoJumioal Engineers^ 1891.

t Ibid., 1888.

i’
I

30
!

45 * 60 - 67*5 75 1
82*5

fj.
0*054 0*046 0*037 0*036 0*036 0*035 0*034
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inch at. tljo liighost speed, and 90 lbs. per square ineb at the lowest

speed.

236. .Friction of an Axle.—AB (Fig. 413) is a body mounted on

an axle whoso axis is O and radius r. The body AB is either fixed

the axle ami the axle rotates in a bearing,

or the axle is fixed and AB rotates on

the axle. The resultant of the forces

which resist the rotatifni of AB is a force

Q, acting at a ]terpendit;ular distauec

OB -• b from O. An effort P acts at a per-

pendicular distance OK -

a

from O, and

is just abhi to cause AB to rotate in the

direction of the arrow e. The line.s of

action of P and Q meet at C, and make
an angle 6 with one aiK)ther.

B, the resultant of the pressure of the

bearing on the axle when tlu; axle rotates

(lower part of figure), or the; resultant of

the })ressure of the axle on the lever nhen
the axle is fixed (upper part of figure), must
be equal and oj)posite to the resultant of

P and Q, and therefore its line of action

must pass through C, and must make with the normal OD to the
sliding surfaces an angle equal to j also, the line of action of E will

evidently lie liotween 0 and A.

Draw OE at right angles to the line of action of E. Then OE is

evidently equal to r sin In most cases ^ is .so small an angle that
sin <jfj may be Uken equal to tan c/) or without sensible error. Let
OE — r sin </> — ft. If a circle be described with centre O and radius s,

the line of action of E will obviously be tangential to this circle. Hence
the construction for finding the line of action of E is to draw through
0 a tangent to the circle whose centre is O and radius s. This circle is

called the friction circle.

If CF bo made equal to Q, and FH be drawn parallel to CA to meet
CE at H, the triangle CFH will be the triangle of forces for Q, P, and E,
and FH will be equal to P and CH equal to E.

If there were no friction the line of action of E would be CO, and
then FK would be equal to P and CK equal to E. Hence the efficiency

of the mechanism is equal to FK/FH. The moment of the friction is

E X s or CH X OE.

Proceeding analytically, E = + Q2 ..j. gpQ Taking moments

about 0, Pa = Q& + Es — Qi -f » + Q® -j- 2PQ cos 0, a quadratic equa-
tion which gives

cos 0±s -f -f 2a& cos B - .s- sin” 6).

The 4* sign in front of the surd is to be taken when P overcomes Q, and
the ~ sign when Q overcomes P.

Wlien 0= 0®, OA and OB are in the same straight line, and P and Q
are on opposite sides of 0, then P^Q^^, the upper sign to be taken
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when P overcomes Q, and the lower sign when Q overcomes P. In this

easeR = P + Q.

When 9— 180°, OA and OB are in .the same straight line, and P and

Q arc; on the same side of 0, then P = Q the upper sien to be taken
a±s

when P overcomes Q, and the lower sign when Q overcomes P. In this

case R = P - Q.

237. Friction Axis of a Link.—The friction of a pin joint, such as

is common in links or rods in mechanisms, is of the same character as the
friction of an axle discussed in the preceding Article. It has been seen that

in the case of an axle when the axle rotates in its hearing, or when, the

piece carried by the axle rotates on it, the resultant force on the axle

does not intersect the axis, but is a tangent to its friction circle. So in a

link, like the connecting-rod of a steam-engine, with pin joints at its ends,

the line of thrust or pull on the rod will not coincide with the axis of the

rod,* but will be tangential to the friction circles of the pin.s of its joints.

This actual line of thrust or pull on the rod is called the friction axis of

the rod or link, the change of the line of action of the thnrst or pull from
the geometrical axis of the rod to the friction axis being due to the

friction of its pin joints.

Since four tangents may in general bo drawn to two circles, it follows

that a rod with pin joints has four diflerent possible friction axes, and the

one which is to be taken in any particular case will dejiend on the direc-

tions of the external forces on the link, and on the directions of its

motions relative to the pins of the joints or to tlie bearings of the pins.

This point is made clear by Fig. 414, which shows the connecting-rod

AB and the crank BO of a steam-engine in four different positions (a),

(5), (c), and {d) during a revolution of the crank.

The friction circles of the pins at A and B are shown greatly enlarged

for the sake of clearness. In each position ATF is the friction axis of

the connecting-rod. There is rotary motion of the pins in their bearings

at A and B, and the point to be remembered is, that since friction always
opposes motion, the force acting along the friction axis at a joint must
have a moment about the axis of the pin to overcome the friction which
tends to prevent the rotation at that joint.

,

In the position (a). Fig. 414, where the connecting-rod is exerting a
thrust on the pins at A aird B, the angle BAG is increasing, and will go

on increasing until the crank has turned through 90° from its inner

* The axis of the rod is here the line joining.the centres of .the pin joints at
its end,s.
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(lead (’C'litiv, and tlio <u)niiecting-rod lias therefore anti-olockwise inotion

altont tlie pin at A. Hence the friction axis must touch the fih'.tion

circle of the pin at A above the axis of that pin. Still referring to tlni

jiosition (rt), the angle ABC is diminishing, and will go on diininisliing

until the crank i.s at its outer dead centre, and the connecting-rod has

therefore anti-clockwise motion about the pin at B. Hence the friction

axis must touch the friction circle of the pin at B below the axis of

that pin.

The .student .should now have no difficulty in reasoning out the

[lositions of the friction axis for each of the remaining cases (?;), (c),

and ((/).

238. Tower’s Experiments on the Friction of Journal Bearings.

—The n'sults of Mr. Beauchamp Tower’s experiments* showed that the

coeffi(;ient of friction i.s apjiroximately proportional to the square root of

the velocity, and invor.seIy proportional to the iiiten.sity of the pressure

when the journal runs in an oil bath. Thus where fx is the cc-

P
eflii'ieut of friction, v the velofiity of the surface of the journal in feet

per sticond, tlie inteirsity of the jirossure in lbs. per .square ‘inch of

projected artai of tlni bearing, and r, a coefficient which has the following

value.s for the luhriisauts mentioned;—Olive oil, 0'289
;
lard oil, 0*281

;

mineral grease, 0‘4.‘ll
;
sperm oil, 0*194; rape oil, 0*212; mineral oil,

0*276,

For syphon lubrication ix = f''lp, where c/— 2*02 for rape oil.

For pad lubrication, /a is approximately constant, and equal to 0*01

for rape oil .

The following results -were obtained by Mr. Tower with a .steel

journal 4 inches in diameter and 6 inches long, at a sjjeed of 150 re-

volutions per minute, or 157 feet per minute. The “brass” was of

gun-metal, and embraced nearly one-half of the circumference of the

journal, and was placed on the top. - The lubricant used tvas rape oil.

Method of Lubrication.
1 p ^

Oil bath . . . . . .
;

2G3

Syphon lubricator
|

252

Pad under journal . . . . 272

With the same journal Mr. Tower obtained the results .shown in the

annexed table at a speed of 20
revolutions jier minute, or 21

feet per minute in a hath of

mineral oil

Mr. Tower’s experiments on
friction at different temperatures

indicate a very great diminution in the friction as the temperature rises.

Thus, in the case of, lard oil, taking a speed of 450 revolutions per

* Proceedings of the InstUutim of Mechanical Engineers, 1883 and 1883.

1p •
'

434
j

342
!

216 91

0*00132
i

0-00168
'

1

0-00247 0'0044

0-0014

0-0098

0-0090
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luiimtAi, tlic coefficient of friction at a temperature of 120° Fahr. was

<i]ily one-tbircl -of what it was at a temperature of 60° Falir.

The following figures show the comparative friction with various

lul)rioants tried by Mr. Tower under as nearly as possible the same condi-

tions;—Tein})erature, 90° Falir. Lubrication by oil bath—spc'riu oil,

0-4(S-t
;
rape oil, 0'512; mineral oil, 0-623

;
lard oil, 0-652: olive oil,

0-G54; mineral grease, 1*048. These figures are the means of the -actual

frictional resistances at the surface of the journal (4 inches diameter) in

11)S. per square inch of bearing at a speed of 300 revolutions per minute

(314 feet per minute), with all nominal loads from 100 to 310 lbs, per

square inch. They also represent the relative thickness or body of the

various oils, and also in their order, though perhaps not exactly in their i

numerical proportions, their relative weight-carrying power. Thus sperm i

oil, which has the highest lubricating power, has the least weight- f

carrying power, and though the best oil for light loads, would be inferior
|

to the thicker oils if heavy pressures or high temperatures were to be
1

encountered.

239. Work Lost in Friction in Journal Bearings.—Let B = resultant

load on journal in lbs., = diameter of journal in inches, V== surface

velocity of journal in feet per minute, N = revolutions of journal per

minute, ^ = friction angle, and ju,== coefficient of friction.

The moment of B is \V\.rl sin (/>, which may be written -llbi/x, since
(f>

is a very small angle. The work done per minute on friction is therefore

ft. -lbs. The horse-power lost in friction is

240. Methods of Lubricating Bearings.—There are two principal

methods of lubricating bearings. In one metliod the oil is allowed to

flow in at ordinary atmospheric pressure, while in the other the oil is

forced in under sufficient pressure, generally by a pump employed for

that purpose. When the oil enters at atmospheric pressure it should he

delivered to the bearing at the place where the pressure on the bearing is

least, but with forced lubrication the oil should be delivered to the bearing

at the place where the pressure is greatest.

The well-known needle Ixibricator is shown in Fig. 415. .B is an

inverted glass bottle or reservoir containing oil. R is a wooden stopper^

one end of which fits into the neck

of the bottle, while the other end fits

into a hole over the bearing of the

journal J to be lubricated. N is the

needle, which tits loosely into a hole

in the stopper S. The lower end of

the needle rests on the journal.

When the shaft is at rest capillary

action prevents the oil leaving the

bottle, but when the shaft is rotat-

ing the vibration set up causes the

oil to flow slowly on to the journal. itiq, 415 , jig. 415 ,

The needle N is simply a straight

piece of wire flattened at its upper end to. prevent it falling ,
out when

the lubricator is removed from the bearing.

A syphon lubricator is shown in Fig, 416. The oil is stored in the

: . i
“
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r,u|) or box A, aiifl is delivered slowly to the bearing through the wick B,

whicli acts as a sypnon. It is important that the end of the wick vliich

<h']ivei-.s the oil should be belo^v the free surface of the oil in tlie ca.ip,

otherwise the oil w'ili not flow through the wick.

In pail luhrivntim a part of the bearing surface upon which there is

no ]u-essure is dispensed with, and its place is taken by a soft pad, which

is kept satnratcid with lubricant. In bath luhricaUon the bearing con-

tains a space filled with oil, which is in contact with a poi’tion of the

journal.

JUuii luhricaUon is illustrated by Fig. 417. In this bearing the

jwirnal carries two loose rings which rotate, being driven by frictional

contact with the journal. These rings dip into an oil bath and carry oil

to the top of the journal. The oil flows over the surface of the journal

through oil grooves in the bearing, and finally returns to the bath below.

Section at AB. Section at CD. Section at EF.

An example of forced lubrication is .showm in Pig. 418. This illus-

Fig. 418.

trates Tilston’s system as applied to a journal bearing. A is the bearing,
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iiuJ B tlie sliaft. C is an eccentric clamped to the shaft. DD are end
(>hain]:»ers connected by the passage E. F is a pump pliniger, made from
steel tul)ing forged on to a solid end. G are inlet holes in the plunger,

Avhich allow oil to pass to the inside of the pump Avhen the plunger is at

iuul near the top of its stroke. The eccentric drives the pump plunger,

the latter being kept up to the former by the spring H. I is a non-

return ball valve, and J an outlet from the pump to the shaft. K is a

sight feed plug supported by a cross pin beneath it. L is a screwed

plug to drain off spent oil and dirt. MM are leather washers to prevent

oil travelling along the shaft. N is a screw'ed plug giving access to the

passage E for cleaning purposes. As the plunger descends, the inlet

holes G are cut off by the casing, and oil is forced past the non-return

valve and through the outlet J to the shaft, and thence to the end
chambers DD.

Forced lubrication has been used with great success on high-speed

steam-engines. The various bearings are connected by pipes and
passages to an oil pump driven by the engine. The oil after being

used passes through a filter back to the reservoir which supplies the

pump.
Splash lulricaMon is common and simple, but crude, and is used on

high-s])eed vertical engines, especially on petrol engines. The engine is

enclosed, and the crank case contains oil, into wdiich the cranks splash as

they rotate, throwing the oil over the various bearings.

24:1. Friction of Sliding Keys.—In machines it is frequently neces-

sary to move a piece longitudinally on a shaft, w’hile there is a torque

between the piece and the shaft. In such cases a sliding key may be

fixed to the sliding piece and fit easily into a keyway in the shaft, or the

key may be fixed to the shaft and fit ea.sily into a keyway in the sliding

piece, as shown in Fig. 419, where the looseness of fit between the piece

A and the shaft B, and be-

tween the key C and the

Iceyway in A, is exaggerated.

If the piece A is driven in

the direction of the arrow

D by a torque T, the forces

which transmit this torque

to the shaft are the, equal

forces P and Q at a distance

r from one another, so that

Pj’ = T. If two keys be used,

as shown in Fig. 420, the equal forces P and Q will now be at a
distance 2r from one another, and 2Pr= T. Hence the force causing
the sliding friction in the second arrangement is only half w’hat it is in

the first arrangement. To get the full advantage of the two keys it is

necessary that they be very accurately fitted, so that they transmit the

whole of the torque without any pressure between the sliding piece and
the shaft itself.

242. Rotating Guides for a Sliding Piece.—^It is well known that a
piece mounted loosely on a shaft may be made to slide along the shaft by
the application of a smaller force when the shaft is rotating than w'hen

the shaft is at rest, and the greater the speed of the ^aft, the smaller is

Fig. 419. Fig. 420.
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tlio f(»roo v('quired to produce the sliding of the pitH'o mounted on it. .A

enuvmiioiit way of applying this principle to the guiding of a sliding

jtiece so as to ri'dnco the force required to slide it is sliown in Fig. 421,

FlU. 421. Fig. 422.

where A and K are two parallel shafts or .spindles, which are rotated,

prefei-ably in opposite directions, and which support the piece C, which is

made to travel along the sliaft-s l:)y a force T.

The theory of the action of the rotating guidcKS is as follows. Let
AB (Fig. 422) rej^re-sent a liorizontal flat plate, upon which rests a body
p. In a given time, let AB travel a distance AA' in the direction OX
into the po.sition A'lF. In the .same time, let the body D be made to
.slide^ on Ail a di.stanco ON in the direction OY at right angles to
OX into the position D'. The motion of D relative to AB will be the
same as if while it slides the di.stanco ON in the direction OY^ it he made
to slide the distance CM equal to AA in the direction XO. These
.simultaneous motions given to D will result in a motion of D relative to
AB in the direction CL, and e<[ual to CL where GL is the diagonal of
the rectangle MN. Now the force P, acting along CL, necessary to slide
I) along CL, is equal to /xR where R is the force, normal to AB, and
pressing D on AB. But the force P, represented to scale by CL, may be
replaced by the ff)rces Q and 8 represented to the same scale by CN and
CM respectively, and the ratio of the force Q to the force S is evidently
the same as the ratio of 'tlie velocity of D in the direction OY" to the
velocity of AB in the direction OX. Applying this to a rotating guide,
a force equal and opposite to 8 is the tangential force at the surface of
the guide in the direction of its motion nccc.s.sary to drive it, and Q is the
force on the sliding piece in the direction of its motion nece.ssary to make
it slide.

To prevent D being carried in the direction OX when AB moves
under it in that direction a fixed guide EF is necessary, and the force
pressing D against this guide is evidently equal to 8, which will cause a
resistance ecjual to gS in the direction YO. Hence the resultant force
necessary on D in the direction OY is Q + /xS. By using two rotating
guides rotating in opposite directions, the tractive force on the sliding
piece is reduced from Q + ^8 to Q for each guide.

To prevent AB moving in the direction OY when D moves over it in
that direction a fixed guide HK is necessary, and the force pressing AB
against this guide is evidently equal to Q, which will cause a resistance
equal to /xQ in the direction XO. Hence the resultant force necessary
on AB in the direction OX is equal to S4-/xQ, In a rotating guide the
resistance which would correspond to the resistance /xQ would be the



In tho above equations, Q is in circular measure, ai|<iti]ie logaritlim
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resistance to rotation at tlie tlirust bearing of the sliaft, but in tliat case

tlie resistance, reduced to the surface of the shaft, may be either greater

or less than depending on the effective radius of the collar or pivot

of the thrust bearing used.

Consider now the work done in the given time when two guides are

used, as in Fig. 421, each guide carrying half the load W. Neglecting

the Avork done at the thrust bearings of the guides, the work done is

2P • GL = 2 X 1/i.W - CL = /aW • CL = U. If V is the surface velocity of the

rotating guides, and v the velocity of the sliding piece,

CL +

CN V
,andU = /zW.CN-

CN
The force T is equal to /aW • = pW‘

rest, V — 0, and T = //.W.

From the foregoing, it is seen that the work done with rotating guides

is greater than the work done with ordinary sliding guides in the ratio of

to V, and therefore the rotating guides would not be introduced

to economise power. It would be absurd, for exanqde, to use rotating

guides in a planing machine. Rotating guides are useful in certain

recording instruments, where-! a ]»cn or pencil has to be guided in a

straight line and moved by a small force.

The same principle is also apjiliod when it is required to reduce

the sliding friction of a piston or plunger in the direction of the

axis, by giving the piston or plunger a simultaneous rotary motion.

Kinematically, the mechanism in thi.s case is the .same a.s that discussed

above.

243. Friction of a Band on a Pulley.—Let a band ABCD (Fig.

423) passing over a pulley have a tension T^ ^ r .

in the part AB and a tension L, in the part

Cl), and let the band be just on the point of

slipping on the pulley in the direction from C to

B. Tj will be greater than T^ on account of the

friction between the band and the pulley. Let 6

bo the angle subtended by the arc of contact BG
at the centre of the pulley. Consider an in-

definitely small portion he of BC subtending an

angle dO at the centre of the pulley. Let T bo

the tension in the band at c, and T + ifT the

tension at h. Let S bo the resultant of the pres-

sure of the pulley on the portion he of the band, and let /a be the

coefficient of bictiou lietween the band and the pulley. Then

,^T

T + r/T -- T = f/T = juS, but S = T(f6>, therefore ti!T and

t

'l’i

'

I T T
= dB, therefore Qt =



Ls the Napierian or hyperbolic logarithm. Using common logarithms,

h'g = 0-4343/i(9, and if is the measure of the angle 0 in. degrees,
"

rj,

then log = 0-00758/47/,.

_

-Tf the band lies in a V groove on the pulley, as shown in Fig. 424,
this has the elFc(!t of increasing the resistance to slipping, because slippim’
Jiiust now take place on two surfaces (the sides
of the gi’oove), nj)on each of which the normal
pn'.ssnre is great{ir than half the normal pres- k /
sure on aflat jiulley. Considering the element %
he (tig. 423), the riisistance to slipping in the
V grof>ve is 2//,R=/xS coseea, where 2a is the
angle of the groove, but for a flat band the
resistance to slipping of this element is /aS. —
1-lence the equations given above for a flat Imnd will apply to a band in
a V groove if /i be altered to /4j, where = /i coseo a.

Exercises XVI,

of thJho^v of
425, 426. 427, and 428, the motionui tnu body ot weight W being unifom and up the plane.

W

Fig. 426.

,=tan(af9i).

Fig. 428.

— (ft + 0)W cos(i9 + 4'

« ub? £”? b ae vatae of

ttaUrof O'

w .

Fig. 433.
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6. A piece slides on a bar of square section by the action of a force P, as
shown in Fig. 434. If Q is the force pressing the sliding

piece on the bar, show that P=/uQj.y2.

7. Ah inclined plane has a base 90 feet long, and is

20 feet high
;
the coefficient of friction between it and !

a body weighing 800 lbs. placed on it is 0-3: how many
foot-pounds of work are done in drawing the body up the
whole lengt h of the plane, and how many in drawing it Fio. 434.

down the plane, the pulling force being parallel to the plane ?

8. What must be the effective horse-power of a locomotive which moves at
the steady speed of 45 miles per hour on level rails, the resistances being 16 lbs.

per ton, and the weight of the engine and train 220 tons? If the rails were laid
at a gradient of 1 in 130, what additional horse-power would be required ?

9. If the engine of the preceding exercise exerts the .same power on the
incline as on the horizontal, at what speed, in miles per hour, would it ascend
an incline of 1 in. 180 with the same train, assuming the frictional resistances to
be unaltered ?

10. Calculate the horse-power required to drive a motor car weighing 1 ton
up an incline of 1 in 14 .at 24 miles an hour, supposing it to reach the same
velocity when running freely down the incline. [U.L.]

11. A window sash (Fig. 435), of height k, is counterbalanced by weights
;

show that it can be raised by a vertical force, if its point of
applicatioir is not further than \h cot <!> from the centre, whore
is the angle of friction. [B.E.]

12. A square threaded screw, whose mean diameter is 1^-

inohes, and pitch ^ inch, has its axis vertical, and carries at its

upper end a weight W, which is raised by the application of a
torque T to the screw. It was found by experiment that the Fttb 436.

W
relation between T and W was given by the equation T=-j-{-3, where T is in

iuoh-lbs, and W in lbs. Determine the values of
ij,

for the screw and nut when,
(1) W= 50 lbs., (2) W = 100 lbs., (3) W=200 lbs.

13. Particulars are given in the following table of certain standard Whitworth

Outside diameter [d], inches 4 1 14 3 24 3 34
Diameter at bottom of

thi’ead, inches . . i
0-393 0-840 1-287 1-716 2-180 2-634 i 3-106

Number of threads per inch
i

12 8 6 4i 4. 34 3i

screws in which the angle of the V-thread is 65°. Calculate
the efficiencies of these .screws, taking /i=0-16, and plot

the results, taking efficiencies for ordinates, and d for

14.

A simple screw-jack (Fig. 438) has a square threaded
screw whose mean diameter i.s 1-8 inches and pitch 0-4 inch.

If the coefficient of friction between the screw and nut is 0*12,

what force at the end of a lever 24 inches long, measured
from the axis of the screw, will raise a load of 2 tons?
Assume that the load rotates with the screw, thus eliminat-

ing collar friction. Calculate also the efficiency. What
force at the end of the lever will be necessary to lower the
load of 2 tons?

16. A weight W is carried by a square threaded screw
and nut, as shown in Fig. 437. Outside diameter <3f screw,
1-5 inches; pitch, 0-4 inch; thickness and depth of thread,
0'2 inch. Outside diameter of collar on nut, 3 inches ; in-

side ditto, 1 -5 inches. The nut is rotated by a force of 80 lbs.

at the end of a spanner 18 inches hmg. Find the load W, in

lbs., (1) when friction is neglected, (2) when /s fdr the collar

and for the screw is 0‘2.

16. A flat pivot has to carry a load of ,5000 lbs., and the
intensity of the pressure (assumed to be uniform) is to be
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120 lbs. per square incli. What horse-power will be absorbed by the friction of

this pivot when running at 200 revolutions per minute with a coeificient of

Ericf.ion equal iu O’OOo ?

17. The thrust shaft of a marine engine indicating 4500 horse-power has 8
collars 20j inches diameter, the diameter of the shaft between the collars being

inches. Taking the coefficient of friction at 0‘04, the intensity of the Ihru.st

pressure at 50 lbs. per square inch, and the speed of the shaft 80 revolut ions

per minute, wliai. horse-power is absorbed by friction in the thrust bearing, and
what poroenttJge is it of the horse-power of the engine 1

18. A straight lover mounted on an axle 2 inches in diameter has arms
5 inclu's and It) inches long, measured from the centre of the axle. There is a
lf)ad W of 100 ll).s. at the end of the short arm, and a vertical force P at the end
of the long arm. Tak-
ing t.ho. cofiilioient of

friotion /a= 0vI, findl',

(1) to just rai.se W,
(2) to ju.st lower W.

19. A weight W of

500 lbs. hangs by a
rope wliich is coiled

round a barrel whose
offeolivo diameter is

12 inches. The barrel is fixed on an axle whose diameter is 3 inches. W may
be Tais(«l or lowered by a vertical force P acting at the oiroumferenoe of a wheel
HO inches in diameter, also fixed to the axle. Find P to raise W with a uniform
velocity, {<*) when P acts as shown in Fig. 4H8, (6) when P acts as shown in

Fig. 4H0. Also find P to lower W with a uniform velocity in each base.

a-=o-i.

20. Referring to Fig. 413, p. 270. a=30 inches, &=:10 inches, r= l-5 inches,

^--.fiO", angle 0110 = angle GAO =1)0% sin^()= 0T, and Q=fi00 lbs. Find P (a) to

just raise Q, (h) to just lower Ci,

21. Fig. 440 shows a bent lev(!r AOB. The fulcrum at O is in a loose cylindric
bearing 4 inches diameter. AO is 12 inches,

BO i.s 24 inches ; the force Q of 1000 lbs. acts

at A. What force P acting at B will just

overcome Q, (1) when friction is neglected,

(2) when the coefficient of friotion is 0‘3. Find
also the line of action and magnitude of the
force B acting on the lever at 0. [B.E.]

22. A crank disc (Fig. 441) receives an oscillating motion through an angle
AOB by a “gab” ended rod CD driven
by an eccentric. At (a) the crank pin is

shown below, and at (6) above the centre
of the disc. Show that in one of these
arrangements the effect of the friction

between the pin and the “ gab,” during
both the forward and return strokes, will
be to throw the “ gab ” off the pin, while
in the other the effect will be to keep the
“ gab ” on. the pin.

23. An ordinary_ horizontal direct acting steam-engine mechanism is showii
in a particular position in Fig. 442, AB being the connecting-rod, and BO the
crank. The diameters of
the journals at A, B, and
0 are 5, 8, and 7|- inches
respectively. The forceP
transmitted through the _
piston-rod to the cross-
head is 6000 lbs. Q, the n
useful resistance to the
motion of the crank shaft,

acts in a vertical direction
at a perpendicular distance of 12 inches from the axis of the shaft, as shown.

Fia. 442.

Fig, 441.

Fig, 440.
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Find the magnitude of the force Q, (a) neglecting friction, {b) allowing for
friction at the journals A, B, and C and also at the guide DE, neglectmg tlie

weights of the moving parts. Take j(4=0’05.

24. A horizontal pump, stroke 4 inches, is driven by means of an eccentric,

11-^ inches diameter, keyed to a shaft 4 inches diameter. The shaft is drivdn by
a vertical belt on a 14 inch diameter paUey. The belt embraces an arc of 180“,

and the coefficient of friction between belt and pulley is 0‘25. If the tension on
the tight side of the belt is 350 lbs., find the maximum horizontal force that, can
be delivered to the pump when the radius of the eccentric is at 60“ to the inner
dead centre. Assume the eccentric rod to be very long. Coefiicient of friction

between eccentric sheave and strap and between shaft and bearing is Od. [U.L.]

26.

A pulley weighing 1000 lbs. is supported on a 5 inch shaft midway between
two bearings. The mass centre of the pulley is | inch from the axis of the
shaft. Neglecting the effect of the deflection of the axis of the shaft from the
axis of revolution, calculate the horse-power required to overcome the friction of

the bearings in consequence of the error of balance in the pulley when the shaft

makes 200 revolutions per minute. As.sume the coefficient of friction between
the bearing surfaces to be 0'0.5. [U.L.]

26. The journals of a shaft are 6 inches in diameter. The shaft carries a
load of 8 tons, and makes 75 revolutions per minute. If the coefficient of friction

between the journals and bearings is 0'05, at what rate, in B.TIi.U, per minute,

is beat being generated at the bearings ?

27. The radius of gyration of a fly-wheel and crank shaft is 10 feet. The
shaft journals are 12 inches in diameter. The turning effort on the shaft is with-

drawn when the speed is 65 revolutions per minute. There being no resistance

except the friction at the journals, find how many revolutions the wheel and
shaft will make before coming to rest after the effort is withdrawn. Take
^= 0 -065.

28. A shaft 8 inches in diameter carries a vertical load of 6 tons and a
horizontal load of 8 tons. Taking /m—O-OS, find the horse-power lost in friction

at the journals when the shaft is driven by a pure torque at 100 revolutions per

minute.
29. A wheel under a torque of 2000 inch-lbs. is mounted on a shaft along

which it has to slide. The rotary motion of the wheel is transmitted to the

shaft through two accurately fitting sliding keys which are opposite to one
another, as shown in Fig. 420, p. 275. The resultant force on each key is at a
distance of inches from the axis of the shaft. If the coefficient of friction is

0-08, what force acting on the boss of the wheel, parallel to the axis of the shaft,

will be necessary to slide the wheel along the shaft?

30. Referring to Fig. 421, p. 276, the rotating guides are horizontal, and are

each 0‘3 inch in diameter. The weight of the sliding piece is 0‘5 Ib. Taking
the coefficient of friction as O'Ou, find the tractive force T when the guides rotate

at 600 revolutions per minute, and the sliding piece travels 5 inches in 20 seconds,

and express it as a fraction of the tractive force when the guides are at rest. Find
also the ratio of the work done when the guides are rotating at the above speed
to the wmrk done when the guides are at rest. Neglect the friction of the thrust

bearings of the guides.

31. A solid cast-iron disc, 40 inches in diameter, and 8 inches thick, is

rotating at a uniform speed of 240 revolutions per minute. If the air frictional

resistance is assumed to be equal to KV* lbs. per square foot, where V is the

linear velocity of any point, obtain an expression for the horse-power required to

keep the disc in rotation. [B.E.]

32. A flat band laps half round a fixed pulley. From one end of the band
there hangs a weight W of 100 lbs., while the other is pulled by a force P. If

what is the smallest value of I* which will raise W, and what is the value

of P which will lower W with a uniform velocity ?

33. Find the answers to the preceding question if the band is round and lies

in a V-groove on the pulley, the angle of the V being 46°.

34. If a cord hanging in a vertical plane over a fixed horizontal cylinder with
20 lbs. at one end and 10 lbs. at the other be on the point of slipping, what is the

coefficient of friction between the cord and the cylinder ?

36. How many times must a hemp -rope li' inches in diameter be passed

round a post if a force of 6 lbs. at the sla^ end- is just to hold it when it is
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aVjout. io break on the tight side ? The breaking strength

rope may be taken as 18,000 lbs., and /*=0-4, Prove the

furmnlayou employ. [U.L.]

36. A brake strap (Fig. 443) | inch thick, embracing
two-thirds of the circumference of a pulley 16 inches in

diameter, has one end attached to the end B of a lever

who.se fulcrum is at C. The other end of the strap is

attached to the lever at C. AO= 15 inches. BG=3 inches.

A weight "W hangs by a rope | inch in diameter, which is

coih;d round a barrel 10 inches in diameter. The pulley
and barrel are fixed to the same axle. BD is perpendicular
to AB. The weight W is held up by a force P of 50 lbs.

acting at A at right angles to AB. Taking /<=0-2, find

the greatest value of W {a) when the weight hangs as
shown, {b) when the weight hangs from the other side

of a 1| inch hemp

B C A

PXQ. 443.

of the barrel.



CHAPTEli XVn

EFFORT, ACCELERATION, AND VELOCITY
DIAGRAMS

24^. Effort.—If a force P, acting on a body A (Fig. 444) wliicb

moves or may move in a definite direction BC,

be resolved into two components, one Q ^
parallel to BO, and tlie other E at right angles

to BG, the component Q is called the effort ol >

—

P on the body A. \
245. Unbalanced Effort.—If the motion of

the body A (Fig. 444) is opposed by a force

S, wdiose components parallel and j)erpendicular

to BC are T and TJ respectively, then Q-T 1'ig. 444 .

is the unbalanced effort on A, and this unbalanced effort will accelerate

the speed of A, the work done by it appearing as an increase in the

kinetic energy of A. If Q - T is negative, then the acceleration of the

speed of A will also be negative, and the kinetic energy of A will de-

crease by an amount equal to that required to overcome the resistance

T-Q.
246. Effort -Space Diagram.—In the well-known diagram repre-

senting the work done by a force or an effort acting through a given

distance, the base represents the distance or space, and the ordinates

represent the effort. Such a diagram is shown in Fig. 445, where

lengths on the base OX represent
^ ^

distances or .spaces through wkich a ^
body A is moved by an effort P, whose

magnitude for any position IST of the ^ E:

body is represented by the ordinate F’ ^
ISTp of the curve By)DE. The same P-"" ^
figure also shows that the motion of A ^ N M J

^

is opposed by a resistance E, whose

magnitude for any position N of the

body is represented by the ordinate Nt’ of the curve FrDH. From 0 to X
the work done by P is represented by the area of the figure OBjsN, and the

work done on E is represented by the area of the figure OFrN. The differ-

ence between these two areas, namely, the area of the figure FBpr, represents

the excess work which goes to increase the kinetic energy
,
and therefore also

to increase the speed of A. Let W= weight of A, speed of A when

at O, ?;== speed of A when at N, and Rework represented by the area :

'

FBjpr, then ^(w" - vs) = K, and « =*
_

/.
,5-'-'-

i"- „

The speed will increase so long as P is
'

' ^ 288
"'
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Aviil hn a iiiaxiinum when A is at. M, where P is equal lo E. Beyfjnd

]\I thc^ speed will diuunisli, and if the body comes to rest at J, then

!- + work repre.sented by area OBDEJ — work represented by area
-9

OFDH.T, or + work represented by area BDF = work represented by

area EDH, and if
—

0, area BDF = area EDH.
It is Rometime.s convenient to plot the unbalanced effort pr on a

straight space base, as show?i in Fig.

446. The area of this diagram be-

tween the ordinate.s tlirough O and
L thou repi’eseiits the increase in the

kinetic energy of the body when it

has moved through tlie distance OL,
areas above OL being reckoned as posi-

tive. and areas below OL as negative.

The same result i.s repre.sented l)y the

portiem P''BDEriDF of the original diagram (Fig. 445), areas above
FDH Ijoing reckoned as positive, and areas below FDH ixs negative.

247. Effort - Time Diagram.—^Referring to Fig. 445, if OX is a
time base, that is, if ON represents the time during which the body A
has b(ien moving while the effort changes from OJ3 to N/>, then the area

of the figure OBpN represents the momentum added to A by the effort P
during the time ON. If the resistance R be also plotted on the time
base OX, the re.sult being the curve F?*DH, then the area of the figure

OFrN represents the decrease in the momentum of A during the time
ON, and the area of the figure 'EBpr represents the net increase in the
momentum of A, due to the simultaneous action of P and R during the
time ON.

If the unbalanced effort be plotted on a straight time base OX
(Fig. 446), then the area of the diagram between ordinates throTigh 0 and
L represents the net increase in the momentum of A during the time OL.

248. Space Average and Time Average of a Force.—When the

magnitude of a force, acting on a body in the direction of its motion, is

plotted on a straight base which represents the space or distance through
which the force acts, the average value of the magnitude of the force, oi

the mean height of the diagram, is the space average of the force. Again,
when the magnitude of the force is plotted on a straight base which
represents the time of the motion, the average value of the magnitude of

the force, or the mean height of the diagram, is the Hme average of the

force.

When the space average of a force is used, it is a que.stion of work

;

and when the time average of the force is used, it is a question of

momentum.
The space and time averages of a force are obviously equal when the

magnitude of the force is constant; they are also equal when the body
upon which the force acts moves with a uniform velocity, however tlie

force may vary in magnitude
; but if the velocity of the body is not

uniform, and the magnitude of the force varies, the space and time averages
of the force may be very different.
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An example of some interest is the relation between the space and
time averages of the pressure on the piston of a steam-engine. The
ordinary indicator diagram is a force-space diagram, and the mean
pressure found from it is a space a%'erage, and this space average is used
in calculating the Avork done in the cylinder. In an indicator invented

by Professor Ripper,* the mean pressure is shovsm directly by a pointer on

a dial
;
hut this mean pressure is a

time average, unless the proper cor-

rection has been made by adjusting

the instrument to convert the time

average into the space average. The
necessary correction to convert the

time average into a space average will

depend on the Avay in which the pres-

sure varies in the cylinder.

The following example will show
the relation between the space and

time averages of the pressure in a

particular case. ABCD (Fig. 447) is

the force-space diagram on a base AB,
. which represents the stroke of the

piston (20 inches). The steam pressure

is 150 lbs. per square inch for the

first 4 inches of the stroke, after which

the pressure follows the law Pa:= 600.

Dividing the stroke into 10 equal parts of 2 inches each, and calculating

the pre.ssures at the middle points of these parts, the following table

is constructed :

—

a:(space)
,

1
i

3 5
1

7
,

1

9 11 13 13 17 19

P . . 150 150 ’ 120 85-71 66-67 54-55 46-15 40 35-29 31-58

from which the mean value of P is 78 ’0, and this is the sjjace averat/e

of P. . .

'

,

To find the time average of P, construct the semicirde A'9'B', which

reiwesents the j)ath of the crank pin for one stroke of the piston, and

divide this into 10 equal arcs
;
then assuming that the crank pin is moving

with a uniform velocity, each of these arcs will be described by the crank

pin in equal intervals of time. Bisect these equal arcs at the points

P, 3', 5', etc. Then, neglecting the effect of the obliquity of the con-

necting-rod, the position of the piston, measured by its distonce from the

beginning of its stroke Avhen the crank makes an angle $ with A'O, is

10(1 - cos 6), and P =
,
but is not greater than 150.

V ' 10(1- cos p)

Let the base AB now represent the titne taken by the piston to make
one stroke, and let it be divided into 10 equal parts, representing equal

intervals of time, and let these be bisected at the points 1, 3, 5, etc.

The points 1, 3, 5, etc., wiU he the positions of the pressure ordinates on

* See the Proceedings of the Institution of Mechmiced Engineers^ 1899.
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a time base corresponding to the positions 1', 3', 5', etc., respectively of

the crank pin. The follo\Aing table maynow be constructed :
—

Position of
'l

crank pin/

* (time) . .

r 3' 5' r 9' 11' 13' 15' 17' 19'

1 3 7 9 11 13 13 17 19

d. . . .
9" 27'^

!

45°
1

63° 81“ 99“ 117“ 133“ 153“ 171“

P. . . .

L .

1.50 150 130 109-9 71 -11

t

51-88
1

41-27 35-15 31-73 30-19

1

from which the mean value of P is 82T2, and this is the time axteraqe

of P.

The time average of the pressure on the piston is therefore, in this

ease, 4T2 lbs. per square inch, or 5'3 per cent, greater than the space

average. These results are not quite accurate, but they are sufficiently

approximate for practical purposes. More exact results would of course

be obtained by making the space and time intervals shorter, and corre-

spondingly more numerous.

If the effect of the obliquity of the connecting-rod be considered, and
the length of the eonneeting-rod is five times the length of the crank, it

will be found that in the foregoing example the time average of the

pressure is only 1 *56 per cent, greater than the space average.

249. Acceleration-Time Diagram.—In Fig. 448, OD is a time
base, and the curve ABO is such that any ordinate FN, represents the

acceleration / of the motion of a body after the ^
lapse of time iy represented by the abscissa ON. j- ""X.
If is mean acceleration during the interval of +| fKw
time #, or the mean height of the curve AF above ^
ON, then the area of the diagram OAFN repre- ^ ^ —

> f
seuts fj,, or v the added velocity. If Vj and Wg

are the velocities at the beginning and end of the \r^ q
interval of time ON = then = Wg - Wj =fjt.

^
Since acceleration is proportional to the

force producing it, it is evident that a curve of unbalanced effort will

also be a curve of acceleration, but to a different .scale.

250, Velocity-Time Diagram.—OABCD (Fig. 449) is a velocity-

time diagram for the motion of a body. An ordinate BN of the velocity

curve ABO represents the velocity v after the
^

lapse of time t, represented by ON.
The area of the diagram between the ordi- ^ ^

nates AO and BN represents the distance ^ v

travelled by the body in the time t, for if ^ j

is the mean velocity between 0 and N, the dis- ^ ^
N n '

tance travelled in the time i is
;
but is q~

—

the mean height of the curve AB above ON, and
the area of OABN is therefore x ON =

The slope of the curve ABO at any point B is equal to tlie acceleration

at the time ON, for if a point b he taken on the curve ABC! near to B,
and if the ordinate hn^v + 8v, and the abscissa On^-f+8ty the slope of

i.s and in the limit when h coincides with B, the slope of B/>



therefore fds = vdv.
^

^

Let Vq be the velocity of the body when at 0, and v-^ its velocity when at
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becomes . the slope of the tangent to the curve at B, namely, ^ . But

- is the rate of increase of the velocity, and is therefore equal to the

acceleration /. In measuring the slope of BE, the height BF must be

measured with the velocity scale, and the base EF with the time scale.

251.

Space-Time Diagram.—OBCD (Fig. 460) is a space-time

diagram for the motion of a body. An ordinate BN of the space or

distance curve OBO represents the distance s ^
travelled after the lapse of time t, represented

by the abscissa ON.
The slope of the curve at any point B

is equal to the velocity at the time ON, ^ L
for if n, noint 6 be taken on the curve near ^for if a point 6 be taken on the curve near

to B, and if the ordinate — s-l-Ss, and the

abscissa the slope of B& is ~

,

and
Time

Fig. 450.

in the limit when 6 coincides with B, the slope of Bh becomes ~ ,
the

dt

slope of the tangent to the curve at B, namely, But is the rate

of change of position, and is therodore equal to the velocity v. In

measuring the slope of BE, the height BN must be mea.sured with the

distance scale, and the base EN with the time scale.

252.

Acceleration-Space Diagram.—Fig. 451 shows an acceleration-

space diagram, any ordinate BN of the curve

ABC representing the acceleration when the

distance moved by the body is represented by
the abscissa ON. Consider an indefinitely g
narrow vertical strip of the diagram. Let ds

be the width of tliis strip and / its height, ^ ^

then its area is fds. But Distance

Fig. 451.

D, then the area OABCD= = If U the mean

acceleration between O and D, and OD = a,, then f^s^ = or twice the

area of the diagram represents the difference between the squares of the

velocities of the body at the ends of the space base. If = 0, or the

body is at rest when at O, then
,
or twice the area of the diagram

represents the square of the velocity of the body at the other end of the

space base.

253.

Velocity-Space Diagram.—ABC (Fig. 462) is a curve such

that any ordinate BN represents lihe velocity n? of a body when it has 5

moved a distance s, represented by the abscissa ON.
, !
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It was shown in the preceding Article that therefore

But -- is the slope— of the tangent BE to the curve ABC
t'fe

ij

at B. If BL is the normal to the curve ABO at B, then

dv ^
ds ds m BF^/

BN "" EF nP

l)iit BN ~ V, therefore LN =/; or the sub-normal of a velocity-space

curve represents the acceleration.

The scale with which to measure LN must

now be determined. Let the velocity scale bo

1 inch to m feet per second, the distance

scale 1 inch to •» feet, and the acceleration

scale 1 inch to :« feet per second per second.

Let BF, EF, BN, arrd LN denote the lengths

of tlieso lines in inches. Then, /=LN x x
feet per second per second, and ??~BNxW/
feet per second ; BF represents a velocity BF x vti feet per second, and EF

represents a distance EF x n feet. Hence - ==-
^ ^

BN X VI EF X n
therefore

,
and X-

264. Conversion of Space-, Velocity-, and Acceleration-Time
Diagrams.—It was shown in Art. 250 that the slope of the velocity-time

curve represented the acceleration, and in Art. 251 that the slope of the

space-time curve represented the velocity. These properties may be
made use of in constructing any tw'o of the three curves, space-time,

velocity-time, or acceleration-time, from the third.

The curve OABO (Fig 453) is a space-time curve plotted from the

data ill the following table

«...
,

1

2 4
j

1

6 . 8

1

10

1

12 14 16 18

d » 7 22 41 64 90 122 160 197 228

where t i.s the time in seconds, and s the distance moved from rest in

feet Let A and B be two points on the curve OABO, the points being
sufficiently near to one another to warrant the assumption that the part
AB of the curve is straight. Drawing AD perpendicular to the ordinate

through B, BD is the space covered during the interval of time x\T), and
the mean velocity during that interval is BD-f AD. In Fig. 453 AD
is 2 seconds and BD is 26 feet, therefore the velocity at the time;

9 seconds, the middle of the interval AD, is 13 feet per second, and if

the ordinate NP be made equal to 13 on the velocity scale, a jioiiit P on
the velocity curve is determined. If equal intervals of time be taken, it

is only necessary to take the distance BI) in the dividers and step it out
a fixed number of times on the mid ordinate to obtain a point on the
velocity curve.

The velocity curve in Fig. 453 has been found by taking intervals of

one second, and making the mid ordinate ten times the increase in space
for each second.
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The acceleration curve is determined in like manner from the velocity

curve, NQ being made a fixed number of times FH, or, as has been done
in Fig. 453, the mid
ordinate has been |j

24 24o..-
|

-
..

j

-i -
j

--i- j-r-T-r-r-]
--

-] TOC H
made four times the

J 20 - aoo
~ ^ ~ ~

~4^~Z2’Z.^ I
increase in velocity s - ^

for each second. ~
^ ^

Conversely, the ^ 12
1

'J uo ~^444^^^ Jit
. 3 |

velocity curve may c? - ^
be determined from 8-| --

the acceleration ^ 1

curve, and the space _ .te
^

cui’A'e from the 0 -
‘^ 2 4 6 8 N 10 12 ik jCIl3° |

velocity curve, be- Time in seconds, t
ginning in each case

~

at the zero point.

T h e s t u d e n t
’

should work out the foregoing example carefully to, say, the following

scales:—Time, 1 inch to 2second.s; space, 1 inch to 60 feet; velocity,

1 inch to 5 feet per second
;
and acceleration, l .inch to 1 foot per second

per second.

The properties of the curves on a time ba.se which have been made
use of in the foregoing example are applied in a slightly different manner
in Fig. 454, Suppose the velocity curve to be given. Divide the diagram
into vertical strips

A, B, C, etc., and
j

draw the mid ordi-
• y S—i———

i

/

nates shown by
1

dotted lines. Pro- '

ject the mid ordi-
1

nate points of the 0,4/ v..i
1

velocity curve on to '
'

the vertical through ..C-l 1

O, thus obtaining

the pjoints rt, &, c, t
'

'"1

etc. Choose a pole f 1 4...
- ^

P on the time base, [« Time —
and join P to a, I,

j,

c, etc. Starting at

O, draw across the strips A, B, C, etc., continuous lines parallel to Pa,
P/>, Pc, etc., respectively

;
a fair curve through the junctions of these

lines will he the space-time curve.

Choose a polo on the time base, and draw Pia^, Pi&j, P^Ci, etc.,

parallel to the portions of the velocity curve across the strips A, B, G, etc.,

resjicctively, to meet the vertical Hue through O at a,, c^, etc. Hori-
zontallines from a^, b^, e^, etc., to cut the mid ordinates of the strips

A, B, C, etc., res].)('ctive]y, determines points on the acceleration curve.

The relations between the different scales are found as follows. Lot
the interval of time A bo Si? seconds, and at the end of that interval let

the increase in space bo Bs feet, and the increase in velocity Bv feet per
second. At the middle of the interval A let the velocity "fo v feet per

J
d -SV I

||a#
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and tin.', actaderation /feet per second per second. Let tlie scales

—spao(», 1 inch to / feet ; velocity, 1 inch to m feet per .second
;

aecel-

eralion, 1 irndi to n feet per second per second
;
and time, 1 inch to

<l
secoinls. Also let 02~p inche.s, and inches.

Then from the .siinjile geometry of the figure

Ss Ss q V
-T-i- or - X i=—
I qm ht L mp

f . .A f
also ;--rPi,Or--X

U m npi

(
1 )

(
2)

])al, (apitroxiinately) . . . (3), and-—=/ (approximately) , . . (4).

Thovefore from (1) and (3) f = and from (2) and (4) = Hence
^ ^ A mp An n2\

if y, p, yjj, and, say, m are given, I and n can he found, or if 1, 7n, 7i, and q
are given, ^5 and 2>i

can be found.

255. Angular Motion Diagrams.—In the preceding Articles of this

chapter only linear distance or disptlacement, linear velocity, and linear

acceleration have been referred to, but all that has been said about the

relations between these also ap>plies to the relations between angular dis-

placement, angular vidocity, and angular acceleT’ation. Angular displace-

ment, measured in radians, angular velocity in radian,s per second, and
angular acceleration in radians per second per second, may be plotted on

a straight time base, and angular velocity, angular acceleration, and time

may be plotted on a sti'aight base representing angular displacements,

e.xactly as for linear motion.

256. Examples.—(1) The tractive force on a car weighing 10 tons is

P Ihs., and there is a uniform resistance R lbs., so that the unbalanced

effort F is P - R lbs. Values of F at intervals of 2 seconds are given in

the sccojkI colutnn of the table below. The car is at rest when the time

t is 0. It is required to determine the acceleration / of the speed of the

car in feet per .second per second, the velocity v of the car in feet per

.second, and the distance s travelled from the starting point in feet at

each of the given times i5.

i tt« Accelera-

I balanced

610
670.,

508
416
310
292
265
260
300

18 !
30i>

'

0-877

0-819
0-730
0-398
0-446

0-420
0-367
0-374

0-431

0-444
0-474

Mean
Accelera-

tion
(luring

Interval.

Velocity
during

Interval.

1-696

1-5.50

1-.328

1-044

0-86G
0-786
0-740
0-804
0-876
0-918

Velocity

Feet per
,Sec.

0
1-696

3-

246

4-

574

5-

618

6-

484

7-

270

8

-

010

8-

814

9-

690
10-608

M(;an
Velocity
during

Interval.

0-848

2-

471

3-

910

5-

0'16

6-

0.51

6-

877

7-

640

8-

412

9-

252
10-149

Distance
moved
during

Interval.

1-70

4-94

7-82

10-19

12-10

13-75

15-28

16-82
18-50

20-30

Distance
moved

.Start (.O.
Feet.

0
1-70

6-64

14-46

24-65

36 '75

50-50

65-78

82-60

101-10
121-40

1
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on.OTp
The acceleration/ is calculated from the formula /= -r-fri

.

’’

22400
The inean acceleration during any interval is half the sum of the

accelerations at the beginning and end of the interval.

The increase in the velocity during any interval is the mean accelera-

tion during the interval multiplied by 2, the length -of the interval in

seconds.

The velocity v at the end of
^

any interval is the sum of all the interval

increases of velocity uji to and including that interval.

The mean velocity during any interval is half the sum of the velocities

at the beginning and end of the interval.

The distance moved during any interval is the mean velocity during
the interval multiplied by 2, the length of the interval in seconds.

The distancemoved from the start at the end of any interval is the
sum of all the distances moved during the intervals up to and including

that interval.

The results are shown plotted on a time base in Fig. 450, and F, f
and i) !we shown plotted on a space base in Fig. 456. ; -
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(2) A body weigliing 1 ton is lifted vertically by a rope, there being

a damped spring balance to indicate the pulling force P of the rope.

There is a con.stant frictional resistance of 1000 lbs. to the motion of the

body. When the body has been lifted x feet from its ]iosition of I’est,

the' pull ing force in lbs. is automatically recorded, and is given in the

second cf)lumn of tin? table below. It is required to find the velocity v of

the body in feet ])cr second for the given values of u-, also the time f in

seconds to rise the distance x.

Dn- Mean
Kffoi-t IialftTicwl Value

{if').
,

KfCort ofP
Jibs. (P).

Lbs.
(im-iim-

Interviil.— - -

5580 2340 oo-’f

5450 2210
2115
1900
1675
1465
1275
1110

5200 2020
5020 1780
4810 1570
4600 1360

4430
4270

1190
10.30

Inereiiao
In

Kinntio.
Ifluorfjy

during-
Inturval

.

Ft.-llis.

22,7i”0

21,150
19,000

10.750
14,050

12.750
11,100

Total I Velocity ! Time
Kinetic

j

(v).
i

over
Knersfy,

;

Feet per Intert'al.

K. Sec,
I

Sec.

0 0
22,750 ! 25-57

13,900
i

35-53

02,900
79,050
94,300

107,050
118,150

Unbalanced effort, P- F - (2240 + 1000) ~F - 3240.

The moan value of P during any interval is half the sum of the values

of P at the beginning and end of that interval.

The increase in the kinetic energy of the body during any interval is

the work done by P
during that interval,

3000
, , , ,

|—
, ^ ru ' t I" !

rzyso—fS-o

namely, the mean
value of P during the

interval multiplied by
10 .

K, the total kinetic

energy in the body at

the end of anyinterval,

is the sum of all the in-

terval increases of kin-

etic energy up to and
including tliatinterval.

/2 X 32-2K

2240

The time taken over any interval is 10, the dist-ance moved, divided
l)y the mean velocity during the interval. The mean velocity during an
interval is taken as half the sum of the %'elQcities at the beginning and
end of that interval.

The time taken from the start to the end of any interval is the sum
of all the interval times up to and including that interval.

The results are shown plotted on a distance base in Fig. 457.

Distance (x) i/i feet.

Fig. 457.
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257. The Bull Engine.—Towards the end of the eighteenth century

William Bull invented a simple form of pumping-engine, which was

developed and imjiroved by his son Edward Bull and Richard Trevithick,

This engine is now antiquated, but in its working it presents an exceed-

ingly interesting problem in mechanics, which will now be considered.

The engine has an inverted cylinder ah (Fig. 458) placed directly over

the i.)Ump well, and this piston-rod is attached directly to the pump rods

or “pitwork.” The up stroke is performed by the .steam acting on the

under side of the piston, but during this stroke no water is pumped, the

work done by the steam, over and above that required to overcome the

friction appearing in the energy of the raised heavy pitwork. During

the down stroke the steam is led from the lower to the upper end of the

cylinder, thus prodUC-

ing equilibrium on the Citrpj ^Aj [U— b
j

B "-4£c:-|k
piston, and tlie descent ^ / 1

'

\ \
of the heavy pitwork / 1

' \
rai.ses the water.

m / ‘

' \ \
During the up / I

i
<u \ \

stroke the steam is
\ \

used expansively, and
j

r-“pr--i „ \ \
the end of the stroke I

;
j

— U
is reached when the j_ Iviml !;
work done by the

' ij i

steam is equal to
1

| „ 1 I
the work done on the AH C
re.sistance. The dia-

gram ACDEFB to the
^

right in Fig. 458 shows

the effective pressure

per sqiiare inch on the piston during the up stroke, AB being the

length of the stroke. AH represents the total resistance, per square

inch of piston, duo to the weight of the piston, piston-rod, and pitwork,

and the resistance of friction. HEK, the re.sistance line, is parallel

to AB, and cuts the expansion curve at E. When the piston has

moved to N, the effective pressure on the jiiston exactly balances the

resistance, and from A to N the work done by the steam i.s represented

by the area ACDEN, while the w'ork done on the resistance is repre-

,sen ted by the area AHEN. The excess work, represented by the area

HODE, is stored in the rising inas.ses as kinetic energy, and the

speed of the piston increases as it moves from A to N. Above N the

effective pressure on the piston will continue to diminish as the piston

rises, until the position B is reached, when it comes to re>st.

The velocity curve ALB may be constructed as in the second example
of the preceding Article, and the point B where this curve cuts the line

of stroke A B determines the end of tlie up stroke.

A similar problem is presented during the down stroke of the piston.

Referring to 'the diagram-to the left of Fig. 458, the effort A^G, is the

weight of the pitwork, etc. (per square inch of piston), and the effort line

C^E^F, is parallel to AiB,, the line of stroke. The resistance at '

the beginning of the stroke, is due to the head of water; the size of the

pump, and the resistance of the valveSr As the speed increases the ,,

'•4
'
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Mc.lidu of tiui water iii the pipes will increase the resistance, and the line

will not lie, parallel to A^Bj. To stop the downward motion, the

steam under the piston is shut in w-hen the piston reaches the {loint M,
iuid tlu; resistance then increases, as shown by the line J£j^K|, due to the

compression of the steam on the lorver side of the piston. In constructing

tlie luirvc -lEj^Kj, it must be remembered that while the steam below the

piston is being compressed the steam above is expanding, and this must
be allowed for, so that JEjIv^ may show the effective increase in the

resistance. The velocity curve A|LjBj is determined as before.

During the up stroke the steam above the piston is exhausted into

the Cf)}idensur. To prevent damage to the cylinder in the event of tlie

jirearrangcd stroke being exceeded, there are buffer beams against which

the cross-head strikes.

Exercises XVIIa,

1. An effort-space diagram is drawn to the scales, 1 inch to 60 lbs. and 1|
inches to 1 foot. The length of the diagram is 2'3 inches, and its area is 2‘45

square inches. How many ft.-lbs, of work does the area of the diagram repre-

sent, and what is the space average of the effort ?

2. A body weighing 80 lbs. is moved from rest in a horizontal direction by
an effort which varies uniformly from 112 lbs. at the beginning to 40 lbs. when
the body has moved 8 feet. There is a uniform horizontal resistance of 60 lbs.

Repnis(int tliis by a diagram to the scales, 1 inch to CO lbs., and 1 inch to 2 feet,

Ctilculate tlie kinetic energy and the velocity of the body when it has moved
8 feet. Find also the maximum velocity.

3. In an effort-time diagram, tlie effort being the unbalanced effort, the
length of the diagram is 5 inches, and represents 30 seconds. The scale for the
effort is 1 inch to 100 lbs., and the area of the diagram is 12 square inche-s. If

the weight of the body upon which the effort acts is 5 tons, what is the increase
in its velocity, in miles per hour, in the time represented Isy the length of the
diagram?

4. The pressure on the piston of a direct acting steam-engine is 150 lbs, per
square inch for the first three-tenths of the stroke, and for the remainder of tlie

stroke the pressure varies inversely as the distance of the piston from the be-
ginning of the stroke. Draw on the same base, («) the pressure-space diagram,
\h) the pressure-time diagram, assuming an infinite connecting-rod, (c) the pressure-
time diagram, taking the length of the connecting-rod twice the stroke of the
piston. Find the mean pressure in lbs. per square inch of piston from each
diagram. Assume that the crank is rotating at a uniform speed.

6.

A certain acceleration diagram on a time base has an area of 2'1 square
inches. The base is 3'5 inches long, and represents 17‘5 seconds. The accelera-
tion scale is 1 inch to 5 feet per second per second. If the velocity is 8 feet per
second at the beginning, what is the velocity at the end of the 17‘5 seconds ?

6. In a diagram representing the unbalanced effort on a body weighing 800
lbs., the effort scale is 1 inch to 100 lbs. If the effort curve is also the accelera-
tion curve, and the acceleration scale is x inches to 10 feet per second tier second,
find

^

7. The tangent at a ce,rtain point of a certain velocity curve on a time base is

inclined at 35“ to the base (tan. 35“=0’7), If the time scale is 1 inch to 5
seconds, and the velocity scale is 1 inch to 20 feet per second, what is the
acceleration in feet per second per second at the point considered.

8. The area of an acceleration diagram on a sjiace base was measured with a
planimeter and found to be 7‘85 square inches. The base ON of the diagram was
4 inches long, and represented 20 feet. The acceleration scale was 1 inch to 10
feet per second per second, and the velocity at 0 vras 2 feet per second.
Calculate the velocity at N.

9. At a particular point on the curve of a velocity-space diagram the inclina-
tion of the tangent is 30“. The ordinate of the point represents a velocity of 7
feet per second, and the sub-normal measures 1-35 inches. If the distance scale
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iw 1 inch to ID feet, what, is the acceleration, in feet per second per second, at the

posh ion c.onsidored ?

10. An electric street car was found to have moved from re.st 60, 245, 4:90,

and 75() feet in 5, ID, If), and 20 seconds respectively from the start. Construct

on a time base the displacement, velocity, and acceleration curves, and state tlie

velocities in miles per hour, and the accelerations in miles per hour per second

at the t.inuis 5, 10, 15, and 20 seconds from the start. [^Engineeriwj News, Oct.

14, 1897, and Durley’s “ Kinematics of Machinery,” p. 47.]

11. 'Fhe angular position 0 (in radians) of a rocking shaft at any time i (in

socoud.s) is measured from a fixed position. Successive positions at intervals of

second have I )een determined as follows:

—

t 0-0 0-02 0-04 |0-0G 0-08 0-10 0-12 0-14 0-16 0-18

0
\

..

(>•106 0-208 (>•337 0-487 0-651 0-819 0-978 1-111 1-201 1-222

Kind the change of angular position during the first interval from i=0'0
to t=0'02. Cnlculale the mean angular velocity during this interval in radians

per second, and, on a t.inui base, set this up as an ordinate at the middle of

tlie iiitftrvat. Repeat Ibis for the other intervals, tabulating the results, and
drawing the curve showing approximately angular velocity and time. In the

same way find a curve showing angular acceleration and time.

Read off angidar velooit.y in radians per second, and angular acceleration in

radians per second per second, when f=0'075 second.

A wheel keyed lo the shaft weighs 720 lbs., and has a radius of gyration of

!•.> feet. What i.H the torque tending to fracture the shaft when ^!=0'16

second? [B.E.]

12. A weight W of 1000 lbs. is made to move along a horizontal plane. The
frictional resistance R is uniform and equal l.o 100 lbs. The driving force P in

lbs. varies uniformly, and is given by the formula P— Q(10-a!), where x is the
distance moved in "feet from the starling point. Determine in each of the
following cases {a) the distance moved in feet by W before coming to re,st, (&)

the maximum velocity of W in feet per second, \c) the distance in feet of W
from the starting point when its velocity is a maximum, (d) the acceleration in

feet per second per second when W is 2 feet from the starting point. Case I.

Q-15; Case II. Q = 20; Case III. Q= 30.

13. A body A weigliing 1000 lbs. is moved horizontally by a force P lbs.

which is equal to 200 lbs. for the first 2 feet, and afterwards "vai-ies according
to the law P;r— 400, where x is the distance moved from the starting point. The
frictional resistance R is constant, and equal to 100 lbs. Determine (a) the
distance moved by A, in feet, before coming to rest

; (6) the maximum velocity
of A, in feet per second

;
(c) the distance of A from the starting point, in feet,

when its velocity is a maximum; (d) the acceleration, in feet per secorul per
second, when A is 2 feet from the starting point. Plot P-R, and the velocity,

on a space base.

14. A body weighing IGIO lbs, is lifted vertically by a rope, there being a
danqjcd spring balance to indicate the pulling force F lb. of the rope. 'There is

a Gonalant frictional resistance of 740 lbs. to the motion of the body. When the
body has been lifted x feet from its po.sitionof rest, the pulling force is automati-
cally riiooided as follow.s :

—

X
1

0 11 20
1

34
1

45 65 66 76

¥
I

j

4010

1

3915 37G3 3532
1

3366 3208 3100 ' 3007

Using squared paper, find the velocity i; feet' per second for values of x of 10,

30, 50, 70, and draw a curve showing the probable values of v for all values of x
lip to 80. In what time does the body get iErom a;=46 to *=55? In what time
does it get from *=0 to *=75 ? [B.E.]



16. A body weighing 322 lb. is lifted by a force F lb. which alters. When
the body has risen through the distance x feet, the force in lb. for the several

values of x is as follows ("or would be if the body rose as far) ;

—

l 2 3 4 i

5-5 7 9 11
*

12-5 14 17, 20

540 540 530 500
,

4(50 310 220 190 190 190 190 190

Using squared paper, find the velocity in each position and the time taken
by the liody to get to each jjosition conriting from x=0, the velocity thou' being
5 feet per secoml.

^
[h.B.J

16. A train-car, weighing lf> tons, suddenly has the electric current cut off.

At that instant the speed of the car was Ui miles per hour. Ileckoning time
from that instant, the following velocities,V (miles per hour), and times, t (seconds),

were noted. 7 = 1(3, t=0. V=14, i=9-3. V=12, !;=21. V=10, «.-=35.

Calculate the average value of the retarding forc<t, an<l find the average velocity

from ^=0 to <= 30. Also find the distance travelled between the.se times.

If the law' of resistance be F (lb.) = a-(-6V-l-cV®, where is in miles per hour
as before, indicate the method by which values of a, h, and c could be found
from the above observations. Also calculate the relatiion between V and T (the
time taken to come to rest from velocity V) for such tests. What is T when V
is very large ? [B.E.]

17. During the up stroke of (.he pi.ston of a Bull engine tlio elfectivo pressure

p of the steam on the pi.ston, in lbs. per square inch, varies, as shown in the
following table, where x is the distance of the piston from the bottom of its

stroke in feet
;
the piston will however not rise so high as 10 feet. The weight

a; 0‘0 0-6 1-0
1

1-5 2-0 2-5 3-0 3-5 4-0 4-5 50 6-0 70 8-0 9-0 10-0

p\

.J
65 54

j

tl-D 53

LJ
41 34' 28 24 21 18 12-6 10-5 S-6. 7 6

of the piston, piston-rod, and “pitwork” amounts to 22- lbs. per square inch of
piston, and the frictional resistances are equivalent to 2 lbs. per square inch
of piston. Dmw the velocity curve for the piston on a stroke base, and find the
length of the stroke. Find the time taken to make one up stroke, and draw the
velocity curve on a time base.

258. Simple Harmonic Motion.—A (Fig. 459) is a point wldch is

moving with a uniform velocity V along the circuinforenee of the circle

BAGi). a is another point which is

moving backward and forward along the

diameter BOG of the same circle in such
a manner that Aa is always perpendicular

to BC
;
in other words, a is the projection

of A on BC. Under these circumsttinces,

the point a has simple harmonic, motion.

Let A and A, be two positions, near
to one another, of the point which is moving
round the circle, and a and a, correspond-

ing positions of the point which has simple
harmonic motion. Let v be the velocity of a
at a, and the velocity of a at along BOG. Let Oa = ,r, Oa^ = and
angle BOA = 6, Ecsolving V, the velocity of A, parallel and porpendicixlar
to .HOC, it is evident that the component parallel to BOG is equal to v.

the velocity of a, and vaaVsiui?^- Also ~a9.
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Tlio mecui velocity of a between, a and «j_ is \{vi + v\ and tlie time taken

to travel from a to a, is If / is the mean accelera-
^ l(v.+v) % + v

tion of a between a and «!,/= ('<?!
- n) -4- ^

Now if A,A, is made indefinitely small, % becomes equal to and /
becomes the acceleration of a, at a. Hence/=

. H
.

.

.If / ])e plotttid oil the space base BOC, the straight lino is the

result, the maximum values of/being at B and C where a- = r. At the

centre 0, where ;c~0, /= 0. At B and 0, «= 0, and at O, •?; has its

maximum value, and is there equal to V.

When A is at B t)r C, A and a coincide, and / for a l^ecomes the
ya

,

‘

radial acceleration of A, namely, --j result which has been proved in

another way in Art. 21, p. 17.

Since the a.cceleration of the point a is directly proportional to its

displacomout from its middle position, this property may be used as a

test of sinq>le harmonic motion. In fact, the

definition of simple harmonic motion is better

given as the motion which a ])oint has when its

acceleration is proportional to its displacement

from its middle position, because this includes
le. o .

the case of a point oscillating in a curved path (Fig. 460), where tlie arc

OB or the (Wj OC = r, and the m*c 0« = ;r.

A comjilete oscillation or vibration is a movement from one end of

the path to the other and back again. The time of a complete oscillation

is called the periodic time. If V is in feet per second, / in feet per

second per second, r in feet, and the periodip time, in seconds, then

2jrr j V?

Referring again to Fig. 459, Aa = rsin 0, birt ?;!=Vsin therefore if

the velocity scale be chosen so that r represents V, then Aa will represent

V on that scale, and the circle BACD will be the velocity diagram on
the space base BOC for the point which has simple harmonic motion.

Again,/= 1 -^*'5 therefore if the acceleration scale be so chosen that f
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Fig. 462.

represoiits Oct or x will representf on tliat scale. TLi» also follows

from Art. 253, p. 287, because a; is tbe sub-normal of the velocity curve

on a space base.

Fig. 461 shows the velocity v and acceleration / plotted on a time

base. The- constructions are obvious, and clearly shown in the figure.

259. Forces giving a Body Simple Harmonic Motion.—If a body

weighing W lbs. has simple harmonic motion along the line BOC (Fig.

4G2) under the action of a force P, then since acceleration is proportional

to the force producing it, ^ and using the notation and results of theW y
P Y'^x P IttV

preceding Article, =
,
and when a;— r, ^ .

i
(jr^ W (jr gt^

The force P must always act towards the centre 0, so that while the

body is moving towards O, P is an effort,

but when tlve body is moving aAvay from O,

P becomes a resistance.

The force diagram on a space base is

evidently a straight lino one, like the ac-

celeration diagram. In moving from B to

O tlxe work done by the effort is represented

by the area of tlie triangle IFD, and is stored

up in tlie body as kinetic energy, to be given

out again in overcoming the resistance in

moving from 0 to 0, the work done on the resistance from O to C being

represented by the area of the triangle OcC.
The foregoing results may be applied to the case of a body which has

angular harmonic motion. Let C),A (Fig. 463)

be a bar upon which is mounted a mass M,
the weight of the rod O^A and the mass M
being W, and let the whole body oscillate with

harmonic motion about an axis perpen-

dicular to the plane of the paper. Let Oj^A be

the central position, and 0,B, making an angle

$ with 0 A, any other position. Let 7c be the

radius of gyration of the whole body about
the axis O,, and let P be a force acting on the

body at a distance from Oi equal to 7c and
in the direction of motion, which will give the harmonic motion.

Applying the formula « == .—^ to this case, r == arc OB = 7c9. Hence
yy

P 47r‘^7c9 , TJ, 47r^W7cW ‘ item , T • .-U . . •= — and PA:« ==—
,
where I is the moment of inertiaW gt^ gt^

of the body about the axis O^. The product PZi is the turning moment
of the force P about the axis O^, If T denotes this turning moment,

then T = • If the force which give^ harmonic motion to the body

be a force Q acting as shown, R being the perpendicular distance of its

line of action from 0„ then Ts=QIl=i!I!^

.

gt^
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For example, take the case of the simple pendulum (Fig, 464), where

N|--a small body of weight lo swings in a vertical plane in a

small arc of a circle of radius 1. T = • O^N = sin 0,

Since 0 is a small angle, sin 9 may be taken equal to 0,

also 1 — wP, hence

therefore

1? V P

a well-known result, which may be jrroved in other

ways. i<ia. 4(34.

Exercises XVIIb.

1. A body of 60 lb. has a simple vibration, the total length of <a swing being
3 feet

;
there are 200 complete vibrations (or double swings) per minute

;
calculate

the forces which act on the body at the ends of a swing, and show on a diagram
to scale what force acts upon the body in every position. [E.E.]

2. A weight of 6 lbs. is supported by a spring. The stiffness of the spring is

such that putting on or taking off a weight of 1 lb. produces a downward or
upward motion of 0'04 foot. What is the time of a complete oscillation, neglect-

ing the mass of the spring ? [B.E,]
3. A weight of 10 lbs. suspended by a spiral spring makes 107 complete

vertical oscillations in 1 minute. What weight applied gradually will lengthen
the spring 1 inch ?

4. A U tube (Fig. 466) of uniform bore contains a liquid which fills a length
of 2 feet of the tube. Find the time of a complete
oscillation of the liquid in the tube.

6.

A steel wire 0‘16 inch diameter fixed at its upper
end and guided at the lower end has a wheel weighing
12'3 lbs. fixed to it near its free end and 40 inches

from its fixed end, as shown in Fig. 466. The wheel is

turned through a small angle and then liberated, and it

is then found to make 4 complete oscillations in 6

seconds. Taking the modulus of rigidity of the wire as

13,000,000 lbs. per square inch, calculate the radius of

gyration of the wheel about its axis.

6. A fly-wheel weighs 6 tons, and its radius of gyra- Fi(j. 465. FiG. 466. •

tion is 6-30 feet. It is at the end of a shaft 40 feet

long, 5 inches diameter, modulus of rigidity of material 12,000,000 lbs. per square
inch, what is the natural time of torsional vibration of the system, neglecting .the

inertia of the shaft itself ? [B.E.]

7. A fly-wheel weighs 6 tons, and has a radius of gyration of 6 feet. It is at

one end of a shaft, the other end of which is fixed. It is found that a torque of

200,000 Ib.-feet is sufficient to turn the wheel through 1°. If the wheel is twisted

slightly and then released, how many vibrations per minute will it make 1 [B.E.]

8. A uniform circular plate, 1 foot in diameter, and weighing 4 lbs., is hung
in a horizontal plane by three fine parallel cords from the ceiling, and when set

into small torsional vibrations about a vertical axis is found to have a period of

3 seconds. A body, whose moment of inertia is required, is laid horizontally

across it, and the period is then found to be 5 seconds, the weight of the body
being 6 lbs. Find the moment of inertia of the body about the axis of oscilla-

tion. rinsb.O.E,]|



CHAFIEIi XVIIl

PISTON OR SLIDER AND CONNECTING-ROD
VELOCITY AND ACCELERATION DIAGRAMS

260. Piston or Slider Velocity Diagrams.—In the direct-acting

engine the reciprocating motion of the piston is converted into the rotary

motion of the crank shaft by means of the crank and connecting-rod. In

what follows it is really the motion of the cross-head wdiich is studied,

but the piston and cross-head have exactly the same motion. Eeferring

to Fig. 467, A is the axis of the cross-head pin, AB the axis of the con-

necting-rod, B the axis of the crank pin, BC the crank, and C the axis of

the crank shaft. The line of stroke of tlie piston when produced is

assumed to pass through C. Let 0, be the instantaneous centre for the

k-— Distance.

connecting-rod when in the position shown. Let V be the linear velocity

of the crank pin, and v the velocity of the cross-head, then
.

V 0|Jt>

Through C draw- CD' perpendicular to AC. Make CB' = V to any
convenient velocity scale, and draw B'D' parallel to AB to meet CD' at D',

then, since the triangles O^AB and CD'B' are similar, =~

therefore CD' — Since V, the velocity of the crank pin, is usually

uniform, it is generally convenient to select the velocity scale such that

CB — V, then if AB be produced to meet CD' at D, CD — v. Drawing
DE parallel to the line of stroke to meet AE perpendicular to the line of

stroke at E determines a point on the piston telocity-space curve. If

(on the crank) be made equal to CD, then c? is a point on the polar

velocity curve for the piston, A point on another form of the polar

velocity curve is obtained by making Be (on the crank produced) = CD,
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Tlie diagram to the right in Fig. 467 shows the velocity of the

piston, during one stroke, plotted on a crank angle, or time base.

If the connecting-rod is of infinite length, AB becomes parallel to tht^

line of stroke, BD is perpendicular to CD, and v is equal to V sin 6. If V
is constant the piston has simple harmonic motion, and the velocity-space

and the velocity-time diagrams for the piston are the same as those shown

in Fig. 461, p. 297. The polar velocity diagram becomes a circle

described on the crank as diameter when the latter is perpendicular to the

line of stroke.

The arrangement shown in Fig. 468 is the equivalent of an infinite

connecting-rod. This

arrangement is fre-

quently found in steam

pumps, one rod M being

the steam piston-rod,

and the other N the

pump plunger. The
crank in this ease must

be an overhung one, or

the crank shaft must

be divided to allow the slotted piece KL to pass. If the slotted piece

have two slots at right angles, as shown in Fig. 469, the crank may be

placed anywhere on the shaft without altering the shaft in any way.

261. Piston or Slider Acceleration.—Since CD (Figs. 467 and

470) represents the piston velocity if CB represents the crank pin

velocity, it follows that since acceleration is rate of increase of velocity,

the velocity of the point D along CD will be the rate. of increase of CD,

and will therefore be the piston acceleration.

Consider the point D as a point in the connecting-rod produced, then

D must be moving at the

instant in a direction per-

pendicular to CD with a

velocity equal to V
> ^5.

This velocity may be found

by construction as follows.

On CD make OB' = OB.
Draw B'C' perpendicular to

OD and equal to BC. Join

OC' and produce it to meet

DE, a perpendicular to OD,

atE,thenDE =V-^.
'OB

'

If DE be resolved into components DF along AB, and DH along

CD, then DH is the velocity of D along CD, and therefore represents

the piston acceleration. Draw CK' parallel to OD to meet AB at K, and

draw KL perpendicular to AB to meet AC at L, then it will be shown

that CL = DH. The triangles CKB and OBD are similar, and



tliorol’oi-c CK==I)E. The triangles CKL aiid DEH are similar, beeause

the sidfis of (','KL are respeeth^ely perpendicular to tlie sides ot DEH, and

= but (JK DE, therefore CL==DH. If, therefore, the point O

accussiVde, (JL, the piston acceleration, is found by drawing CK jjarallel

to OD, and KL perpendicular to AB. But for a considerable portion of

the motion of the piston the point 0 is m
either at an inconvenient distance or "/kT
is quite inaccessible, and some other A \ \
construction for finding the iJoint K is /

/ \

is generally known as ii/em’s Lv i I

is the most convenient
>)-

for finding KL. Klein’s construction \-

is as follows. On AB as a diameter N

describe a circle. With centre B and Fia. 471.

radius BD describe another circle,

cutting the former at M and IST. Join MN. The line MIST coincides

with the line KL of the former construction. For, referring to K as

found by the first construction, because the triangles CBK and
BD OB

BD are similar. Also, ^ — -?-2
,
because the triangles OBD and OBA

OB AB
similar, therefore -= or BK-AB = BD2. Eeferring now to

BD AB
K as found by Klein’s construction,

For the sake of clearness, the essential lines of Klein’s construction

are shown separately in Fig. 471.

262. Piston. Acceleration at Ends of Stroke.—When the piston is

at either end of its stroke the crank and connecting-rod are in a straight

,
or BK • AB == BD^ as before.

Klein’s construction gives the result shown in Fig. 47 2 for the
outer end, of the stroke, and the result shown in Fig. 473 for the inner
end. Beferring to: Fig. 472; the angular velocity of the connecting-rod
in this position is V//, and A has an acceleration in the direction AO due
to this and equal to V®/Z. Also the angular velocity of the crank is V/r,
and in the position shown A has an acceleration in the direction AC due
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to this and equal to Y-fr. Hence the total acceleration of A in the

direction AO is equal to V-/r . Eeferring to Fig. 473, it follows

in the same way that the acceleration of A in the direction CA is equal

to Y'^/r - Y'^/l. Hence/= ± =^^1 i0
~

the ratio of the length of the connecting-rod to the length of the crank ;

the idus sign applies to the outer and the minus sign to the inner end
of the stroke. For example, if Y = 10 feet per second, r ~ 10 itiches, and

102 X 12/ 10\
1 = 60 inches, f= '--|q

—

± = 144: feet per second per second at the

outer end, and 96 feet per second per second at the inner end of the stroke.

263. Piston Acceleration Diagrams.—Having shown how the piston

acceleration may be determined at any point of the stroke, the results for

a number of points may be plotted, and acceleration curves obtained

corresponding to the piston velocity curves described in Art, 260. Fig.

474 shows the various piston acceleration curves for the case where the

length of the connecting-rod is 2| times the length of theci’ank.

264. Piston Acceleration Scale.—-It was shown in Art. 261 that

BK • AB = BD2 (Fig. 471), and when the piston is at the outer end

of its stroke (Fig. 472) this becomes BL • AB =BC~ or BL =5^ . How

CL = BC -t- BL, therefore OL = BG -f = Bc(l + = Bc(l q-
1).

But it was shown in Art. 262 that the piston acceleration at the outer

end of the stroke is equal to

T(l + =/. Hence if CL -/, Bc(l +^= ^'(l 4- or BG =

Therefore the scale on which CL will measure the acceleration of

the piston is one on which a length equal to BC represents the

radial acceleration of the crank pin. For. example, if BC on the drawing

measures 2.1 iimhes (on a full size scale), and if V ~ lO'O feet per second,

Y2 10'5®
and r= 9 inches ==0 ‘75 foot, then-— = 147 feet per second per

second, and the acceleration scale is such that 1 inch represents

147-r2‘5 = 58‘8 feet per second per second, or 100 feet per second per

second is represented by 100 -t- 58‘8 = 1'7 inches.
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265. Position of Piston for Maximum Velocity and Zero Ac-

celeration.—Still assuming that the velocity of the crank pin is uniform,

it is evident tliat when CD (Figs. 467

and 470) ceases to increase, the position

for maximum velocity and zero accelera-

tion of piston has been reached, and

this will obviously happen when the

angle ODA is a right angle (Fig. 475).

Flo direct geometrical construction has

yet been found for drawing the figure

so that the angle ODA may be a right

angle, but by analysis it may be shown

that when ODA is a right angle, 0, the

angle ACB, is given by the equation

sin'’’ 6 - 71
^ sin^ 9 sin^ 0 +# = 0,

which is a cubic equation in sin^ 9. Mr.

G. A. Burls * has solved this equation

for a considerable number of values of n,

and ])laoed the results in a table, of

which the following is an abstract Fig. 47S.

n si-r e » s-r 9 « 8-4-r 9

I'O 2-0000 90 6 6 2-0 0-8474 67 42 0 6-0 0-9218 80 47 40
1-1 1-0530 64 57 50 2-5 0-8550 70 43 46 7-0

;
0-9321 82 3 8

1-lU 1-0000 64 5 11 3-0 0-8674 73 10 31 8-0 0-9389 82 56 30
1-2 0-9564 63 85 5 4-0 0-8906 76 43 24 9-0 0-9468 83 47 12
rs 0-8681 64 20 38 5-0 0-9085 79 6 34 10-0 0-9524 84 24 59

s is the distance of the jnston from the outer end of its stroke when
its velocity is a maximum or its acceleration zero.

^
=w+l ~ ^l-sm^9~ - sin^ 9.

Students are referred to Mr. Burls’ paper for the complete discussion
of this problem.

For practical purposes, when n has values common in direct-acting
engines, it is usually sufficient to assume that the position of the piston
for maximum velocity and zero acceleration is that for which the crank
and connecting-rod are at right angles to one another.

Professor Unwin’s formula,! sin^ 0= , gives,
n^ + l (??-2-f- l)(n‘*-i-4?z")

for values of n usual in practice, an extremely close approximation to
the true value of 9.

266. Analytical Determination of Piston Velocity and Accelera-
tion.—Piston velocity and acceleration diagrams are most readily drawn
by the accurate constructions which have been given in preceding Articles,

* Prodeedmgs Inst, O.E., vol. cxxxi. p. 338.

t JWd, vol. cxxv. p. 366.



parallel to CA, and = ?; = CD. This resultant will evidently be per-

pendicular to AB and = BD. The angular velocity of AB in the

given position is therefore equal to BD7AB = B.D/AB, and as AB is

constant, the angular velocity is represented by BD.
The foregoing result is also obvious when it is remembered that, at

the instant considered, the connecting-rod is rotating about O, and its

angular velocity abbut 0 is equal to BC'/OB=BC/OB = BD/AB, and

this will also be the rate of change of the angle

The angular velocity of AB may be plotted on the crank CB from

the pole C, or on the piston or cross-head stroke as a base, but preferably
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};)ut the velocity or acceleration of the piston for any position of the crank
may be calculated by means of the formulae now to be proved.

Referring to Fig. 467, p. 300, it is readily seen that

w
__

sin {6 + (l>) _ sin 6 cos <!> -f- cos 6 sin </> • n
,

cos 0 sin A
V cos </> cos (fi cos

r . . sin 6 1 :

But sin sin d =
,
and cos ~ sin=^ </>= ~ Jn?’ - sin^ 6.

Therefore . 0+ »+ .

™
2 — sin’-^ 6

For values of n usual in direct-acting engines it will be sufliciently

accurate to take - sin^ 6 = «, then v = Y^sin 6 •+• approxi-

mately.

From this approximate expression for v the acceleration / is found
as follows :

—

= ^^ =Yr- cos 6 + -^ ^

dt \di f

n

.

y
V being constant,

V“/ n ,
cos 20\= — cos (9-f- .

267. Angular Velocity of Connecting-rod.—The connecting-rod has
a motion of translation along with the piston, and also an angular motion,

the angle <56 which it makes w^ith the line of stroke changing from zero

to a maximum, and back again to zero during one stroke of the piston.

^ is evidently a maximum when the crank is perpendicular to the line of

stroke, and it is zero when the crank is on the line of stroke.

Referring to Fig 476. 0 i.s the instantaneous centre of the connect-

ing-rod when in the position shown, and if BC represents V, the velocity

of the crank pin, CD represents

V, the velocity of the piston.

Imagine a velocity equal to v

to be impressed on the connect-

ing-rod in the direction CA.
The point A will now be at

rest, and the connecting-rod will

only have angular motion. The
point B has now a velocity

which is the resultant of the

velocities BC^ perpendicular to

BC, and = V = BC, and C'D'

parallel to CA, and = ?; = CD.
pendicular to AB and = BD.
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on t(io coiiiiectiug-rod, as shown to the right in Fig. 4/7. The cross-head

end of the connecting-rod is placed at C, and assumed to be at rest. The

A.rujitlar Velocity—

\ Time Curve.

\3 4 5 6 I

-\-T--TrT^

I

Polar Curves."

_BD=Cd= Ce =Fe‘=b'e
b£)’=A}rgulca' Velocity

of Connecting-rod J

different values of c/> corresponding to different values of B are readily

ol)taiuod by the construction .shown, and which may be briefly described

as follows. With C as centre, and radius equal to the length of the

eoiuiectiug-rod, measured on the linear scale, describe the arc 0''3'. Let

OB be one position of the crank. Draw BB' parallel to CO' to meet
0'3' at B'. Join CB', then angle B'C0' = <^. Draw BD parallel to B'C
to meet the perpendicular to CO' from G at D. Then BD represents

the angular velocity of the connecting-rod when the crank is at GB.
Make, on B'C, B'E = BD. Then E is a point on a polar curve of angular

velocity of connecting-rod. If Cd = BD be marked off on B'C from G
as a pole, then d is a point on another polar curve of angular velocity of

connecting-rod. Observe that when BD is positive B'E is measured from
the arc 0'3' on the side oppo.site to C, and when negative it is measured
from the arc 0'3' .towards C Also for the other polar diagram, when BD
is po.sitive Cd is measured from G towards the arc 0'3', and when negative

it is measured from G in the oppo.site direction.

The construction for the angular velocity curve on a time base is

obvious, and clearly shown in the figure.

The scale on which BD will measure the angular velocity of the

connecting-rod is found as follows. Let BC, BD, and AB denote the
lengths of the.se lines on the drawing, measured in inches on the full size

.scale, Let the scale for angular velocity be 1 inch to x radians per

second, and let the linear scale of the drawing be 1 inch to g feet. Also
let r be the true radius of the crank in feet, and let V be in feet per
second. Then

Angular velocity of connecting-rod _ BD -f- AB _BD
Angular velocity of crank BC BG ~ AB

’

But angular velocity of crank = therefore angular velocity of

connecting-rod = w =^ , Y

.

But AB =

n

• BC = w/y, therefore a = ^ BD • x, and there*
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T, c • + w- ,
BD sin (90—0) cos 6 , . ,

sin 0EMomng to Iig. 46/, ^ == V ==— but sm =
BO sin {d0 ~ 4>) cos ^ n

, ,

.7'K^-siir'0
and (’OS t/j =-^ ^ - Therefore

BD
B'G

l COS 0
,
and (0 =BD V BD V_

n-m t"
3 e Y

- sin^
~6 ' AB r n • BC r _ gijj

2 q ' r

268. Angular Acceleration of Connecting-rod.—Referring to Fig.

470, p. 301, just as DH or CL represents the rate of increase of CD, so

DF or KL represents the rate of increase of BD, or the rate of increase

of BD' (Fig. 476), and therefore KL/AB rejiresents the angular accelera-

tion of the connecting-rod. The figure CBKL (Fig.- 470) is a linear

acceleration diagram, the scale of which was shown (Art. 264) to be such

that BC represents Y^/r, the linear acceleration of B in the direction BC.
Hence if KL and BC be measured in inches, and r and nr are the true

lengths in feet of the crank and connecting-rod respectively, angular

acceleration of connecting-rod = a =^ . — -r nr ~ ~

,

and since KL
BC r BC «r2

is the only variable in the expression for a, KL will rejiresent a on a

certain scale. Let this scale be 1 inch to z radians per second per second,

and let the linear scale of the drawing be 1 inch to y feet, then

= KL.//-Ii,andz = ??TJ.
nr^ nr^

The angular acceleration of the connecting-rod may be plotted in a
manner similar to that described for the angular velocity in the preceding

Article.

269. Case where Line of Stroke does not Intersect Axis of

Crank Shaft.—The illustrations of the direct-acting engine mechanism
which have been given in preceding Articles have shown the line of stroke

passing through the axis of the crank shaft, and this is the usual arrange-

ment, but in a single-acting engine, that is, an engine in which all the

work is done on one side of the piston, there are advantages in arranging

the mechanism as shown in Fig. 478, where pq, the line of stroke, when
produced, does not pass

through G, the axis of

the crank shaft.

One result of alter-

ing the position of the

line of stroke, as shown
in Fig. 478, is that

during the forward or

working stroke the ob-

liquity of the connect-

ing-rod is diminished,

and in consequence of

this the pressure on
the cross-head guide is diminished, and the turning moment on the

crank is slightly more uniform. The diminished pressure on the guide

means of course less work lost in friction at that part. During the

return stroke the obliquity of the connecting-rod is increased by this

Stroke.
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new arrangement, but as tbe engine is single acting, the forces to be dealt

with during the return stroke are much smaller. It is easy to show that

the stroke of the piston is now greater than twice the radius of the crank.

The “dead centres.” still occur when the piston is at the ends of its

stroke, but the two dead centres are no longer on the same diameter of the

craidc pin circle, and, as will be seen by reference to Fig. 478, the time

taken for the return stroke is less than that taken for the foiuvard stroke

if the crank is turning uniformly.

'Phe construction for determining the piston velocity and piston

acceleration are unaltered, except that CL, the acceleration, is now shown
on a line through C parallel to the line of stroke, instead of on the lino

of stroke.

270. Inversions of the Direct-Acting Engine Mechanism.—What,
in preceding Articles, has been called the direct-acting engine mechanism
is also known as one form of the did.et’-cranh chain, namely, the turning

sUder-rranli chain. The slider-crank chain consists of four parts, three

Unlis and a block or slider. In the direct-acting engine mechanism
(Fig. 479) the links are, the crank a, the connecting-rod c, and the

frame b of the engine. The cross-head d is the block or slider, but the

slider may include the piston-rod and piston, and, as in most internal

combustion engines, the slider may consist of the piston only.

Various mechanisms may be obtained from the slider-crank chain by
the process of inversion, -winch

involves the exchange of one
fixed part or link for another.

The oscillating engine mech-
anism (Fig. 480) is obtained from
the direct-acting engine mech-
anism by making e the fixed link

instead of b. The crank is still

a, but the crank shaft is now at

B instead of at C. The block d
is now the cylinder which oscil-

lates on trunnions at A. The
link b oscillates with the cylinder,

but the relative motion between
d and b is still that of sliding

;
in

fact, the motion of any one link

relative to that of any other link

of the chain is unaltered by the process of inversion. The oscillating engine
mechanism is knowm as the swinging-block slider-crank chain.

The mechanism shown in Pig. 481 is known as the Whitworth quick
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return motion or hirning-hhck slider-crank chain, and is obtained by
making a the fixed link, c becomes a crank, the rotary motion of which
is communicated to b, but the angular velocities of b and c are unequal,

except at two points during a revolution. This mechanism is used for

driving the ram of a shaping machine or the ram of a slotting machine.

The link or crank c is really a spur-wheel rotating about an axis at B,

and carrying a pin A projecting from one side, on which fits the block d,

which in turn fits in a slot formed in b. The link b rotates about an axis

at C, and carries a pin P, the position of which may be varied to suit the

required stroke of the ram, which carries the cutting tool at one end.

The reciprocating motion of the ram is obtained from

the pin P through a connecting-rod. The line of

stroke of the ram is shown passing through C, and
cutting the circle described by the pin A at E and F.

The pin A has uniform velocity, and the times of the

forward or cutting stroke, and the return or idle

stroke of the ram, are to one another as the arc

EHF is to the arc FKE.
The only other possible inversion of the slider-

crank chain is that obtained by fixing the block d.

This inversion, called the swinging sUder-cra'idc, is

not very important, but one interesting application of

it is found in the pendulum pump, shown in Fig. 482.

The block d has become the steam cylinder, pump
barrel, and frame. The link b has become the piston,

piston-rod, and plunger. The connecting-rod c swings

about a pin A fixed on the side of the steam cylinder.

The crank a has become a fly-wheel, which rotates

about a pin B attached to the lower end of the swinging link c, and it

also rotates about a pin C, which is attached to the sliding link 5. The
stroke of the piston and plunger is evidently twice the radius of the

crank a.

Exercises XVIII.

1. Construct the piston velocity diagrams, as shown in Fig. 467, p. 300, for

the following cases (1) llr=:co, (2) llr=4:'5, (3) 2/^=2, where Z=leijgth of con-

necting-rod, and r=radius of crank. The three sets of diagrams to be drawn
on the" same corresponding bases, or, in the case of the polar diagrams, from the

same pole, in order to show the differences due to variations in the value

of Ijr. Take r= 10 inches, velocity of crank pin 10 feet per second, and linear

scale Construct on the diagrams the velocity scale, showing feet per second.

Take from the diagrams the values of v in feet per second when 0= 45°, and

state the results.

2. In a direct-acting engine mechanism the radius of the crank is 10 inches,

and the velocity of the crank pin 10 feet per second, find, by calculation, the

answers to the queries in the following table :

—

/ (inches) .
CO 00. 46 45 45 45 20 20 20 20

d (degrees) . . 30 30 150 30 150

X (inches) .
.

;

? is ? 1
? . 2 18 ? ? 2 18

V (feet per second) ? ’ ? ?• ? ? 1 ? ?

where I is the length of the connecting-rod, d the angle between the crank and
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the inner dead centre radius, a: the distance of the piston from the outer end of

its stroke, and v the velocity of the piston.

3. When the length of the connecting-rod is equal to that of the crank, show
that the stroke of the piston is four times the length of the crank. Also, if the

crank has uniform velocity, show that the piston has simple harmonic motion,

arid that the maximum velocity of the piston is twice the velocity of the

crank pin.

4. In a direct-acting engine the connecting-rod is 50 inches, and the crank

10 inches long. If the crank makes 120 revolutions per minute, calculate the

mean velocity of the piston, in feet per minute, also the velocity of the piston,

in feet per minute, when the crank and connecting-rod are at right angles to

one another.

5. Estimate the greatest and least forward velocity of the piston of a loco-

motive engine, relative to the rails, when the train is running at 50 miles per

hour, the diameter of the driving wheels being 66 inches, the length of stroke

27 inches, and the length of the engine connecting-rod 54 inches. [Inst.C.E.]

6. Construct the piston acceleration diagrams, as shown in Fig. 474, p. 303,

for the following cases ;—(1) f/r=oo, (2) (3) f/r=2, where Z=length of

connecting-rod, and »•= radius of crank. The three sets of diagrams to be
drawn on the same corresponding bases, or, in the case of the polar diagrams,

from the same pole, in order to show the differences due to variations in the
value of Ijr. Take r= l0 inches, V= 10 feet per second, and linear scale J.

Construct on the diagrams the acceleration scale, showing feet per second per
second. Take from the diagrams the values of/, the piston acceleration, in feet

per second per second, when 0=30“, and state the results.

7. Same as preceding exercise, but for the following cases:—(1) llr= l’l,

(2) (3) l/r=l-2.

8. If the acceleration of a piston is 850 feet per second per second when it

has moved 4 inches from one end of its stroke, which is 24 inches, at what
speed is the crank shaft running, in revolutions per minute 1 Assume an
infinite connecting-rod..

9. In a direct-acting engine, Z=length of connecting-rod, r= radius of crank,
n=l/r, 83= distance of piston from outer end of stroke, Vrs velocity of crank pin,
'0=velooity of piston, and /= acceleration of piston. Show that

—

(1) when the crank is perpendicular to the line of stroke,

(2) when the crank is at right angles to the connecting-rod,

(3) when»=r, aBd/=+I!-”t*!t-JA+i>,
’V ^ r (2n2-l)s

The upper sign in the value of /in each case applying to the “in” stroke, and
the lower sign to the“ out” stroke.

10. If w is the angular velooit;7 ,
and a the angular acceleration of the con-

necfcing-rocl, then, using the notation of Exercise 9, show that (1) when the
crank and connecting-rod are in a straight line w= V/7ir, and a=0 ; (2) when the

crank is perpendicular to the line of stroke, w=0, and a=- . ^-*;and
1

(3) when, the crank is perpendicular to the connecting-rod,

n^r

11. Construct the connecting-rod angular velocity diagrams, as shown in
Fig. 477, p. 306, for the following cases:— (1) Ijr-H, (2) l/r = 2, (3) l/r= l,
whore Z=length of connecting-rod, and r=radius of crank. Take r=10 inches,
velocity of crank pin 10 feet per second, and linear scale i Construct the
angular velocity scale, showing radians per second. Take from tive diagrams the
values of w in radians per second when 0=30“, and state the results.

12. In an r.rdinary steam-engine the stroke is 18 inches, the length of the
connecting-rod is 36 inches, and the revolutions are 400 per minute. The
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diameters of the crank shaft journal, the crank pin, and the cross-head pin are

7L 7:f,
and inches respectively. Find the velocity of the liiston and the

velocity of rubbing of each journal in feet per minute in the position of the

mechanism, for which the crank aim has turned through an angle of 30" from
the inner dead centre. [U.L.]

13. Taking the same cases and the same particulars as in Exercise 11, con-

struct the connecting-rod acceleration diagrams, and construct the accelei-ation

scale, showing radians per second per second. Take from the diagrams the values

of a in radians per second per second when 0=75°, and state the results.

14. In a direct-acting engine the line of stroke is at a perpendicular

distance of 4 inches from the axis of the crank shaft. If the radius of the

crank is 8 inches, and the length of the connecting-rod is 30 inches, find the

length of the piston stroke. On the stroke of the piston as base, construct the

piston velocity and piston acceleration curves for both the forward and return

strokes. The speed of the engine being 200 revolutions per minute, construct

the velocity and accelerat.ion scales.

16.

The table of a small planing machine is driven from a crank through a
connecting-rod, which is 9 inches long. The axis of the crank shaft is 3 inches

below the line of stroke. If the, stroke of the table is

6 inches, find the radius of the crank. Construct the
velocity curves for both the cutting and return strokes

of the table, on a stroke base, the crank rotating uniformly

at 20 revolutions per minute. What are the velocities of

the table, in feet per minute, at mid-stroke (a) when cut-

ting, {&) when returning ? Also, what is the time ratio of

the cutting and return strokes.

16. In an oscillating engine the piston has a stroke of

6 feet, and the distance between the axis of the trunnions

and the axis of the shaft is 10 feet 6 inches. The shaft

makes 85 revolutions per minute. Find (a) the maximum
angular velocity of the cylinder in radians per second,

{&) the piston speed in feet per minute at mid-stroke, and
(c) the mean piston speed in feet per minute.

17. Fig. 483 shows the swinging-block slider-crank chain

as applied to a shaping machine. The pinion E drives the
wheel F, which rotates on the fixed pin B, and carries the
pin C. The pin C carries the block 6, which works in the
slot of the lever dd, which oscillates about the fixed pin

A. The upper end of the lever dd cairies a pin H, from
which a connecting-rod transmits motion to the ram carry-

ing the cutting tool. The stroke pf the ram is varied by
alUring the distance of the pin 0 from B. For the given dimensions find the

length of the stroke of the ram. Construct on a stroke base the velocity curves

for the cutting and return strokes. The wheel F makes 20 revolutions per minute.

What is the time ratio of ihe cutting and return strokes ?

18. Referring to the Whitworth quick return motion, shown in Fig. 481,

p. 308, BC = 1J inches, AB = 5 inches, C?= 5 inches, and the connecting-rod to the

ram is 16 inches long. The line of stroke passes through C, and is perpendicular

to BG. The drivitig wheel makes 15 revolutions per minute. Construct on a
stroke base the tool velocity curves for the cutting and return strokes. What
is the time ratio of the cutting and return strokes ?

19. A and B (Fig. 484) are fixed centres. The crank BC revolves uniformly
with an angular velocity of 10 radians per second about the centre B. The end
C is pivoted to a block, which can slide along AD. AD revolves about the

centre A. The point B moves along EA, Determine the velocity of sliding at

both 0 and E wlien BC is at right angles to AB, and find also the maximum
velocity of E. Show how the mechanism can be applied as a quick return

motion for a shaping machine, and determine the ratio between the times of

cutting and return, [U.L.]

20. The crank AB (Fig, 485) rotates uniformly at 150 revolutions per minute.

The end D of the rod BD is constrained to move in the. straight line GH. The
end E of the rod CE moves on the straight line EK. Determine the velocity of

the point E for the given position of the mechanism. ' Indicate how you would
determine the acceleration of the point E. [11>L.,1

Fig. 483.
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21. In a horizontal steam-engine the indicator reducing gear consists of a
radial arm AB suspended from a fixed centre A above the line of stroke ; the

end B of the radial arm is connected to the cross-head by a link BC, and the
cord passes oif from a sector fixed to the arm AB, its centre being A and the

radius AD. If, for any position of the gear, a vertical line drawn through A
AN

cuts the link BO in N, show that gives the ratio of the piston speed to the

cord speed. [U.L.]

22. In the four-bar mechanism shown in the sketch (Fig. 486), the bar A is a
fixed bar ; the bars B and D rot.ate aVjout the fixed centres OAB and OAD, and
they are couified together at their outer ends by the bar 0 ; the bar B revolves

in a clockwise direction, with uniform velocity round its fixed axis OAB at 60
revolutions per minute. Find in any way you please the positions of the bar
D for twelve equidistant positions of the bar B during one complete revolution,

and draw up a table showing (1) angle turned through by the bar B, in degrees

;

CP = 4
PQ=12

PR = 14-3

RV=16-3" tfv

QT=16-^'_]

Fig. 486. Fig. 487.

(2) angle turned through by the bar D, in degrees
; (3) mean angular velocity of

the bar D, in radios per second, during each interval
; (4) mean angular accelera-

tion or the bar D, in radians per second per second. Draw curves showino'
angular velocity and angular acceleration ah any time. The lengths of the bars
are 16, 30, 2;>. and 35 inches respectively. ^ FB E

1

23,

The diagmm (Fig. 487) shows a radial valve gear. The crank CP humsumtomly at 12 radians per second, and is pinned at P to the rod PE, the point
Q m this rod being guided in the circular path SS, centre T. For the position
ot the mechanism shown in the diagram, determine and measure the velocities
and accelerations of the points R and V. [BE]



OHAPTER XIX

PISTON AND CRANK EFFORT DIAGRAMS

271. Piston Ejffort Diagrams.—An engine or maeliine worked by
fluid pressure lias usually a piston or ram wMch. receives reciprocating

motion in a cylinder. When the piston or ram is single-acting, the

pressure of the fluid introduced into the cylinder causes the piston or ram
to move outwards, and the return stroke is usually performed either by
the energy stored up in a fly-wheel, or by the pressure of the fluid in

another cylinder, through intermediate mechanism. In this case the

effort on the piston or ram at any instant is simply the force exerted on

it by the fluid in the cylinder at that instant. When the piston is

double-acting, the fluid is admitted into the cylinder on opposite sides of

the piston alternately, and after doing its work it is allowed to escape.

In this case the effort on the piston at any instant is the difterence

between the forces exerted by the fluid on the opposite sides of the

piston at that instant.

When the fluid used is water, the. pressure which it exerts is practi-

cally constant throughout the stroke, and the effort is therefore constant,

and the effort diagram is a rectangle whose length represents the length

of the stroke of the piston or ram.

In heat engines and in machines worked by compressed air the

pressure of the fluid is generally variable throughout the stroke. In
such cases the actual effort on the piston is obtained from indicator

diagrams, which are simply the records

of self-registering pressure - gauges,

which show the pressure of the fluid

at every point of the stroke of the

piston. If the engine is double-acting

two indicator diagrams are required,

one for each side of the piston. The
indicator diagram shows the intensity

of the pressure of the fluid, generally

in lbs. per sqxiare inch.

Let and p.^ be the intensities of

the pressures on the front and back

of the piston respectively at any in-

stant, and let and be the effective

areas of the front and back of the

piston respectively, then the effort pn

the piston at the instant considered

is p^a^-p^a^. If a^-a^==a, then the effort is double-

acting engines a^ is not generally equal to on account of the presence-

of the piston-rod on one side. - -
, «

SIS



Tins iipptT part of Fig. 488 shows a i)iur of indicator diagrams from

tlm c.ylindor of a vertical steam-engine. The full line diagraiu is from

tile tf)]) end, while the dottetl line diagram is from the bottom end of the

cylinder.

The effective pressure on the piston at any point of the stroke is

.shown by the vertical di,stance between the top of one diagram and the

the other at that point. If this vertical distance be plotted on

l)ase for a sufficient numlier of points in the stroke, a diapam is

vhich .shoAvs more clearly the effort on the piston during the

stroke. In Fig. 488 the full line diagram on the ba,se XX is the effort

for the down stroke, -while the dotted line diagram is the effort

for the up stroke. Where the effort is negative, the diagram is

below the base XX.
272. Reduction of Indicator Diagrams to same Effort Scale.—^It

was stated in the preceding Article, in referring to the indicator diagrams

given in Fig. 488, that the effective pressure on the piston at any point of

the stroke is shown by the vertical distance botAveen the top of one

diagram and the bottom of the other at that point. This, hoAvever, is

only true Avhen the etfectiA^o areas of the top and bottom of the piston

are equal, and when the ])rcssure scales of the tAvo diagrams are the

same. If the pre.ssuro .scales are the same, but the areas are unequal,'

then cither the ordinates of the diagram for the smaller area of piston

must be reduced in the ratio of the smaller to the larger area, or the

ordinates of the diagram for tlie larger area of jiiston must be enlarged

in the ratio of the larger to the smaller area.

The diagrams of Fig. 488 are repeated in Fig. 489, and the diagram
for the bottom of tlie piston is shown cor-

rected to the thicker dotted line diagram
alloAv for the area of the j>iston-rod on

the under side. The effective force on the

piston at any point of the doAvn stroke is

now represented by the A'ertical distance

between the top of the full line diagram
and the bottom of the thicker dotted line

diagram at that point, and the effective

force at any point of the up stroke is represented by the vertical distance
betAveen the top of the thicker dotted line diagram and the bottom of the
full line diagram at that point. If the original indicator diagrams are not
to the same pressure scale, it -will of course be necessary to bring them to
the .same scale, in addition to correcting one of them for the difference

betAveen the areas of the top and bottom of the piston.

The indicator diagrams from the different cylinders of a compound
or triple expansion engine are generally to different pressure scalc.s

;
also

Avhen the strokes of the different pistons are the same, Avhich is generally
the case, their areas are different. Hence it is evident tlnat in order that
the effort diagram for one piston may be comparable Avith the effort

diagram for another piston, the pressure scale.s must he the same, and
their ordinates must be such as to give equivalent pressures on pistons of
the same area.

Let A be^ an indicator diagram for one side of a piston, the effectiA^e

of that side being and let be the pressure scale of this diagram

APPLIED MECHANICS
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in lbs. per square incli per incli. Also let B be an indicator diagram for

the other side of the same piston, or for one side of another piston, the

effective area of tliat side being and let p^he the pressure scale of this

diagram in lbs. per square inch per inch. Then in constructing piston

effort diagrams which shall be comparable, either the ordinates of B

must be multiplied by or the ordinates of A must be multiplied by

273. Correction of Piston Effort Diagrams for Weight of Recip-

rocating Parts in Vertical Engines.—^In a vertical engine the weight of

the piston, piston-rod, cross-head, and a part of the connecting-rod

increases the effort during the down stroke, and diminishes it during the

up stroke by an amount equal to that weight. Let lo equal the weight
of the reciprocating parts in lbs. per square inch of joiston, then the

effort due to the fluid pressure per square inch of piston must be in-

BOTTOM

creased by an amount to for the down stroke, and the effort diagram

is altered, as shown in Fig. 490, by lowering the base line from XX a

distance equal to w on the force scale, and the effort diagram for the up
stroke is corrected, as shown in Fig. 491, by raising the base line from

XX an equal amount.

Frequently half the weight of the connecting-i’od is reckoned as

belonging to the reciprocating parts.

274. Forces due to Inertia of Reciprocating Parts.—The deter-

mination of the acceleration of the piston was fully discussed in Arts,

261 to 265. Let / denote the acceleration of the piston in feet per

second per second, W the total weight of the reciprocating parts, in lbs,,

and P the force, in lbs,, required to produce the acceleration /j then

P f "Wf
and P~— It was shown in Art. 262 that, at the ends of

V2 / n
the stroke, /=— (! ±~ j,

where V is the velocity of the crank pin in

feet per second, and n is the ratio of the length of. the connecting-rod to

r, tire radius of the crank, the plus sign applying to the outer, and the

minus sign to the inner, end of the stroke. Hence, at the ends of the

\yY2 / i\ ;|S
stroke, p = • - - - ( 1 ± - Ifw ig the weight of the reciprocating parts, in •

1||gr \ 71/
^

?bs. per square inch, of piston, andp is the accelerating force, in lbs. per
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KCinare iucli of piston, then and at the ends of the stroke

After the point of zero acceleration is passed, the

acceleration is of course negative, or the accelerating force reverses.

275. Correction of Piston Effort Diagrams for Inertia Forces—
From the beginning of the stroke of the piston up to the point of maxi-

mum velocity, or zero acceleration, part of the effort on the piston, as

determined in preceding Articles, is required to accelerate the piston and

the other reciprocating parts, and that part is therefore not available at

tlie cross-head for transmission to the crank pin. The work done by that

part of the steam pressure which is not transmitted to the ci’oss-head is

stored up in the reciprocating parts as kinetic energy. After the piston

has reached its point of maximum velocity its velocity diminishes, and

the kinetic energy in the reciprocating parts is given out, appearing as

work done at the cross-head. During the latter part of the stroke, there-

fore, the effort due to the steam pressure is supplemented by the effort

dne to the retai’ding or negative accelerating force.

The necessary correction of the piston effort diagram due to the inertia

forces is made as shown in Figs. 492 and 493, where the full line diagram

on the straight base AB is the piston effort diagram due to the steam
pressure, and AaC^B is the accelerating force diagram on the same base

AB. The curve a'C?/ is the curve got, say, by Klein’s construction (Art-

261), and the curve aOb is obtained by altering the ordinates in the ratio

of Au' to A«. The length Aa is measured with the pressure or effort

,

‘ w'VV 1\
scale to representp = accelerating force per square inch of

piston at the beginning of the forward or "in” stroke. The curve aCb
is the new base of the effort diagram. The corrected diagrams are shown
constructed on straight bases below the others.

It is emdent that the forces due to the inertia of the reciprocating

parts do not affect either the work done or the mean effort during a complete
stroke.

276. Crank Effort.—^Eeferring to Fig. 494, if P is the effort on the
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eross-head, Q, the thrust or pull on the connecting-rod, is equal to P/cosfjf).

At the crank pin the force Q produces a thrust or pull on the crank and
a force T tangential to the path of the crank pin equal to Q sm(9 + <ji).

Hence, •-^^==P(sin d-fcos 0tan ^).

If n is the ratio of the length of the connecting-rod to the radius of

the crank, then tan 4> ’ and therefore

T = P'^sin0 + ~
sin 0 cos 6 \26

The moment of T about C, namely,

- sin^ d I

T is called the cranh inn effoj't.

Tr, where r is the radius of

the crank, is called the cranl:

effort, but as r is constant,

it follows that the cranlr

effort is proportional to T.

If Gh be made equal to P,

and hd be drawn parallel

to AB to meet Gd at d, Fig. 494.

where Gd is perpendicular to the line of stroke, then

sin(^-f<j^) _ sin(d-^<;^)

sin (90° - ~ cos ^
’G6"

T
but

Gd T
therefore —sin {d+ <f>)

P ~ cos f/»

must be equal to T. The construction for determining the crank effort

from the piston or cross-head effort is therefore extremely simple, and if

it be compared with the construction proved in Art. 260 for finding the

piston velocity from the crank pin velocity, it will be seen that the con-

structions are identical. In fact, the construction and formula for the

crank effort may be deduced at once from the construction and formula

for piston velocity by the principle of work.

277. Crank Effort Diagrams.—The construction of diagrams which

shall show the crank effort for any po.sition of the crank will be readily

understood by reference to Fig. 495. In the polar curves of crank effort,

the effort found by the construction or by the formula of the preceding

Article is marked off, either on the crank from the centre of the crank shaft,

or on the crank produced from the path of the crank pin. The most

useful crank effort diagram is the “ rectangular diagram,^’ in which the

base is a straight line re})resenting the circumference of the circle described

by the crank pin, and the ordinates, perpendicular to that. base, represent

the crank effort.

If the base of the rectangular diagram of crank effort be made equal

to the circumference of the circle described by the crank pin, then, friction

being neglected, the area of the crank effort diagram for one revolution

will be equal to the sura of the' areas of the piston effort diagrams, but

practically all that is to be learned from the rectangular crank effort

diagram can be learned from it, whatever be the length taken for the base.

The principal use of the rectangular crank effort diagram is to show



Fig. 495.

The maximnni crank effort can evidently he found from either the

or rectangular curves. The maximum crank effort is also the

torque on the crank shaft, and this is of great importance in

the shaft.
'

is the mean effort on the crank pin and P,„ is the mean effort on
during one revolution, then, since the work done at the crank

,1 to the work done on the piston in the same time, friction

neglected,

2P
27rrT,„ = 2P„i X 2r, or = '

in m 1 m ^
When there are two or more cranks on a shaft, the total turning

effort on the shaft at any instant is the sum of the turning efforts on the

separate cranks at that instant, and the total effort may be considered as

acting on any one of the cranks. Hence a diagram of total turning effort

may be constructed by adding to the ordinates of the effort diagram for

one crank the corresponding ordinates of the

eAbrt diagrams for the other cranks, corre-

sponding ordinates being those which show
the efforts on the separate cranks at the same
instant.

Fig. 496 shows the relative positions of

three cranks on the same shaft, and Fig. 497
shows how the rectangular crank effort diagrams
for the.se three cranks may be combined to give

a total turning effort diagram. It will be

observed in Fig. 497, that in order to bring
the corresponding ordinates together the effort '196.

diagrams for cranks No. 2 and No. 3 have been moved forward distances

corresponding to the respective angles which these cranks would have to

move through to overtake No, 1 crank. It is ob-^ious that the crank
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effort diagrams for the separate cranks must he to the same effort scale

before they can be combined into one effort diagram in the manner

shown in Fig. 497. The mean total effort is of course equal to the

sum of the mean efforts for the separate cranks.

278. Fluctuation of Energy.—When the direct-acting engine mecha-

nism is used to transmit the work done on a piston to a shaft, the turning

effort on the shaft is very variable when only one crank is used, and when
two or more cranks, inclined' to one another, and connected to different

pistons are used, the turning effort on the shaft, although much more

nearly uniform, is still variable. This want of uniformity in the turning

effort on the crank shaft is a characteristic of all heat engines having

reciprocating pistons, and the re.sult of this is that, except in the very

improbable case in which the moment of the resistance to the turning of

the shaft varies so that at every instant it is equal to the turning moment,

the supply of energy to the shaft over certain intervals must be greater,

while over other intervals the supply must be less than that required by

the resistance.

In most cases in practice the resistance to the rotation of the crank

shaft of an engine may be considered to be uniform during a complete

period or cycle, and the resistance reduced to the crank pin may therefore

be considered as equal to the mean effort on the crank pin during a

period or cycle.

Fig. 498 shows a rectangular diagram of crank effort on a base OX,

representing the path of the crank pin, and the ordinates of the line LMN
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represent tlie resistance reduced to tlie crank pin. In tlie upper part of

Fig. 498, LMN i.s a straight line parallel to OX, .while in the lower part

LMN is a curved line. In each case the work done by the effort is

represented by the area between the effort curve and tire base, and the

work done on the resistance is represented by the area between the

resistance line and the base. It will be noticed that the points

A, B, C, D, E, and F are the points where the effort is equal to the

resistance.

Let K denote the kinetic energy in the moving parts when the crank

pin is at A, then while the crank pin moves from A to B the work done

by the effort is greater than that required by the resistance by the

amount represented by the area a^, and therefore the kinetic energy in

tlie moving parts when the crank pin reaches B is K + Again, while

the crank pin moves from B to C the work done by the effort is less than

that required by the resistance by the amount represented by the area a.^,

and therefore the kinetic energy in the moving parts when the crank pin

reaches G is 1C+ aj -- a.,. Similarly, the values of the kinetic energy in the

moving parts when the crank pin reaehes D, E, and F are, K + + ctg,

K +% - -f ftg - and K.-\-a^-~a„ + a^ — + a. respectively. Between
O and X the velocity of the crank pin will be a maximum at that point

where the kinetic energy of the moving parts is greatest, and the velocity

will be a minimum at that point where the kinetic energy is least.

The difference between the kinetic energy of the moving parts at the

points of maximum and minimum speed is called the fluctuation of energy.

The ratio which the fluctuation of energy bears to the work done per

cycle is called the coeflnimt offluctuation of energy. In an ordinary steam-

engine the cycle takes place in one revolution, while in an internal com-
bustion engine working on the Otto cycle, the cycle covers two revolutions

of the crank shaft.

Referring to Fig. 498, suppose that OX represents the distance

travelled by the crank pin during one cycle, and suppose that F is the

point of maximum speed, and C the point of minimum speed. Let the

area between the effort curve and the base equal a, then the fluctuation

of energy is represented by a^-a^+ a^, and the coefficient of fluctuation

of energy is equal to^LlJ^ii^'.
a

279. Fluctuation of Energy in Gas-Engines.—In a single-cylinder,

single-acting gas-engine working on the “Otto cycle,” the operations

performed during a cycle are as follows

-

First Stroke.—The piston moves outwards, and draws in the charge of

air and gas. This is the charging or suction stroke.

Second Stroks.—The piston moves inwards and compresses the charge.

This is the compression stroke.

Third Stroke.—The compressed charge is ignited, an explosion takes
place, and the piston is driven outwards by the expansive force of tlie

products of combustion. This is the working stroke.

Fourth Stroke.—The piston moves inwards and expels the ju-oducts

of combustion. This is the exhaust stroke.

The indicator diagram is shown in Fig. 499, but' the suction and
exhaust pressures are shown exaggerated for the sake of clearness.

Fig. 500 shows the diagram as continuous on a four-stroke base.
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All the work delivered to the crank shaft during a cycle is delivered

during the working stroke, and the work done in the cylinder during the
other strokes comes from the fly-wheel.

The fluctuation of energy is obtained from the rectangular crank

Exhaust
stroke.

Fig. 499. Fig. 500.

effort diagram as in a steam-engine, but the diagram must be constructed

for a complete cycle. The net wmrk done on the mseful resistance at the

crank shaft and on the friction of the engine is represented by the shaded

area in the working stroke in Fig. 500, minus the shaded areas in the

other strokes. The maximum speed of the crank shaft is approximately

at the end of the working stroke, and the minimum speed is approxi-

mately at the beginning of that stroke. Hence the fluctuation of energy

is approximately equal to the wmrk done during the working stroke,

minus 1-nth of the net work done during a cycle, where n is the number
of strokes during a cycle.

If the engine is governed on the “ hit or miss ” principle, the governor

acts by cutting off the gas, and there is no explosion and no effective w'ork

done for at least two revolutions after the completion of an effective cycle.

The complete cycle then takes a number of revolutions, which is a simple

multiple of two.

280. Fly-wheels.—The function of a fly-wheel is to reduce the flue,

tuation of speed due to the fluctuation of energy during the period or

cycle of the working of a machine. If over an interval the supply of

energy to a machine is greater than the resistance requires, the moving
parts increase in speed, and their kinetic energy therefore increases by
an amount equal to the surplus energy

;
and if over another interval the

supply of energy is less than the resistance requires, the moving parts

decrease in speed, and their kinetic energy therefore decreases by an
amount equal to the deficiency in the supply of energy. In most cases

where' a fly-wfiieel is used it is usual to neglect the kinetic energy of all

the moving parts other than the fly-wheel, so that over any interval the

difference between the energy supplied and the energy required is equal

to the change in the kinetic energy of the fly-wheel.

If R is the radius of gyration of the fly-wheel, in feet
; v the velocity,

in feet per second, of a point at a distance R from the axis
;
w the

angular velocity in radians per second
; N the speed in revolutions per

minute
;
W the weight of the wheel in lbs.

;
and K, its kinetic energy

in ft. -lbs., then

Wx47r2R2N2_
2'x'60V"'“

where Mj, Mg, and M are constants for a given wheel. The kinetic

= MN3,
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energy of a given wheel is therefore equal to the square of the speed, in

whatever way that speed may be stated, multiplied by a constant, and

for certain problems this simple rule is useful

If I is the moment of inertia of the wheel, in lb. and foot units, then

I = WR-, and from this and the foregoing formulse the following formula

1 IT
27r2IN2

are readily deduced, namely, A = == ™ “
0q^

•

If during a period or cycle of the working of a machine the minimum

and maximum speeds of the fly-wheel are N^ and Ng revolutions per

minute respectively, then the fluctuation of energy is ^^(^No -Nj^.

The difference between the maximum and minimum speeds is called

thxi fluctuation of speed, and the ratio of the fluctuation of speed to the

mean speed is called the coefficient of fluctuation of speed. If N is the

mean speed in revolutions per minute, and c is the coefficient of fluctua-

tion of speed, then c = — It is usual to assume that the mean

speed is the arithmetical mean of the maximum and minimum speeds, so

that 2N = N
2 + Nt Hence N: - N^ =-- (N2+ (Ng - N^) = 2c.N2,

If U denotes the work done per period or cycle in ft -lbs., and

denotes the coefficient of fluctuation of energy, then the fluctuation of

. 47r2WR2cN2 4-7r2IcN2
energy is iU, and kV

If H is the horse-power of an engine, then the work per revolution
OOAAArr

is ——— ,
where N is the speed in revolutions per minute.

The following are some values of c, the coefficient of fluctuation of

speed, found in practice ;

—

Pumps, and shearing and punching machines.... 0’05 to 0'03

Plour-mills . . . . . . • .
•

' . 0'04; to 0'03

Looms, paper-making machines, and ordinary machine tools . 0'03 to 0‘02f'

Spinning machinery . . . . . . . . . 0‘02 to 0-01

Dynamos ..... . . .... 0‘007

Exercises XIX.

1 . The piston of a steam-engine is 30 inches in diameter, and the stroke is

40 inches. Instead of a piston-rod there is a trunk 12 inches in diameter which
works through the front end of

the cylinder. The indicator dia-

grams for this engine are given in

Fig. 501. The full line diagram
is from the back end, and the
dotted line diagram irom the
front end of the cylinder. The
pressures marked are in Ihs. per
square inch. Heproduoo these 30
diagrams, making the length 5
inches, and the pressure scale 20

1 inch to 20 lbs. per square inch.
| | | | | | | | p I

Reconstruct the diagrams on a
straight base to show effeotiiifi pra-
sure on the piston, in tbs, per square FlG . 501.
inehoftlielwrgerfa^eaftlkepvfton.
What is the effective pressure in lbs. per square inch of the larger face of tne
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piston at the middle of the forward stroke 1 Compute the horse-power of this

engine when the speed is 80 revolutions per minute.
2. Indicator diagrams from the cylinders of a horizontal tandem compound

steam-engine are given in Fig, 502. Diameter of H.P. cylinder, 24 inches.

Diameter of L.P. cylinder, 46 inches. Stroke of pistons, 6 feet. Diameter of

piston-rod AB, 5-| inches. Diameter of piston-rod CD, 4| inches. Construct

on a straight base 4 inches long the combined piston effort diagrams for the

forward and return strokes, showing the combined effort on the two pistons per

square inch of the back of the low-pressure piston. Effort scale, 1 inch to

30 lbs. Compute the horse-power of this engine when the speed is 50 revolu-

tions per minute.

8. The piston of an engine, and all the parts rigidly connected to it, weigh

400 lbs., and the stroke is 20 inches. The crank shaft makes 160 revolutions

per minute. Assuming an infinite connecting-rod, determine the difference

between the total effective pressure on the piston and the thrust on the cross-

head pin, (a) at the beginning of the stroke, (5) at 5 inches from the beginning

of the' stroke.

4. In a steam-engine the piston at the beginning of its stroke is exposed to

a total pressure of 2000 lbs., but the inertia is such that the thrust of the piston-

rod at the cross-head is only 1600 lbs. The speed of the engine is now raised

until it becomes half as great again as before, while the pressure is unchanged

:

what is the thrust of the piston-rod ? [Inst.C.E.]

6.

In the engine referred to in Exercise 2, the total weight of the recipro-

cating parts is 6700 lbs. The length of the connecting-rod is 15 feet, and the

speed of the crank shaft 50 revolutions per minute. Construct on a stroke base

4 inches long the diagram of accelerating force per square inch of the back of

the low-pressure piston, the force scale to be 1 inch to 30 lbs.

6. In a direct-acting steam-engine the stroke is 2 feet, the connecting-rod

4 feet long, the piston 14 inches diameter, the weight of the reciprocating parts

300 lbs., and the revolutions 180 per minute. At the commencement of the

down stroke the difference of pressure per square inch on the two sides of the

piston is 40 lbs. (acting downwards) ;
at the end of the down stroke the difference

is 10 lbs. (acting upwards). Find the effective pressure transmitted to the crank

pin in these positions. "

If the steam pressure remained unaltered, a.t what speed

would the engine have to run in order to make the effective pressure at the end

of the stroke zero, and what would then be the effective pressure at the commence-

ment of the stroke ?
_

[Ud-'-]

7. Construct the polar and rectangular diagrams of crank effort for a direct-

acting .steam-engine in which the effective pressure on the piston is 60 lbs. per

square incii throughout each stroke, and determine the coefficient of fluctuation

of energy, (a) a.ssirming an infinite oonnecting-rod, (6) taking the length of the

connoctins:-rod 5 times the length of the crank.

8. To the left of Fig. 50'1 are shown the piston effort diagrams for a direct-

acting steam-engine, the pressures b<»ing in lbs, per square inch. Construct the

polar and rectangular diagrams of crank effort, and find the qoeflficivnt of

fluctuation of energy, also the ratio of the maximum torque to thejneau torque
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Fia. 503.

on the crank shaft, (a)- with infinite connecting rod, (6) with connecting-rod

45 inches long.

9. Referring to Fig. 503, cal-

culate T, the efi'ort on the crank Forward stroke.

when 33=5 inches, a.ssuming an
infinite connecting-rod.

10. Same as preceding exor-

cise for both forward and return

stroke.s, but taking the connect-

ing-rod 45 inches long.
"
11. The cylinder of a vertical

steam-engine is 45 inches dia-

meter, and the stroke is 4 feet.

The connecting - rod is 8 feet

long, and the elfective weight of

the reciprocating parts is 10,000 lbs. The speed is 100 revolutions per minute,
the crank" is .30 degrees from the top dead point the steam pressure on the

the pi.ston is 190 lbs. per .square inch, sncl on the bottom 85 lbs. per square

inch. Find the effective force transmitted ,'Along the piston-rod and the turning

moment on the crank shaft when the crank is in the above position. [U.L.]

12. Construct the rectangular diagram of combined crank effort for a two-

cylindor engine, the cylinders being of equal size, and the cranks at right angles

to one another. The piston effort diagrams are given in Fig. 503, and the con-
necting-rods are 45 inches long. Find the coefficient of fluctuation of energy
for this engine under these conditions.

13. vSaine as Exei-cise 12, except that the inertia of the reciprocating parts is to

be taken into account, the weight of these parts being
3 lbs, per square inch of piston. The engine is a
horizontal one, running at 150 revolutions per minute.
Stroke of piston, 20 inches.

14. Considering Fig. 503 to refer to a vertical engine
in which the weight of the reciprocating jjarts is 3 lbs.

.

per square inch of piston. Construct the rectangular
diagram of crank effort, taking into account the weight
an<! inertia of the reciprocating parts, and find the oo-

eflficicnt of fluctuation of energy. Length of connect-
ing-rod, 45 inches. Speed, 130 revolutions per minute,

16. Show, (a) that with constant pressure P on the
IDiston and infinite connecting-rod the polar crank
effort diagrams for one revolution are two circles of
radii r= |P, a.s shown in Fig. 504 ; (6) that with two cylinders of the same size,

constant "pressure P on each
piston, infinite connccting-rods,
and two cranks at right angles,

the polar diagram of combined
crank effort for the two cranks
for one revolution is bounded
by four arcs of circles of radii

R=r„y2, the centres of the
circles of radii R being situated
at the corners of a square of
side=2r, as shown in Fig. 504.

16. The following par-
ticulars* relate to a vertical

triple expansion steam-engine:
Diameters, of cylinders, 18, 27,
and 44 inches. Diameter of

piston-rods, 4*75 inches. Stroke
of pistons, 10 inches. Length

Fig. 504.

T.:XT
~A'

r

1
—---

:r;:

* Kindly supplied by the makers of the engine, Messrs. W. H. Allen, Son, and
Co..' Bedford;: '
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of connecting-rods, 48 inches. Weight of reciprocating parts (including piston,
piston-rod, and cross-head), high pressure, 1082 lbs.

;
intermediate pressure,

lOfiS lbs.
;
low pressure, 1523 lbs. Weight of each connecting-rod, 953 lbs. Angles

between cranks, 12u°. Sequence
of cranks, (1) high pressure, (2)
intermediate pressure, (3) low
pressure. Speed, 275 revolutions
per minute.

Indicator diagrams taken from
the engine at f load are given in

Figs. 505, 506, and 507. The
pressures are in lbs. per square
inch above or below the pressure
of the atmosphere. The dotted
line diagrams are for the under
sides of the pistons.

{a) Carefully enlarge the indicator diagrams, making the length of each 4
inches, and take for pre.ssure scales, 1 inch to 30 lbs. per square inch for the high
pressure, 1 inch to 10 lbs. per
square inch for the intermediate
pressure, and 1 inch to 5 lbs. per
square inch for the low pressure

diagrams.

(6) Eeoonstruct all the dia-

grams except that for the top of

the high pressure piston to show
pressures per square inch of the
top of the high pressure piston,

to a scale of 1 inch to 80 lbs, per
square inch. [For example, the
area of the bottom of the inter-

mediate pressure piston is 2'18

times the area of the top of the
high pressure piston, therefore

the heights of the diagram for the bottom of the intermediate pressure piston
must be enlarged 2T8 times to correct for area of piston, and they must be reduced
in the ratio of 30 to 10 to correct for pressure scale. The height of the resulting

diagram will therefore be 2T8-f3, or 0*73 of the heights of the corresponding
diagram in (»).]

(c) Reconstruct the diagrams in (6) on a straight base to show effective

pressures on the respective pistons.

(d) Correct the diagrams in (c) for the weight and inertia of the reciprocating
parts, reduced to per square inch of the top of the high ju-essure piston, includ-

ing in the weight of the reciprocating parts half the weight of connecting-rod,
(e) Draw the polar and rectangular diagrams of crank effort for each crank.

(/) Draw the polar and rectangular diagrams, of combined crank effort.

(y) Determine the mean combined crank effort in lbs. per square inch of the
top of the high pressure piston.

(h) Determine the positions of the high pressure crank, measured in degrees
in direction of motion from the top dead centre, for minimum aud maximum
speeds.

(i) Determine the coefffeiont of fluctuation of energy for this engine under
the given conditions.

17. The following particulars * refer to a 400 horse-power Crossley gas-engine.

There are two cylinders, with their open ends facing one another and their

conuecting-rods working on a crank common to both. Diameter of cylinders,

26 inches. Stroke of pistons, 3 feet. Length of connecting-rods, 6-707 feet.

Speed of crank shaft, 150 revolutions per minute.
Total weight of fly-wheel and accessories, two crank slabs, two balance

weights, crank pin, equivalent rotating part for two connecting-rods, and engine

* The particulars for this exercise are taken from the Proceedings of the

Institution of Mechanical Engineers, 1901-

-7=7 =— ___—
> s

y —
\ A

—

-
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!! ——--- —

TJl

Loio Pressure.

Fig. 507.

Intermediate Pressure.

Fig. 506.
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shaft and armature of dynamo, 87,638 lbs. Moment of inertia of all rotating

parts (units in lbs. and feet), 62,654. r j • j
Weight of reciprocating parts, including one piston, cross-head pm, and

ecpiivalent part for one connecting-rod, 2080 lbs.

Lidicator diagrams are given in Fig. 508.

(1) Re-draw and enlarge the indicator diagrams, making the length of each,

say, 4 inches, and take for the pressure scale, say, 1 inch to 80 lbs. per square

inch.

(2) Reconstruct the enlarged indicator diagram of the “A cylinder on a

four-stroke base, and add the inertia force curves, as shown at {a), Fig, 509.

(3) From (2) construct the indicator diagram corrected for inertia forces, as

shown at (.'>}, Fig. 609.

(4) Do the same as in (2) and (3) for the indicator diagram of the “B"
cylinder, but observe that the diagram of the “ B” cylinder must be moved one

stroke forward in advance of that of the “A” cylinder, since the explosion

in the “B” cylinder takes place one stroke in advance of that in the “A”
cylinder.

,

(5) Constrnot, on a base of equal angles of crank motion, the combined
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twisting moment diagram, as in Fig. 610, in pound-feet per square inch of piston

area.

((5) Determine the coefficient of fluctuation of energy and the coefficient of

fluctuation of speed.

OjiQ revoivtion. >K One revolution. >1

18. A fly-wheel, whose radius of gyration is 5 feet, weighs 4 tons. How
many ft.-lbs. of energy will this v.^'heel take up in changing its speed from 99 to

101 revolutions per minute ?

19. A certain fly-wheel gives out 6500 ft.-lbs. of kinetic energy in changing
its speed from 170 to 168 revol''tions per minute. What is the kinetic energy of

this wheel when its speed is 172 revolutions per minute ?

20. What must be the weight, in lbs., of a fly-wheel, 16 feet in diameter,,

whose mean speed is 120 rev<ilutinns per minute, if the total fluctuation of

speed is 7 per cent, of the mean speed, and the energy taken up between the
minimum and maximum speeds is 12 foot-tons?

21. A steam-engine indicates 10 Imrse-power. The fluctuation of speed is

^ of the mean speed, and tho, mean speed is 100 revolutions per minute. The
fluctuation of energy is of the work per revolution. What must be the
weight of the fly-wheel for this engine, assuming that all the weight is concen-
trated at a distance of 2 feet 3 inches from the axis of the wheel?

22. Calculate the moment of inertia of a fly-wheel (in ton and foot units)

which will give up 20,000 ft. -lbs. of energy as its speed changes from 130 to 128

revolutions per minute.
23. The mean speed of a fly-wheel is 85 revolutions per minute, and the

coefficient of fluctuation of sp'-ed is What are the minimum and maximum
speeds ? If the coefficient of fluctuation of energy is 0*07 and the indicated

horse-power of the engine is 1600, what must bo the moment of inertia of the

fly-wheel (in ton and foot unit.s) ?

24 . A cast-iron fly-wheel is in the form of a disc 6 inches thick and 4 feet

6 inches in diameter. Taking the weight of a cubic foot of cast-iron as 4."0 lbs.,

what is the kinetic energy of this wheel in foot-tons when it is running at 200

revolutions per minute?
26. A lly-wheel weighing 60 tons has a radius of gyration of 15 feet. The

indicated hor.'^e-power of the engine is 3000, the mean speed is 75 revolutions

per minute, and the coefficient of fluctuation of energy is 0*06. What is the

; coefficient of fluctuation of speed ?

26 . A 1000 hor-sc-power engine, running at 240 revolutions per minute, has a
wire-wound fly-wheel whose mass of 70 tons may he considered as 'concen-

trated at a radius of 10 feet. Express the energy stored in this fly-wheel in

terms of the work done per revolution. Steam being shut off, find the moment
of resistance which will reduce the speed from 240 to 120 revolutions in

two minutes, [tJ.L.]

27. An engine developing 80 horse-power has a fly-wheel 10 feet mean
diameter, weighing 4000 lbs., and making 120 revolutions per minute. The load

on the engine is reduced to 60 horse-power. Assuming that the governor fails

to act. that the speed increases at a uniform rate, that the horse-power developed
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in the cylinder is proportional to the speed, and that all the surplus energy is

slored hi the fly-wheel, find the horse-power developed and the speed at the

end of ont! minute. [U.L. l

28. A jJuncbing-niachine needs 4 horse-power
;
a fly-wheel upon the machine

fl not,ua,tori in speed between 100 and 110 revolutions per minute; a hole is

punched every three seconds, and this requires five-sixths of the total energy
given to the machine during the three seconds. Find the M and the I of this

fly-wheel. “M” is the kinetic energy of the wheel at one revolution iier

minute. [B.E.]

29. In a gas-engine using the Otto cycle the indicated horse-power is 8 and
the sjieed is 264 revolutions per minute. Treating each fourth single stroke as

effective and the resistance as uniform, find how many foot-pounds of energy must
be stored iu the fly-wheel, at mean speed, in order that the speed shall not vary
by more ihan orie-fortieth of its mean value. [Inst.C.E.]

30. A gas-engine is provided with two fly-wheels, each weighing 11| cwts..

and the radius of gyration of each is 1'87 feet. There is one woi’king stroke in

each four strokes. The diameter of the cylinder being inches, the stroke 9

inches, and the mean revolutions per minute 250. The mean pressure during
the firing stroke is 88'7 lbs. per square inch, during the compression stroke 15‘1

lbs., during the exhaust stroke 4‘4 lbs., and during the suction stroke atmos-
pheric. If the resistance overcome is constant, find the percentage variation of

speed of the enirine. [U.L,]

31. A gas-engine drives a number of machines in a workshop. The work
done on the piston during the working stroke is | times the work done during
the four strokes which unake a complete cycle. The engine works for some
time at GO horse-power, and at a mean speed of 200 revolutions per minute.
Immediately after an explosion in the working stroke has taken place, machines,
which absorb 20 horse-power, are cut off, the speed at the instant being equal
to the mean speed. Find the moment of inertia of the fly-wheel so that, the
change in velocity during the working stroke is not more than 4 per cent.,

and then find the number of revolutions per minute at the end of the fourth
stroke. CU.L.]
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GOVERNORS

281 . Function of a G-overnor.—The function of a governor is to

regulate the mean speed of a machine or prime mover, or to keep the

mean speed within certain limits, the limits of variation depending on the

nature of the work which the machine or prime mover has to do. The
limits of variation of mean speed will also depend on the sensitiveness of

the governor used.

The function of the governor differs from that of the fly-wheel. The
fly-wheel limits the variation of speed, during a cycle, which may be per-

formed during a fraction of a revolution or during several revolutions, but

the function of the fly-wheel is not to regulate the speed when a permanent

change takes place in the load, or when the change in the load lasts for

more than a cycle of operations of the machine or prime mover
;
this is the

function of the governor, which should regulate the supply of power to

the demand. For example, in a steam-engine the fly-wheel controls the

variation of speed due to the difference between the effort on the crank

pin and the resistance at the crank pin due to the load 'when the work

done by the effort, during a cycle, is equal to the work done on the

resistance.

A change in the average resistance should be accompanied or folio-wed

as soon as possible by a corre.sponding change in the average effort which

is effected by the governor altering the point of cut off, or altering the

initial pressure by operating a throttle valve. The governor of a recipro-

cating steam-engine can only act during the period of admission of steam

to the cylinder, and if a permanent change in the load occurs betw'een

the periods of admission, the fly-wheel exerts a controlling influence on the

speed until the governor can act.

282. Revolving Pendulum.—In its simplest form the revolving

pendulum consists of

a small body A re-

volving about a ver-

tical axis OY, and
suspended from a

point B by a thread

or slender rod. In

Fig. 511 the point B
i-s on the axis OY,
while in Figs. 512
and 513 B is at some
fixed distance from
OY. When B is outside OY it rotates about OY with the same

angular velocity as A by being on an arm fixed to a rotating spindle,



of wliieli OY is the axis. If AB is a rod, there is a joint at B which per-

mits of the free angular movement of AB about B in the plane AOY.
As A revolves at a steady speed, AB describes the surface of a cone

whose vertex is at 0, where AB intersects OY, whose height is A, and

whose liase has a radius r. The forces acting on A in the plane AOY
are, its weight W, the centrifugal force F, and the tension T in AB, and

for steady motion these must balance one another. Hence, taking

moments about O, ¥h = Wr. But F=:----, where w is the angular
g

velocity of A about OY, therefore = W?', and^
’

g ft)2

If (j is in feet per second per second, and w is in radians per second,

then % is in feet. If A makes n revolutions per second, or H revolutions

per minute, then ,

Referring to Figs. i)13 and 513, where the point of suspension B is

not on the axis OY, if the speed of rotation is given, the height Ti is found
as above, but there is no simple for-

mula for calculating r, nor is there, so

far as the writer is aware, any direct

geometrical construction for fixing the

position of AB. AB must therefore

be fixed either by trial or by using

a locus curve. Several locus curves

may be used, but the one shown in

Fig. 514 is probably the simplest.

With centre B and radius equal to AB
draw the arc DE, which must contain

the point A. Draw QBg, etc.,

several positions of the axis of the

arm AB, meeting the axis YY at p,

g, etc. Make p\^q% etc., each equal to

Ti. Draw horizontal lines through 1,

2, etc., to meet PB, QB, etc., respec-

tively. A fair curve drawn through
the points thus determined will cut the arc DE at a point which is the
position of A corresponding to the height h.

283. Effect of Mass of Arm in Revolving Pendulum.—In obtaining
the result h — gfu)^

in the preceding

Article, the weight
‘ ^

and centrifugal
force of the arm
were neglected. The
effect of these will

now be considered.

The arm AB will

section, and to weigh w lbs. per foot of length. Its length a will be

APPLIED MEOHAHIOS
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measured from the centre of the ball A to the axis of the joint at B.

The total weight of the arm aw

—

and the centre of gravity of the

arm will be taken at the middle of the length a, O is the point where
the axis of the arm AB intersects the vertical axis of revolution OY.
In Fig. 515, B and O coincide. In Figs. 516 and 517, the joint B is

on ah arm fixed to the vertical spmdle, the axis of the joint B being at

a horizontal distance c from OY. In Fig. 515, c is therefore = 0.

For simplicity, in what follows attention will be directed in the first

instance to Fig. 516.

Consider an indefinitely small length dx of the arm at a distance

X from B. The centrifugal force df of this small length of arm is

udxoi (x sin
_^+f:) ^ jg inclination of AB to OY. The moment

of this centrifugal force about B is

sin g+ coa g^^ -°?lg(sin te),

9 g

and the resultant moment about B of the centrifugal force of the whole

arm is

cos t)

T
r o 7

' f“ , \ w-o)“ cos 9fa^ . a‘^c\
-(sin u

j

xklx+ (j

I

xdxj ——— (

-^
sm u +

j

‘'+l>
W.io^acosefa .

SI

g \3

Considering now all the forces acting on A and AB, and taking moments
about B,

Wo>V/7 .. A\ 'Wtoj^acos Ofa • a c\ ^,r/ >.
,
txtX-^o

-{h - c cot $) + sm e+ _
j
= W(r - c) +

9
' '

cj XU 2/
' • - 2

*

Inserting cot 6 = -, sin^=-— and cosd ~^~— the equation of
® r a ar

equilibrium reduces to + +^^ j-=='W’ • To make this

apply to Fig. 517, it is only necessary to change c to - c. Hence the

general equation is “--|w + ^l^l +
— W' +^

.

If c-0 (Fig. 515), then
caVli

•(w +^) =W + -^,and7i:

W +

w+
£

Since £ will generally be comparatively small, the equations for Fig.

515 may be taken as applying to Figs. 516 and 517 also.

It will be seen that the effect of the mass of the arm AB is equivalent

to increasing the centrifugal force of A by an amount due to an increase

in its weight of^ ,
and increasing the downward pull at A by an amount

W7
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284. The Simple Conical Pendulum Governor.—Cue of the earliest

forms of the simple conical pendulum governor, as applied to a steam-

is shown in Fig. 518. ABC and A'B'C' are_ the arms, johited

and to the vertical spindle HK at BB'. Links CD and C'D'

connect the arms to the sleeve E, which, while it rotates with the spindle

HK, can slide uj) or down on it when the halls A and A' fall and rise

with changes of speed. The sleeve E has a groove turned on it to receive

the forked end of a lever, through which, and through other levers and

links if necessary, the sliding motion of the sleeve is transmitted and

converted into the motion of the throttle valve. The vertical spindle HK
is driven by the engine which the governor has to control. To reduce the

strain on the joint at BB', caxised by the inertia of the balls when the

ocity of the spindle changes, the arms AB and A'B' work in

cirrved arms ML and MN, which are fixed to the spindle at M.
A later and more common form of the simple governor is that shown

in Fig. 519, and to this the description just given will apply, except that

the arras ML and MN are dispensed with, but the sleeve E is driven by
a key on the spindle HK, which, ho-wever, docs not interfere with the

vertical sliding of the sleeve on the spindle.

A modification of the design shown in Fig. 519, which makes the

governor more sensitive, is that in which the axes of the joints at B and
B' are made to coincide and intersect the axis of the vertical spindle, as

in Fig. 518. A still more sensitive form is that shown in Fig. 520,
which is known as a crossed arm (jovernor. The three designs shown in

Figs. 518, 519, and 520 correspond to the three forms of the simple
conical pendulum shown in Figs. 511, 512, and 513, p. 329.

Neglecting friction and the effects of the mass of the arms and sleeve,

the formulae connecting the speed with the height li for the governors
described in this Article are the same as for the simple conical pendulum,

k-9 ~ 9 _ 60V/
<1)2 Arrfirifi dvr^N^'

are useful in connection with calculations bn

32-2. ^^ = 5'6746.

FiS. 520.518. Fig. 619.

2936*3.
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285. Loaded Governors.—Tlie simple governor is improved, par-

ticularly as regards its power of overcoming frictional resistances, by

Fig. 521.

adding a central weight, which increases

the downward pull on the revolving

balls without increasing their centri-

fugal force. Fig. 521 shows a simple

form of loaded governor. The central

weight or load W is in the form of

a disc with a central boss, which
corresponds to the sleeve E in the

illustrations of the preceding Article.

The masses at the lower ends of the

revolving arms, or pendulum weights,

arc in this case in the form of rollers,

upon which the disc part of the central

load rests, there being slots in the disc

through which the revolving arms pass,

as shpwn.

Let W equal the total weight of

the central load, and to the weight of

each of the pendulum weights. The
centrifugal force F of each pendulum

weight is equal to
luoih'

and the down-

ward pull on each of these weights is

W~ -f ?y, hence, taking moments about

the point of suspension of the arms,

/W
. = F7i =

, and therefore

Comparing this with the corresponding result for the simple governor, it

is seen that for the same speed the height of this loaded governor is

greater than that of the simple governor in the ratio of W •+ 2w : 2w,
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Alore frequently the central load is suspended from the pendulum

weights by links, as in Fig. 522, which shows the Farter (preiawr,

so called from the' name of its inventor. The particular governor slnjwir

in Fig. 522 is one made by Messrs. Tangyes of Birmingham.

To determine the relation between the height and speed in the Porter

governor, con.sider the diagram Fig. 523. Let W
ecjual the total weight of the central load, and the

weight of each revolving ball. The central load will

cause a tension in each suspension link equal to

W
- — . This tension may be resolved at the centre
2 cos B

W
of each ball into a vertical component — ,

and

horizontal component Q equal to ~ tan 6.

moments aborxt B, the point of smspension of the

pendulum arras,

tan ==A =

and therefore

If ~ r, then q=\, and h

When the pendulum arms and the

suspension links are of equal length, and
the axes of the joints at B and C either 524. Fig. 525 .

intersect the main axis (Fig. 524) or are at

equal distances from that axis (Fig. 525), then q is equal to 1. In other
cases, the value of q is best found by measuring r and on a diagram
to scale. It should be noted that when q is not equal to 1, its value
alters as the height li cliaoges.

286. Effect of Priction on Governors.—The frictional resistances
of the various joints of the governor itself, and of the gear which the
governor has to operate, may be reduced to a single force R acting on the
sleeve in a.direction opposite to tliat of its motion. When the sleeve is

rising, and the speed of the governor therefore increasing, R will act
downwards, and in a loaded governor this will be equivalent to altering
the central load from W to W+ R. Again, Avhen the sleeve is descending
R will act upwards, and this Avill be equivalent to altering the central
load from W to W - R. Hence for a loaded governor of the type shown

in Fig. 521, /x =
, the plus

( + ) sign being used for

increasing speed, and the minus ( - ) sign for decreasing speed
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For the Porter governor, . 3.

W (1)2

. j
'W±U + to g

The formulje just given for the Porter governor will also apply to the
simple governor when the upper joints of the suspension links are at the
centres of the pendulum weights, but W will

then be the weight of the sleeve. If the

suspension links are jointed to the pendulum
arms, as shown in Fig. 526, then W + E must

be changed to (W ±'R)j. The reason for the

foregoing statement will be obvious from the

following considerations. Draw AC parallel

to A'C'. Let T' be the tension in the

suspension link when it is at A'O', and let

T be the tension in that link when it is

transferred to AC. Then since the moment
of T' about B has to balance the moments
of F and to about B, also since the moment of

T about B has to balance the moments of F and w about B, it follows

uT'
that T'a must be equal to TZ, or T = hence W ±E at C' must become

(W±E)|atC.

If the speed of a governor and the lift of the sleeve, or the lift of the

pendulum weights, be plotted, (1) neglecting friction, and (2) taking the

friction into account, instructive curves, such

as are shown in Fig, 627, are obtained. HK
IS the lift of the sleeve "When the sleeve is

at Y the speed, say in revolutions per minute,

is YL when friction is neglected, YL^ when
friction is considered and the sleeve is de-

scending, and Y"Lo when friction is considered

and the sleeve is ascending. Preferably the

speeds are measured from a vertical axis some distance to the left of HK
in order that a larger scale may be used for the speeds, and so cause the

points L„ L, and L2 to be further apart. The abscissae and ordinates of

the curve ALB represent the speed and lift respectively when friction is

neglected. The abscissae and ordinates of the curve A,Lj^B, represent

the speed and lift respectively when friction is considered and the sleeve

is descending. Lastly, the abscissae and ordinates of the curve A
2
L

2
B
2

represent the speed and lift respectively when friction is considered and
the sleeve is ascending.

287. Sensitiveness of Governors.r—The greater the change in the

level of the revolving balls of a governor for a given jpercentcuje or

fractional change in speed the greater is its sensitiveness, and the

sensitiveness may be defined as the change in level of the revolving balls,

due to a change of speed of, say, 1 per cent.

Consider the case where the axis of the top joint intersects the main
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namely, Wj

•axis (Figs. 518, 521, 622, 523, and 524), and let the friction be

neglected. In this case the change in the level of the revolving bails is

the same as the change in the height h of the governor. Ji n is the

speed of the governor in revolutions per second when the height is li,

then for the simple governor and also for the loaded governorA and are

connected by an equation of the form h =
,
where c is a constant de-

pending on the type of* governor and the various weights. Also,

wlieu friction is considered, c has one value for increasing speeds, and

another value for decreasing speeds. Let the speed increase from 7h to

am,. (If the iinu'ease in speed is 1 per cent., a‘=l‘01.) The height 7i

will decrease to hy
-

where Aj = = — . Hence, A — A, == AA= A - - = A

This shows that the sensitiveness of the governor is directly proportional

to the height A, and it follows from this investigation that the sensitive-

7WSS of the loaded governor is the same as that of the simple governor when
friction is neglerted.

Many writers of note state that, friction being neglected, the loaded

governor is more sensitive than the unloaded governor, and it is therefore

necessary that this point should be considered more fully. Take a
>simple governor in which the revolving balls each have a weight w, and
let this governor be converted into a loaded governor, say of the Porter

type, by adding a central load of weight W, and for simplicity let

the factor q (Art. 285) equal 1 j
then for the unloaded governor

A= and for the loaded governor A = • Now if these
47r'^n^ w 47r“5r

governors are run at the sa^m speed, the height of the loaded governor

will be times the height of the unloaded governor, and under

those circumstances the loaded governor would be times as

sensitive as the unloaded governor
;
but what really happens in practice

is that when the simple governor is replaced by a loaded governor the
height h is about the same for both, and consequently the loaded governor

is run about ^ — times as fast as the unloaded governor, and the

one governor is then no more sensitive than the other when friction is

neglected.

Consider now the effect of friction on the sensitiveness of the
governor. For the Porter governor, in its simplest form, it has been shown

that ^ where E is the force required at the sleeve
to 4str% ^

to overcome the friction of the governor and the gear which it has to

operate. For a given value of A there are evidently tw’o values of n,

E H- -10 <7 1— and,.,.
-!-E -I- w 9

i-rr^h
'

Eeferring to the diagram Fig, 627, if is represented by the point Lj, then
«2 is represented by the point Lg. If the sleeve is at the level Y, it must
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]iavt‘. reached that level either by falling from a higher level, or by rising

from a lower level. Suppose that the sleeve reached the level Y by
falling from a higher level, due to a diminution in speed, then its speed
must be Now suppose that the speed . diminishes still further, the

sleeve will again fall, but the friction will not affect the sensitireneHs of
the. governor

;

the sensitiveness will be simply proportional to A, as has
already been shown. Next, suppose that instead of the speed diminish-

ing to less than n-^ it begins to increase after coming down to w,, then
there can be no change in the level of the sleeve until the speed has
increased to . If after the speed has

, increased to it goes on
increasing, the sleeve will continue to rise, and the sendtiveness will again
he unaffected by the friction.

If n is the mean speed = -f- Wg), and represented by the point L

(Fig. 527), then is the coefficient of fluctuation of speed of the

governor ttihen the direction of ilie motion of the sleeve is reversed, and
the smaller this coefficient is, the more sensitive is the governor.

The value of the expression
n

simplest form is found as follows :

—

for a Porter governor of the

W + E-hto

=V'

'W -I-

(see footnote), hence

_

R -h w - J^Y - R -H w

J'W+

w

If W be increased, the term

B
W +w

’

4'
R

4^
R
W + w

1 - increases, therefore the value ofW + w
^2— decreases as "W

increase.s. Hence, considering the effect of friction on a loaded governor,

the sensitiveness is greater the heavier the central load, and consequently

the loaded governor is more sensitive than the unloaded governor when
the pendulum weights are the same in both. But the unloaded governor

may be made as sensitive as the loaded governor by increasing the

pendulum weights. Let w,^ = weight of each ball of a simple or unloaded

governor, w = weight of each baE of a loaded governor, and W = weight

of central load. Then for the unloaded governor W= 0, and

/dil- /II5.
n 'V 'V %

For the loaded governor ~ ~

Hence if

R
'WfrtO YV * i'W+w’:

3- is the same for both governors, lo^ =117 •+ w.

Note.—The mean of the rising and falling speeds for a given level of sleeve,

and for a given value of E, is not quite the same as the speed for the same level

when E=b, but as E is generally small compared with W-hw, the error intro-

duced by taking n as above may be neglected.
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288. Effort of Governors.—By the efort of a governor is meant the

force which it is capable of exerting at the sleeve for a given percentage

or fractional change of speed.

Donsider first the effort of the Porter governor for which

jrJf .
'l. Let the speed increase from w to icw, and let a force

Q be applied at the sleeve in a downward direction, Q being just sufficient

to prevent the sleeve rising. This will evidently be equivalent to increasing

the central load from W to W + Q.

Let F = centrifugal force for two balls at the speed w.

F| = centrifugal force for two balls at the speed aiw.

F,=?!!!i*=2(W+Q+®)r.
(J

It

Therefore Q' (a’2 — 1) = (W + ?.o)
— If the force Q be

gradually diminished to zero, the sleeve will rise until h —
»

and the average value of the effort on the sleeve during, the rise will

oe ^Q, or '-|(W + _ l) = p, and this is the resistance at the sleeve

which this governor is capable of overcoming with an increase of speed

from (0 to ajw. For a decrease in speed from w to arw it follows that P,

now acting in the opposite direction, is equal to -|(W4-wj(l -a^). For
a change of speed of 1 per cent. T — Q-Q1{W + w).

Converting the Porter governor into an unloaded governor by
removing the central load or making W = 0, it follows from the foregoing

proof tint P = -|?tf(a;2 - 1), or luil ~.r2) = O'OLiJ, for a change of speed of

1 per cent If in the unloaded governor the sleeve is suspended, as in

Fig. 526, then P, as just given, must bo increased in the ratio of Z : a,

supposing that the suspension links and the pendulum arms are equally

inclined to the main axis.

It is evident that in order that the unloaded governor may have the

same power as the loaded governor of the Porter type, =W + w,

,ch ball of the unloaded governor,

of the type shown in Fig. 621,

+ 2w)(a:2-l).

289. Power of Governors.—By the of a governor is meant the
amount of work which it is capable of doing at the sleeve for a given per-
centage or fractional change of speed. The work done at the sleeve is

equal to the mean effort of the governor multiplied by the distance
through which the sleeve moves for the given change of speed. Thus if

P = mean effort, Z:-lift of sleeve, and IT= the power of the governor,
then IJ = P/c,

For the Porter governor (Fig. 524), P = J(W + w) (x^ - 1),

= A=2AA==2(^^^)^ V=m^(W + w)(^^Jk
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For the direct loaded governor (Fig. 521), P = |(W + 2?.o) (.7;2 - 1),

U= P^==i(W+2?<?)(^^— J/i.

For the simple governor, (Fig. 526), except that B and C' are on the

mainaxis, P=iM.(a:2-l)l, A:= 2A/;,^ = 2^^^

diagrams of effort and ^ k. //7
power now to he de- y^/
scribed. Taking first the J
simplest form of governor,

/// i
namely, the simple conical /V /
pendulum, OAj (Fig. 528) /
is one position of the pen- /
dulum, and OAgis a higher

position. Let Nj denote
^ /// *

the normal speed of the " //
governor in revolutions / / /a /
per minute for the position / y /Y
OA^, and Ng the normal [

speed for the position >
‘ / \

OAg. LetHiAi^ = ri, and 1^'"^ / \H
2
A

2 = r2 ,
and let ^

—

1

_ —Ih^

weight of one ball. ^
Make the vertical line Fig. 528.

«Fi = centrifugal force of

ball when its speed is Nj and position A^. aFi=:c?«NVi? where a

is a constant.

Make AgFg = centrifugal force of ball when its speed is Ng po®*

tion Ag. AgFg = c?«N27
2 • Let also the centrifugal force for intermediate

positions be plotted in the same way, and a fair curve F^Fg drawn
through the points thus obtained.

The work done by the centrifugal force while the ball moves from

A| to Ag is evidently represented by the area of the figure aF^FgAg. But
as the speed has been assumed to be normal for each position of the ball,

all the work done by the centrifugal force must' have been spent in rais-

ing the ball against gravity. Draw the horizontal line to represent

w to the same scale as was used in representing the centrifugal force.

Complete the rectangle H^KiEgHg. The area of this rectangle will

represent the work done in raising the ball through the height HiHg. ^
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lienee the area of the rectangle equal to the area of tlie

figure rtFJ'i’oAo.

Now suppose that when the hall is at the speed suddenly increases

to Ny, and suppose that the ball is prevented from rising by a force 8
acting vertically downwards at A^. The centrifugal force will now bo

rtF
3 = c?/;N!?q. Make K^L^^S, then HjL^ = w4-S, the total downward

force at A, . h’or equilibrium it is obvious that aPg x OHj = H^Lj x A^Hj

.

Next suppose tlxat tlie force S is diminished so as to allow the ball to rise

to Ag, then remembering that the speed during this change is Ng, the

centrifugal force will be directly proportional to the I'adius, and will

therefore be represented by the ordinates of the straight line FoF;,

,

Avhich when ])roduced passes through Ho . In order that there may be

equilibrium in each position of the ball as it rises ¥Ji = (w+ s)r, where s

is the vertical effort at the centre of the ball when its distance from the

but S is constant, therefore is constant,
. . , b ?« + s

axis IS r, hence — = —
h

and w + s will be represented by the absciss® of the straight line L^Kg

,

which wlien produced passes through 0. The work done on the force s

as tlie ball rises from A, to Ag is therefore represented by the area of the

triangle KJjjKg . In the same time the work done by the centrifugal

force is represented by the area of the figure aFgFgAg, but the part of

this, ah\FgAg, represents the work done in raising w, therefore the

external worlc dune is represented by the area FjFgFg.

If straight lines OLgK^ and HgF^F^ be drawn, it is easy to show
that the external work which the governor is capable of doing as the ball

descends from Ag to A, is represented by either the area of the triangle

KjLgKg or the area FiFgF^.
if HiHg is the maximum or total lift of the balls, then for each ball

the mcLdmmu power of the governor is represented by the area of the

triangle KjL^Kg when the ball is ascending,

and by the area of the triangle K^LgKg when
the ball is descending. But if the ascent from

Hi to Hg is made in three steps (Fig. 529)
instead of one, the external work done for each

ball will only be that represented by the sum of

the areas of the triangles shaded with vertical
22^

lines, and if the descent from Hg to’ H^ is made
‘ ‘

in three steps instead of one, the external work done for each ball

will only be that represented by the sum of the areas of the triangles

shaded with JiomorateMines,

The horizontal widths of the triangles K^L^Kg and KiLgKg at any
given level measures the vertical effort s for each ball of the governor at

the centre of the loll at that level, the width of the triangle KiLjK.,
being the effort during ascent, and the width of the triangle KiL,,Kg
being the effort during descent. The effort at the sleeve is got by multi-
plying the effort at the balls by the ratio of the vertical motion of the
balls to that of the s'

For the direct loaded governor (Fig. 521), the length HjE^ (Fig. 528)

is made equal to
2
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where m is the ratio of the motion of the sleeve to the vertical motion of

the balls.

The ratio of the vertical motion of the balls to that of the sleeve is

easily found from a diagram such as that shown in Fig. 530, where OA
is the iiendulum, and AC the link connecting it to

the sleeve. Produce OA to meet the horizontal line

through G at Oj, then Oj is the instantaneous centre

for the link AC in the given position, and if Yj = the

velocity of A in the direction at right angles to OA,
and Y

2 = the velocity of C in the vertical direction,

Draw the vertical line AD
;
then if

is the vertical component of Vj, it is easily proved that

t; ._OjD

V^-0,G

“
0,0

If the link occupies the position A'C' I’ig. 530.

where Vo now denotes

Exercises XX.

1. Plot on squared paper the height, in inches, and revolutions per minute,
for a simple conical pendulum, from 30 to 120 revolutions per minute. Scales.

—

1 inch to 10 inches, and 1 inch to 20 revolutions per minute.

2. If the arm of a simple conical pendulum is ISJ inches long, what will be
its inclination to the axis when running at 50 revolutions per minute, and what
will it be at 60 revolutions per minute ? Also, what will its speed be, in revolu-

tions per minute, when its inclination to the axis is 80°, and what will it be when
the inclination is 45° ?

3. A simple conical pendulum is running at 60 revolutions per minute;
what is the decrease in height if the speed is increased 6 per cent., and what is

the increase in height if the speed is decreased 5 per cent. ?

4. Add to the diagram drawn in answer to Exercise 1 the curve showing
the relation of height to speed for a conical pendulum when the weight of the

arm is half the weight of the ball. Assume weight of arm per inch of length

to be uniform.

6.

Eefcrring to Figs. 511, 512, and 513, p. 329, the length of the arm AB is

10 inches for Fig. 611, 8 inches for Fig. 512, and 12 inches for Fig._513. The
distance of B from the axis OY is 1 inch for Figs. 512 and 513. Starting in each

case from the position in which the arm is inclined at 30° to the axis, calculate

the percentage increase in speed for a rise of 1 iuoh in level of the balls. Draw
the figures half full size for each position.

6. IPind the answers to the preceding exercise when the weight of the arm is

taken into account. The weight of the ball in each case is 6 lbs., and the weight

of the arm is 1'75 lbs. for Fig. 511, 1*5 lbs. for Fig. 612, and 2 lbs. for Fig. 513.

7. Draw the speed curves, as in Fig. 527, p. 335, for the pendulums of

Exercise 5, (1) neglecting friction, (2) taking friction into account, the amount
of the friction being equivalent to a vertical force of 1 lb. at the centre of each

ball. The weight of each ball is 6 lbs.

8. In a direct loaded governor (Fig. 521, p. 333} the arms are 10_ inches long.

Each, ball weighs 4 lbs., and the load is 76 lbs. The sleeve is in its lowest

position when the arras are inclined at 27“ to the axis. The lift of the sleeve is

1 inch. What is the force of friction at the sleeve if the speed at the beginning
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oC the asocnfc from the lowest position is equal to the speed at the beginning of

the descent from the highest position ? Also, what is the range of speed for this

governor under these conditions ?
' '

' 9. Eefer 3-ing to the preceding exei’cise, if the friction is 4 lbs. at the sleeve,

what must be the lift if the maximum descending speed, is equal to the minimum
ascending speed ?

10. In a Porter governor the arms and links are each 10 inches long, and
the axes of the top and bottom joints intersect the main axis. Each ball weighs

Ib.s., and the central load is 50 lbs. 11, the force of friction at the sleeve, is 5 lbs.

The inclination of the arms to the vei-tical is 30“ and 45“ in the lowest and
highest positions respectively. Calculate the following: (1) The travel of the
sleeve, in inches. (2) Tiie speeds at the bottom, middle, and top of the travel of

the sleeve, neglecting friction. (3) The speeds at the bottom, middle, and top
of the upward travel of the sleeve, allowing for friction. (4) The speeds at the
top, middle, and bottom of the downward travel of the sleeve, allowing for

friction.

Speeds to bo in revolutions per minute. Plot the results as in Eig. 527, p. 335.
11. The arras and links of a Porter governor are all 9 inches long, and the

axes of the top and bottom joints are at a distance of 1 inch from the main axis.

The balls weigh 5 lbs. each, and the central load is 55 lbs. The friction is

equivalent to a force of 4 lbs. at the sleeve. The sleeve is in its lowest position
when the arms are inclined at 30“ to the vertical. Find the lift of the sleeve, in
inches, when the .speed at the beginning of the ascent from the lowest position is

equal to the speed at the beginning of the descent from the highest position.

12. Eeferring to the governor of the preceding exercise, if t is the radius of
the circle described by the centres of the balls as they revolve, what are the
extreme speeds in revolutions per minute corresjionding to r=h inches, and what
is the range of speed between r=5 inches and r=G inches 1

13. The balls of a Porter governor weigh 4 lbs. each, the load on the governor
is 40 lbs.

,
and the arms intersect on the axis. What height will this governor

run at if it revolves at the rate of 240 revolutions per minute ?

If the speed of the balls suddenly increases per cent., what
pull will be exerted on the gearing attached to the governor ?

If the friction of the regulating apparatus is equal to a dead
load on the governor of 5 lbs., by how much will the speed
increase before the balls rise ? [U-L.]

14. A spring-controlled governor is as shown in the sketch
{Fig. 531), the fixed fulcrum of the arm being at F, and the
weight of each ball being 5 lbs. There is no tension in the
spring when the balls are at a radius of 3 inches. Neglecting
the controlling effect of the balls and arms, draw the curve
of controlling force. Find the speed at which the governor j'jq.
runs when the balls are at 6 inches radius, and find also the
force on the sleeve if when the balls are in that position the speed is 10 per cent,
higher. The spring extends 1 inch for 30 lbs. fcJhow on your curve, roughly, the
controlling effect exercised by the balls.

16. A spring-loaded governor is placed horizont ally, as shown in Fig. 532.
Let W be the weight of each of the balls in lbs. ; r the radius of the path of the
balls; 2! the length of each of the four arms;
w the angular velocity in radians per second.
When the radius is zero, the tension in the spring
is T lbs., and the force required to elongate the
spring unit length is Q lbs. Show that

“ W * Fl&. 532.

If the rate of ohanee of w with respect to r is to be 80 when w is 26 radians
per second, r is 0‘25 foot, and i is 1 foot, and the weight of each ball is 3 lbs.,
find the values of T and Q, [U.L.j

16. A Wilson-HarbneU spring loaded governor is shown in Fig. 533. The
maximum and minimum distances of the centres of the balls from the axis of
the governor are 7 and 3*6 inches respectively.

»*i
and r<^ ,

the lengths of the arms
of the bell crank levers, are 4‘6 and 3*6 inches respectively. Each ball weighs
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6 lbs. The maximum load on the spring is 258 lbs. Neglecting the moment of

the weight of each baU, and assuming that the ball and roller ends of the levers

move in horizontal and vertical lines respectively, find (a) the maximum speed of

the governor in revolutions per minute, and (6) the load on the spring at minimum
speed, which is 270 revolutions per minute.



CHAPTER XXI

BRAKES AND DYNAMOMETERS

AC. T,

291. Brakes.— brake is an instrument for introducing an artificial

resistance to the motion of a machine or moving body. The object of

introducing the artificial resistance is either to stop the machine or retard

it, or i)revcnt its speed increasing. In acting, the brake converts work
into heat by means of friction. Tlie friction may be between solids, or

between solids and a fluid, or it maj'' be partly between solids and a

fluid, and partly between the particles of the fluid.

292. Band Brakes.—In a band brake, a band, generally of metal,

embraces a portion of

the circumference of a

wheel, as shown at (a),

Fig. 534. One end

of the band is jointed

to one arm of a lever,

and the other end is

either jointed to an-

other arm of the same
lever, or it is jointed

to a pin fixed on the

frame of the machine.

The required re-

sistance is produced 534.

by the friction between the band and the rim of the wheel, and when
the brake is in action there are tensions T| and Tg in the straight parts

BE and OF of the band respectively, of which T^ is the greater, and the

turning action of these forces on the lever is balanced by a force P applied

to the lever at D.

The resisting torque due to the action of the band on the wheel is

(T, - Tg)!^, where R is the effective radius of the wheel, that is, the

radius measured to the middle of the thickness of the band.

Referring to (a), Fig. 534, and assuming that the arms AB and AG
of the lever are perpendicular to BE and CF respectively, then, taking
moments about A, the fulcrum of the lever, P x AD = T„ x AC - T. x AB,
AC . T

- 1

If is made equal to-^
,
then P= 0, which means that once the brakeAB ^ Tg

is in action it will remain in action without the application of any further

fain, if is nearly equal to~l
,
only a small

AB is

By Art. 243, p. 277,

effort on the lever.
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effort will be required on the lever at D to keep the brake in full

action.

It is obvious that if AC is greater than AB, a downward motion of

the end D of the lever will loosen the band from the wheel.

AC
If the ratio is made less than

, then, when the brake is in
12

action, the force P must act downwards, as shown at (5), Fig. 534
;
but if

this force be increased beyond what is sufficient to balance the turning
action of and Tg on the lever, the end D will drop, and the band will

be disengaged from the wheel.

At (c), Fig. 534, the tight end of the band is shown anchored at A,
the fulcrum of the lever. Here P x AD = T

2
x AC. At (d) the slack

of the band is shown anchored at A. Here P x AD - x AB, Com-
paring the arrangements at (rr) and (d), it is obvious that, for the

effort P, the latter arrangement will require a larger leverage for P to

proiluce the same resistance at the circumference of the wheel,

293. Band and Block Brakes.—By lining the band of the brake
discussed in the preceding Article with wood blocks, as shown in Fig. 536,

a higher coefficient of fric-

tion is introduced, and the

wear is confined to the wood
blocks, which may easily be

renewed from time to time.

The ratio of the tensions

Tq *nd T«, at the ends of

the band is obtained as fol-

lows. Let there be n blocks,

each subtending an angle 20

at the centre of the wheel.

The first block at the tightest

end is shown separately at
.

„
(a). The forces acting on •

this block are Tq and T^, the tensions in the band where it

block, and R, the reaction of the wheel on the block
j

inclined to the normal at an angle 4>i as shown,

place, <j3 being the friction angle. The triangle of

under consideration is shown at (6),

From the triangle of forces it follows that

5. = whick reduces to ,
Tj sin{(90 - Tj 1-

where /a = tan is the coefficient of friction between the

In like manner

all the blocks

Hence n _f l +>» ten,|V

T,i ll - p tan 6j

294. Block Brakes.—In a block bi

rim of a revolving wheel. This is tl
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always used on raihvay trains, tram-cars; and vehicles on common roads.

The Wock is made of a softer material than the rim or tyre of the wheel

against which it is pressed, so that the w^ear is confined mainly to the

block, which, is easily renew^ed. When the block is made of wood, a hard

and strong wood, such as elm, oak, or beech, should be used. For heavy

and rapid running vehicles, cast-iron brake blocks are the most common.

If P is the normal force pressing the brake block on the wheel whose

radius is R, then the resisting torque set up by the brake on the wheel

is /rPR when the wheel is rotating.

When a brake block is applied to a rolling wheel an additional load

is thrown on the bearing or journal of the wheel or axle, but if two

blocks are applied at opposite ends of a diameter of the wheel, there is no

such additional load. The braking action is also doubled by the use of

tw'o blocks, and the two blocks may be operated by practically the same
force which will operate one.

Fig. 530 shows the Milnes-Daimler differential block brake as used

on motor omnibuses.* A is the brake drum fixed to the final driving

shaft, BB are the brake blocks, C is a bracket fixed to the frame of the

chassis. D is the operating lever, E is the pull-off spring, and F is the

brake adjusting screw.

Fig. 537 shows the James and Browne block brake, as used on motor
cars.f A is the sprocket w'heel and brake drum, BB are the brake blocks
which act on the inside of the rim of the brake drum, C is an arnn jointed to

the frame of the chassis, D is the operating lever, and E is the pull-offspring.

295. Action of Railway Brakes.—The block brakes used on the
wheels of railway vehicles are found to be most effective when the forces

pressing the brake blocks on the wheels just prevent the wheels from
skidding on the rails. The explanation of this is that the coefficient of
sliding friction between the wheels and the rails is less than that betw^een
the brake blocks and the wheels, and also that the coefficient of friction

between the wheels and the rails just before skidding begins is greater

than the coefficient of friction of skidding.

For example, at a, speed of 60 miles per hour the coefficient of sliding

^ Proceedings of the Institution of Mechanical Engineers, 1907, p 432.

+ Ihid., 1902, p. 730.
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friction between a wheel and the rail may be, say, 0'05, while the co-

efficient of friction between the brake block and the wheel when the wheel
is not skidding may be, say, O'OB. Let the weight on the wheel be
10,000 lbs., and let the braking force on the block be 9000 lbs. If the

wheel is skidding the resisting force is 10,000x0-05 = 500 lbs., and
the work absorbed per foot of travel of train is 500 ft.-lbs. for this

wheel. If, however, the wheel is not skidding the resisting force is

9000 x0‘08 = 720 lbs., and the work absorbed per foot of travel of

train is 720 ft.-lbs. for this wheel. But in order that the resistance of

720 lbs. due to the sliding of the rim of the wheel on the brake block

may not lock the wffieel and make it skid, there must be a resistance to

sliding of the wheel on the rail of not less than 720 lbs., and this force

is greater than the 500 lbs. which is the resistance to sliding when the

wheel skids. Now, when the wheel is rolling, the part of the wheel in

contact with the rail is for the instant at rest on the rail, and the co

efficient of friction between the wheel and the rail before skidding

commences may be, say, 0-15, and therefore the resistance before skidding

commences must be 10,000 x 0*15 = 1500 lbs., which gives an ample
margin.

The coefficients of sliding friction between the wheels and rails when
the wheels skid, and between the wheels and the brake blocks when the

wheels roll, are found to vary with the speed, being least at high speeds,

and they increase as the speed decreases, as shown approximately in the

following table :

—

Speed of sliding in miles \
per hour /

60 50 40 30 20

ft between wheels and rails 0-04 0-05 0-06 0-07 0-09

ft between wheels and brake!
blocks /

0-06 0-08 0-10 0-13 0-17

296. Dynamometers.—A dynamometer is an instrument for measuring

the effort or torque exerted by or on a machine. The work done in a

given time by the effort or torque is found by multiplying the effort by

the distance moved in the given time by the point at which the effort

acts, or by multiplying the torque by the circular measure of the angle

described in the given time by the piece on which it acts.

Dynamometers may be divided into two principal classes, namely,

absorption dynamometers and transmission dynamometers. In an ab-

sorption dynamometer the work done by the effort or torque is w'asted by

being converted into heat by means of friction. In a transmission dyna-

mometer the work done by the effort or torque is transmitted through

the dynamometer with only a small waste necessary to operate the

instrument.

297. Block Brake Dynamometer.—^What is generally known as the

Frony brake is a simple form of absorption dynamometer. In its simplest

form the Prony brake consists of two blocks of wood clamped together

with a pulley between them, the pulley being fixed to a revolving shaft

;

one of the blocks has a lever attached to it, which carries a weight at its



I

The nuts may be of the ordinary form, to be turned with a spanner, or

they may be small hand-wheels, as shown. Between the nuts and the

block A, and partly recessed in the block, are stiff helical springs, which
serve to keep the pressure between the blocks and the pulley constant.

The lower block B is extended to right and left to form a two-armed
lever. A rod E, suspended from the right-hand end of the lever, cariies

the load W. A rod E, suspended from the other end of the lever, carries

a weight, which balances the brake when unloaded. The rod E may also

be extended and carry a piston to work in a dash-pot, to be presently

described. Ti and K are stops to limit the motion of the lover.

If E, is the horizontal distance of the axis of the rod E from the axis

of the shaft in feet, W the load in lbs., and IST the speed of the shaft in

revolutions per minute, tlien the horse-pow'er absorbed by the dynamo-

meter is It should bo observed that it is not necessary to

know the diameter of the pulley or the coefficient of friction between the
brake blocks and the pulley in order to compute the horse-power absorbed.

The groat defect of this type of brake is that it is liable to violent

oscillations when the driving torque oh the shaft is not uniform, and even
when the driving torque is uniform, as in a steam turbine, variations in

the coefficient of friction between the blocks and the pulley often cause
great unsteadiness in the lever.

To keep the coefficient of friction constant, the brake should be kept
well lubricated with a stream of soapy water. The stream of water also

serves to carry away the heat and keep the pulley and brake blocks cool.
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In tL.e brake sbown in Fig. 538, tlie lubricating and cooling watev enters

at the top from tbe pipe P, and is distributed over the surface of the

pulley by grooves formed in tbe rubbing surfaces of the blocks, and
leaves by the pipe Q'at the bottom. Wooden shrouds L and M on the

sides of the blocks prevent the water coming out at the sides.

Oscillations of the brake may be damped by means of a dash-pot,

such as that shown in Fig. 539. This dash-pot is a cylinder containing

oil or water, and a piston, which is attached to

a rod suspended from and jointed freely to the

lever of the brake. The piston may be about
1-1 6th inch smaller in diameter than the bore

of the cylinder, and it should be thin at its

edge. The oscillations of the lever are com-

municated to the piston, but the motion of the

piston is retarded by the liquid in the cylinder,

a portion of which must move from, one side

of the piston to the other through the narrow 5gg_
passage round the edge of the piston as the

latter moves. In this way the amplitude of the oscillations of the brake

is considerably reduced.

The brake should be balanced, when unloaded, with the piston im-

mersed in the liquid in the dash-pot.

Instead of hanging tlie brake load on the end of the lever, the brake

may be turned “end for end,” and the load end of the lever bo made to

rest on a pedestal placed on the platform of a weighing-machine. In

many cases this is a very convenient arrangement.

298. Use of Compensating Lever on Dynamometer.—When a band-

block brake is used as a dynamometer, a compeiisatinff lever is often

added. This lever provides a means of automatically adjusting the

tension in the band to suit variations in the coefficient of friction

betw’-een the brake blocks and the wheel.

Referring to Fig. 540, ABO is the compensating lever jointed to the

ends of the band at A and B, and D is the point of suspension of the brake

load W. The band is

tightened by the screw

at E, so that when the

brake is in action the

compensating lever is

horizontal and in line

with D.

The action of the

compensating lover is as

follows. Suppose that

the coefficient of friction

between the brake blocks Fig. 540.

and the wheel should

increase, this will cause the wheel to carry the brake and its levers round

with it until the lever ABC strikes the stop H. The points A and B
will continue to move round with the wheel, but A will move faster than

B, because the outer end of the lever is resting on the stop H ;
the effect

of this is obviously to slacken the brake strap and diminish tbe resist-
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suitable for testing small high-speed motors, such as petrol

ance of friction, and so compensate for the increase in the coefBcient of

friction, A diminution in the coefficient of friction will produce the

opposite action, the compensating lever will strike the upper stop K, and

the band will be tightened.

When the compensating lever is floating between the stops, a load tv,

in addition to the weight of the lever ABC, may be required to balance

the vertical components of the tensions in the band at A and B. The

horizontal components of these tensions balance one another.

If W is the load at D over and above that required to produce static

balance when «/; is removed, and the whole brake is free to move about

its axis, which is the axis of the wheel, then when the brake is in action,

with the compensating lever floating- and the loads W and w on, the

driving torque is WB — wr. If, however, the compensating lever is not

floating, but rests against one of the stops, the driving torque is

WR- <CT'±p('r-l-a), where p is the reaction of the stop on the com-

pensating lever. The + sign is to be taken when the lever is against

the lower stop, and the - sign when the lever is against the upper stop.

If N is the speed of the Avheel in revolutions per minute, and if the

forces are measured in lbs. and distances in feet, then the horse-power

absorbed is y
. If the brake is carefully adjusted

the force p should be small, and may then be neglected.

299. Pullen’s Friction Brake Dynamometer. — A form of dyna-
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engines, is shown in Fig. 541. This is a design by Prof. W. W. F. Pullen.*

P is an ordinary cast-iron pulley, 6 inches in' diameter, mounted on
the shaft of the motor to be tested. Small solid-drawn copper tubes C
are bent to the shape shown. Small plates of brass M having holes

drilled in them are threaded over the copper tubes, and brazed on to them
in the positions shown. The copper tubes are placed in position on the

pulley, and are then embedded in while metal, plaster of Paris being

used for moulds. The white metal is shown black in the sections. Two
timber levers T are fitted over the white metal, and are held together by
two bolts, one of which has a hand-wheel K for a nut, and between this

hand-wheel and the upper lever there is a helical spring, which enables a

practically constant pressure to be maintained between the white metal

and the pulley when the dynamometer is in use. The rubbing, surface

of the pulley is lubricated with oil from the sight-feed lubricator F.

Water is circulated through the copper tubes, entering at J and leaving

at L. The brake is retained in position on the pulley by small wooden
ear-pieces E. The spring balance S is useful for measuring small

variations of torque, but most of the load is put on by dead weights W.
A dash-pot and any weight required to balance the parts may be con-

nected at B. This brake easily absorbed 8 horse-power at 1000 revolu-

tions per minute without undue heating.

300. Rope Brake Dynamometer.—The simplest and most reliable

form of absorption dynamometer is probably the rope brake, shown in

Fig. 542. One, two, or more lengths of rope are passed once round the

rim of the fly-wheel or the rim of

a pulley fixed on the shaft. The
different lengths of rope are kept

in position by blocks of wood, as

shown, the blocks being laced to

the rope. The upper ends of the

several lengths of rope are united

and attached to aspring balance B,

while the other ends are united and
attached to the weight W. Let

W - hanging weight, in lbs., in-

cluding portion of rope,

hook, etc.,hangingfrom A.

S = tension registered by spring

balance, less the weight

of the rope, etc., between

A and the balance, in lbs.

R = effective radius of w'heel

— nominal radius ofwheel

+ radius of rope, in feet.

N = number of revolutions of

wheel per minute.

The effective resistance at radius R isW - S, and the brake horse-

. „ ,
27rRN(W-S)

power IS theretoro = —
330UO
—

‘

* Tramsactims of the Civil mid Meehomiced JSngi/neers Society (London), 1907.

Fig. 542.
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The whole of the work is converted into heat at the rubbing surfaces

between the rope and the wheel. For small powders or for short trials

the air in contact with the revolving wheel will carry away enough heat

to keep the wheel sufficiently cool. For larger powers and long trials,

however, it is necessary to cool the wheel rim with waiter. For water

cooling it is best to make the rim of the wheel of channel section, as shown

in Fig. 543. The
water is held in by
centrifrugal force

so long as the speed

of rotation is not

less than a certain

critical .speed. The Fig. 543,

centrifrugal force of a small mass of water weighing w lbs. at a ludius

11 feet and revolving at N revolutions per minute is F = ^(^ 60 )

*

When this mass of water is in its highest position the resultant force

holding it to the rim of the wheel is F — to, and the minimum speed at

which the water will remain in contact with the w'heel in its highest

position is found by putting F = ?o, then —

During a long trial it is necessary to renew the cooling water. This
may be done by using two pipes, as shown in Fig. 543. One pipe D
supplies cold water to the channel in the rim, and the other E scoops
w'ater out and discharges it. Just before stopping a trial the water
supply is cut off, and the pipe E is turned over slightly so as to nearly
touch the bottom of the channel and collect and discharge sufficient

w'ater to prevent an overflow from the channel when the wheel stops.

The collecting end of the pipe E is flattened out so as to ‘present a
narrow slit to the water.

301. Fan Brake Dynamometer,—One of the simplest and most con-
venient of dynamometers for testing the output of small high-speed motors
is a simple form of fan. This was first used by M. Rcnard, whose design
for small powers consisted of a rectangular bar of ash, to which were

bolted tT,vo rectangular aluminium plates, the wooden bar being mounted
on the shaft of the motor at right angles to its axis. Fig. 644 shows the
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brake as made by Mr. W. G. Walker, and wbicli the writer has used suc-

cessfully since the beginning of 1905 for testing petrol motors.

With the exception of the plates E and F, which are made of alu-

minium, all the parts are made of steel. The arms AB and CD, of

rectangular cross section, are clamped to the shaft of the motor by two
bolts, as shown. The plates E and F are bolted to brackets H and K
respoc,tively, which are carried by the arms. The plates are equally dis-

tant from the axis of the shaft, but the distance may be varied according

to the speed and power of the motor. Different sizes of plates may also

be used. In the brake used by the author there are three sets of plates,

the smallest being 6 inches x 6 inches, the intermediate size 8-1 inches x 8-|

inchee, and the largest 1 7 inches x 8|- inches. With the smallest plates

the distance of the outer edges from the axis of the shaft may be varied

from 8 inches to 15 inches
;
with the intermediate size plates this distance

is from 101 inches to 171 inches; and for the largest size, 19’ inches to

26 inches.

The resistance is, of course, the pressure of the air on the plates and
exposed parts of the arms, and this produces a pure torque, and there is

no bending action on the shaft, except that due to the weight of the

instrument, which is only about 9| lbs. with the smallest plates, and

14-J lbs. with the largest. The parts are also perfectly balanced.

Once the instrument is calibrated it is only necessary to know the

speed to determine the horse-power, since the power to drive the fan is

proportional to the eube of the speed. For example, wdien the inter-

mediate size plates are used, and the bracket pins are in the sixth holes

from the inside, the brake horse-power is given by the formula,

B.H.P. 0-000,000,0038N» = 38 x

where N is the speed in revolutions i)er minute.

The resistance to the motion of the plates is proportional to the density

and viscosity of the air. Now the density is proportional to the pressure,

and inversely proportional to the absolute tem]ierature, while the viscosity,

according to some authorities, is proportional to the absolute temperature.

Hence the resistance varies with the pressure only, and if the coefficient

t in the equation B.H.P. = cN® is obtained experimentally when the height

of the barometer is then if, when a test is made, the height of the

barometer is the coefficient e should be multiplied by Ti jh.

This dynamometer may be run for any length of time, as there is no

heating effect on the instrument, the heat being carried away by the

circulating air.

The dynamometer having the dimensions given above may be used

for powmrs up to 20 horse-power.

302. Eddy Current Brake Dynamometer.—In the eddy current

hralte. dynamometer the i-esisting torque is obtained without actual con-

tact between the revolving and the floating elements. A system of field

magnets, with alternate poles, is mounted on the floating portion of the

brake, while the motor under test dx’ives one or two copper discs past the

pole faces, -whose magnetic flrxx induces very large circulating currents,

which, by their magnetic action, tend to retard the motor and absorb its

energy in heating the discs.

Brakes on this principle were constructed by Pasqualini in 1892, by
Gran in 1900, by Siemens and Halske in 1901, and by others. These



354 APPLIED MECHANICS

brakes, though, convenient in laboratory use, did not become extensively

employed owing to the skill required in fixing to the motor, and also to

the small horse-power absorbed for a given size, and cost of apparatus.

The great accuracy and convenience of the electrical control of the resist-

ing torque, and also the cleanliness arising from the use of air instead of

water to get rid of the heat, was, however, early recognised.

Morris & Lister, in 1905,* gave the theory of this apparatus, and

showed how the design might be greatly improved and simplified. They

showed also that there was a certain thickness of copper which ought to

be used on the discs, and that it was just as bad to use too much as too

little copper.

Fig. 545 shows the Morris & Lister eddy current brake,f The brake

may be mounted on its own shaft in a frame, independent of the motor

to be tested. In some cases, however, especially with electric motors, it

is simpler to mount the brake direct on the shaft of the motor in place of

the driving pulley, or, in the case of a petrol motor, in place of the fly-

wheel. A is a’ central cast-iron bush, to be secured to the shaft of the

motor to be tested. On this bush are fitted two ball-bearings B, and
two strong aluminhim spiders C, carrying stout iron discs D, faced with

sheet copper on the inner sides, and provided with cooling vanes E on the

outer sides. On the ball-bearings and between the discs floats a strong

aluminium casting F, formed for carrying conveniently a number of flat

iron pole pieces H, arranged in pairs opposite one another. Between each

pair of poles is a stout iron core K, on which a coil L is slipped. These
coils are so connected that the poles present alternately magnetised faces

to each disc The central casting F has also two strong bosses M and N
at the ends of its horizontal diameter. Into the boss M is inserted the

main graduated lever P, on which slides the carrier for the weights W.
Into the boss N is inserted the short counterpoise lever Q. The long lever

is sometimes replaced by a short one provided w'ith a hook for a .spring

balance. Further projections S from the central easting F at the top and
bottom support the outside guardsTand the insulated terminals IT, bywhich
current is led into the windings from a source of continuous current supply.

When the magnets are excited, the magnetic flux from each pole is

compelled to cro.ss the revolving copper disc in order to reach the iron

disc behind it, and to return by the adjacent magnetic poles. The flux

has then to cut the other copper disc twice in a similar manner before the

magnetic circuit is completed. In this way large eddy or Foucault
currents are generated in the copper discs, which then exert a resisting

torque, the power corresponding to which is converted into heat in the

discs. This heat is got rid of by means of the vanes E, which are set so

as to induce a strong current of air.

The discs have to be so supported on the spider as to prevent the

passage of heat to the arras, and so to the framework of the brake or

motor, and at the same time to allow them to expand while still keeping
true. This is done by mica washers and slotted holes in the discs. The
spiders also must be able to resist the attractive force on the discs, w^hich

is large, although it diminishes as the speed increases.

* JoutimI of the TnstiMion of Electneal Engineers, vol. xxxv. p. 445.

t Made by Messrs. Morris & Lister, Ltd., Coventry.
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By means of a special regulator, or other suitable regulating appliance,

the exciting current can be increased until the lever floats, the weights

having been previously placed to cori’espond with the required torque. The
amount of electric power required for exciting the magnets is quite small.

Thus a torque of 73 ft.-lb., which gives 14 horse-power at 1000 revolutions

per minute, requires less than kilowatt in the coils. The exciting

current need not be measured.

The power is computed by means of the formula used for the Prony

1 n TT -r>
27rWRN’

hmko. uamcly, .

A good feature of the eddy current brake is that the resisting torque

is practically constant over a considerable range of speed (10 per cent,

above or below normal). Hence when te.sting petrol or other motors in

which the effort fluctuates, the lever does not oscillate but floats steadily,

rcgardle,ss of periodic fluctuations of speed. This constancy of torque

at or near its rated speed occurs in a similar way to the maximum
torque in an induction motor', and constitutes not the least of the

advantages of this convenient and accurate type of absorption brake

dynamometer.
A small amount of power is used in overcoming the air resistance

at the vanes E
;
a portion of this resistance is communicated to the

guards T on the floating element, but there remains a certain amount
which is not communicated to the floating element, and is therefore not

measured, but, if necessary, this may be allowed for by using a constant

determined by experiment. The unmeasured resistance is, however,

only a fraction of 1 per cent, of the total resistance.

303. Epicyclic-Train Dynamometer.—One form of transmission

dynamometer is shown in Fig. 546. AB is a lever, which may turn round
the fixed axle CD. Jlounted on the lever, and turning freely on it, are

trvo equal bevel wheels E and F, which gear with two equal bevel wheels
H and K, mounted on the axle,

and turning freely on it. A
wheel or pulley is secured to

the boss L of the wheel H,
and another wheel or pulley is

secured to the boss M of the

wheel K, The torque to be
measured is transmitted from
L to M, or from M to L through
the wheels E and F.

Let P be the effort exerted

by the teeth of the wheel PI on
the teeth of the wheel E at a.

radius r from the axis of CD,
and suppose P to act down-
wards. There will be an equal „ ^

effort P at radius r from the axis
' ^ '

of CD acting upwards on F from H. The torque on H is therefore 2P?’.

The wheel E in driving K will cause the latter to exert a downward
force P at radius r from the axis of CD, and the wheel F in driving K
will cause the latter to exert an upward force P at radius r from the axis
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of CD. Tliese four forces acting on tlie wheels E and F will produce a
torque on the lever AB equal to 4Pr. Hence if the weight W on the
lever is at a radius E from the axis of CD, WE=4Pr, and the torque
transmitted from L to M is |WE.

.

If the wheels H and K run at a speed of N revolutions per minute,

then the horse-power transmitted is =
2x 33000 33000

When unloaded, the lever is balanced by the weight rv.

Stops SS limit the motion of the lever.

304. Belt Dynamometers.—^When a belt is transmitting power from

one pulley to another the tangential eflbrt on the driven pulley is equal

to the difference between the tensions on the tight and slack sides of the

belt. If T| and are these tensions in pounds, and V is the speed of

the belt in feet per minute, then the horse-power ti’ansmitted is

(Ti-T,)V
33000

Several forms of dynamometer have been introduced for measuring

Tj - Tg directly while the belt is running one foi'm is shown in Fig. 551,

p. 362, another is shown in Fig. 547. The latter illustration and the

following description are taken from a paper by Mr. S. P. Watt in the

TransacMons of the American Society of Mechanical Engineers^ 1891.

The dynamometer (Fig. 547) consists of a set of pulleys mounted on

a suitable frame and disposed as follows. The pulleys A and C are fixed

to the shaft a, and B and D are fixed to the shaft h. The pulleys E and

F revolve freely as independent loose pulleys on the shaft g. The shaft

g has a second shaft f fixed to it midway between the pulleys E and F.

Shaft/constitutes a pivoting axis, parallel to the shafts a and 6, for the shaft

g, together with the frame K and the weight lever L, all rigidly connected.

Only enough motion of L is allowed to determine the direction of action.

Instead of the weight of the lever L, the end of the lever could be con-

nected to a small platform scale, and its tendency to rotate weighed. ’ It
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miglit be useful to make the frame between the pulleys adjustable at d

aud e in order to vary the tension of the dynamometer l:ielt, or better still,

it might so constructed that the absolute tension could bo noted at any

time, wliether working or at rest. The working of the apparatus is as

follows. A driving belt from the .source of power is put on the pulley A.

The machine tf) be driven is belted from the pulley B. The dynamometer

belt passes from the lower side of the pulley C to the pulley F, around F
to D, around D to E, around E back to 0. It will be seen that C is a

driving pulley, and D a driven pulley. ’When the system is at rest, the

four strands of the dynamometer belt have the same tension. If now C
revolves and drives li, the tension T\ of the belt from G around the loose

pulley F to D will correspond to the tension of the taut side in a simple

system of two pulleys, and the tension To of the belt from the lower side

of D around F back to the lower side of C will correspond to the slack

side.

The difference of tension is the driving force P, and taking what
actually occurs,

??irA^2=,Ti-T2 = P.

ISTow P in pounds multiplied by the speed of the belt is foot-pounds deve-

loped or consumed, ignoring friction. Let r bo the radius of the position

of pulleys E and F from the pivot /. Let I be the distance of the weight
W from /, to balance the tendency of the frame K to rotate about / when
working, then

WZ = ?’(2Ti Ti-Tj-P.

It is evident that should a Prony brake be put in place of the pulley B,
the power developed by the motor to A could be determined. If a machine
be driven from the pulley B, the power consumed could also be noted in

the speed of belt and the position of the weight from the same formula,

lu the use of different belts as dynamometer belts the relative efficiency

of such belts can readily be determined by the use of the brake attach-

ment. It will also be seen that only one side of the belt comes in contact

with the pulleys.

305, Torsion Meters.—The introduction of the steam turbine, par-

ticularly for the propulsion of ships, has created a demand for a means
of measuring the power transmitted by the shaft, since there is no direct

means of measuring the work done in the turbine. The power to be
measured is generally very large, and the ordinary forms of dynamometers
are not suitable or convenient. In the case of the reciprocating engine
the^ power developed in the cylinders is readily determined from the
indicator diagrams, and if these he taken at any given load and also at no
load, the actual power transmitted by the shaft at the given load can be
determined with sufficient accuracy for most practical purposes.

A number of instruments have been designed to measure the angle
of twist of a given length of shaft transmitting power, and from this

observation and the speed of the shaft, and certain particulars of the
shaft itself, the power transmitted is readily computed.
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From, formulas proved in Art. 95, p. 80, and Art. 96, p. 81, tlie

1 80 X ‘iST/
angular deflection of a shaft in degrees is, a solid shaft,

and n~ shaft, where T is the twisting moment,

I the length of shaft considered, C the modulus of rigidity, d the diameter

of the solid shaft, D and d the external and internal diameters re-

spectively of the hollow shaft. Evidently for a particular shaft T = ‘yj

whore h is a constant to be determined experimentally for the particular

shaft. In the absence of direct experiment on the shaft itself, I', may be

computed by assuming a value for 0 based on experiments on shafts

or rods of similar material, then for a solid shaft, and
180 X 32

= for a hollow shaft.

If force is in lbs. and linear dimensions in inches, then the horse-

power transmitted at N revolutions per ininute is,

27rTN 27r7c»N 7.:p/N , , 27rZ-H =
r2 x 33000 12x 33000Z"

is a constant for the particirlar shaft.

Two types of torsion meters will now be illustrated and described,

the particulars being taken from a paper by Mr. eT. Hamilton Gibson,

read before the North-East Coast Institution of Engineers and Ship-

builders in January 1908.

The main features of FotfiDger's torsion meter, which is a purely

mechanical contrivance, are showi in Fig. 548. A is a disc secured

Fkj. 548.

directly to the shaft. B is another disc secured to the shaft at a distant

section C through a stiff tube coaxial with but clear of the shaft. The

motion of these two discs will be the same as that of the points on the

shaft at which the connections are made, and which are at a distance I

apart, and the relative angular motion of these discs will be the angle

of twist of the length I of the shaft.

The relative angular movement of the discs is magnified and recorded
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hy a pencil P, actuated by tbe system of levers sliown, on jiaper placed

round the fixed cylinder DE, which is coaxial with the shaft. When
there is no torque on the shaft the pencil traces a line parallel to the

ends of the cylinder carrying the paper, and this is the zero line of the

diagram. When the shaft is transmitting power the pencil moves to the

right or left of the zero line, depending on the direction of rotation of the

shaft, and at the same time is carried round with the shaft, describing

a more or less wavy line whose ordinates represent the angular deflection

of the shaft as it revolves. The ordinates of the line traced by the

pencil are evidently arcs of circles, whose centres* lie on the zero line,

and whose radii are equal to the length of the pencil lever. The cylinder

carrying the paper can be moved to the left clear of the pencil, and

the diagram can then be taken oflf and the mean torque determined. .It

is of course the mean torque which must be used ha computing the horse-

power. In the case of a turbine-driven shaft the torque is practically

uniform.

The Bems-Gilmn fiash-luflit torsion meier depends on the facts that

the velocity of light is practically infinite, and that light travels in

straight lines through air of uniform density. Two blank discs A and

B are fixed on the shaft at a convenient distance apart, as shown in the

oblique elevation at (a), Fig. 5i9. Each disc has near its periphery a

Fig. 549.

small radial slot, and these two slots are in the same radial plane wdaen

no power is being transmitted and there is no torque on the shaft.

(5), (c), and (d), Fig. 549, are sectional plans, the planes of section going
through the slots in the discs when in or near their highest positions.

Behind the disc A is fixed, on, say, one of the bearings of the shaft, a
bright electric lamp. C, masked, but having a slot cut in the mask directly

opposite the slot in the disc A when the latter slot is in its highest
position. At every revolution of the shaft a flash of light is projected
through the slot in the. disc A towards the disc B in a direction parallel

to the shaft. Behind the disc B, on, say, another shaft bearing, is fitted

the torque finder D, an instrument fitted with an eye-piece, and capable



BRAKES AKB DYNAMOMETERS

of slight eircutiiferential adjustment. The end of the eye-piece next the
disc B is masked, except for a slot similar and opposite to the slot in

the disc. When the four slots are- set in line, as sho-wn at (5), Fig. 549,
a flash of light is seen .at the eye-piece every revolution, and if the shaft
revolves quickly enough the light will appear to be continuous. This
effect is apparent at any speed over 100 revolutions per minute. At
lower speeds the flash is seen to be intermittent, but this in nowise
affects the accuracy and reliability of the result.

Suppose now that the shaft is transmitting power. One disc lags

behind the other, and although the slots in C, A, and D are still in line,

the light is cut off by the displacement of the slot in B, due to the lag

just mentioned. This cutting off of the light is clearly shown at (c).

Now if the torque finder D be moved round by an amount equal to the

lag of the disc B the slot in D will then be opposite to the slot in B
when the slot in A is opposite to the slot in C, and the flash Avill now be
received by D, as showm at {d). The torque finder is moved by operating

a micrometer spindle, and by means of a scale and vernier the angular

movement can be measured to the
y-J-ij-

of a degree.

The Bevis-Gibson torsion meter as jmst described Avill evidently give

the twist of the shaft at one definite point of each revolution, and in the

ease of turbine shafts, where the torque is practically uniform, this is

all that is required. For reciprocating engines,

where the torque varies considerably during each

revolution, a simple modification enables the

operator to take several readings, usually twelve, / - ^ \

at definite points of a revolution. The discs are f "T
perforated with slots arranged in the form of a ' ‘

spiral, as shown in Fig. 550. The lamp and
torque finder must be moved radially so as to bring

them into line with each corresponding pair of

.slots in the discs. Plotting the readings on squared

paper, the actual twisting moment diagram can be drawn, and from this

the mean torque is readily found.

Exercises XXI.

.

1. The drum of a baud brake is 18 inches in diameter. The band is inch
thick, and it embraces three-quarters of the circumference of the drum. The
hand lever is arranged as shown at (o), Fig. 534, p. 344. AO=3 inches, and
AD= 18 inches. If the force P at the end of the lever is 40 lbs., and the co-

efficient of friction between the band and the drum is 0'2, what is the resisting

torque, in ft.-lbs., exerted on the brake drum ?

2. In a band and block brake (Fig. 536, p. 346) the -wheel is 24 inches in

diameter, and the band is inch thick. There are twelve wood blocks, each
2 inches thick, and each subtending an angle of 18 degrees at the centre of the
wheel. The coefficient of friction between the blocks and the wheel is 0’35.

The brake is operated by means of a lever, arranged as shown at (d), Fig. f 34,

p. 344. AB=4 inches, and AD=24 inches. What force must be applied to the
end D of the lever when a weight of 300' lbs. is being lowered at a uniform
velocity, the weight being hung by a rope which is coiled round a barrel on the

axle of the brake wheel, the effective diameter of the barrel being 20 inches ?

3 A wheel 12 feet in diameter, rotating at the rate of one revolution in

2 seconds, is acted on by a brake which applies normid pressures of 1 cwt. each
at opposite ends of a diameter. If the coefficient of friction he 0‘6, find (in

horse-power) the rate at which work is being absorbed ? [Inst.O.E. J
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4. A bicycle and rider, weighing together 180 lbs., are travelling at the rate

of 10 miles per hour on the level. Supposing a brake is applied to the top of the

front wheel, which is 30 inches in diameter, and this is the only resistance acting,

how far will the bicycle travel before stopping if the pressure of the brake is

lbs., and the coefficient of friction is 0 ‘5 ? LInst.C.E.]

6.

Continuous brakes are now capable of reducing the speed of a train

3|- miles an hour every second, and take 2 seconds to be applied; show in a

tabular form the length of an emergency stop at speeds of 3|-, 1^, 15, 30, 45, 60

per hour. Compare the retardation with gravity, and express the resisting

force in lbs. per ton. [U.L.]

6. If the force available on the block of the brake on a wheel of a railway

vehicle is 90 per cent, of the weight on the wheel, and if the coeiBcients of sliding

friction between the block and the wheel and between the wheel and the rail are,

at 60 miles per hour, 0-06 and 0’04 respectively, what is the maximum resistance to

the motion of the wheel, in lbs, per ton, when the brake is applied, (a) when the

does not skid, (&) when the wheel skids, at the above speed ?

7. To determine the brake horse-power of a small de Laval steam turbine a
Prony brake was used. The brake was placed on a pulley on the second-motion
shaft, whose speed was 2992 revolutions per minute. The brake load at 18 inches

from the axis was 5 lbs. Calculate the brake horse-power.

8. The internal diameter of a liy- wheel rim, which is of channel section, is

5 feet. Find the minimum speed, in revolutions per minute, at which the wheel
will hold, without spilling, a layer of water 1 inch deep.

9. The brake horse-power of a gas-engine is to be measured with a rope brake
on the fly-wheel. The diameter of the wheel is 5 feet, and the diameter of the
rope is ^ inch. At a speed of 183 revolutions per minute the hanging weight
is 67i-lhs., and the spring balance indicates 4| lbs. What is the brake horse-

power ?
_

10. In an epicyclic-train dynamometer of the form shown in Fig, 646,

p. 356, the wheels on the axle CD run at 100 revolutions per minute. The weight
W on the lever is 60 lbs,, and its distance from the axis of the axle is 24 inches.

Calculate the horse-power transmitted through the dynamometer.
11. Fig. 551 shows a Froude and Thornycroft dynamometer for measuring

the difference between the tensions on the tight and slack sides of a belt which
is transmitting power from

alley A to a pulley B.

T shaped lever has its

fulcrum at D, and carries

pulleys E and F. The
diameters of the pulleys
are such that the straight
parts of the belt may be
taken as horizontal. Ne-
glecting the work lost in ”

friction in the instrument,
show that the horse-power

transmitted is given by the formula, HP=: -, where d is the diameter
33000

X

of the pulley A, and N its speed in revolutions per minute, dimensions being in
feet, and W in lbs.

12. The horse-power of a marine steam turbine was found by observing that
the angle of twist of a 20-feet length of the propeller shaft at 480 revolutions per
minute was 1’75 degrees. The shaft, which was solid, had a diameter of 7 inches,
and it was known that the modulus of rigidity of the material of the shaft was
12,000,000 lbs. per square inch. Neglecting the effect of the end thrust, calculate
the horse-power
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BELT, ROPE, AND CHAIN GEARING

Fig. 552.

306. Velocity Batio in Belt Gearing.—If motion be transmitted

from one pulley to another by means of a thin inextensible belt, and if

there is no slipping between the belt and the rims of the pulleys, every

part of the belt will have the same velocity, and the outer surfaces

of the rims of the pulleys will have the same velocity as the belt.

Hence if and be
the diameters of the

driver and follower re-

spectively, and if the

driver makes re-

volutions in a given

time, while the follower

makes ISTg revolutions in the same time, then
,
and

S = This formula is true, whether the belt is “open,” as in Fig.
JN

1

552, or “crossed,” as in Fig. 553 ;
but the direction of the rotation will

not be the same in these two cases. With an open belt the pulleys

rotate in the same direction, while with a crossed belt they rotate in

opposite directions.

307. Effect of Thickness of Belt on Velocity Ratio.—When a thick

belt is bent over a jiulley its inner surface is compressed and its outer

surface is stretched, but the surface midway between these two remains

of the same length. It follows, therefore, that the velocity of the inner

surface of the belt in contact with the pulley must be less than the

velocity of the middle surface of the belt, and it is only the middle sur-

face of the belt which has the same velocity at every point. The effec-

tive radius of a pulley is therefore its nominal radius plus half the

thickness of the^ belt, and using the notation of the preceding Article,

^ where t is the thickness of the belt.
d^+ t

308. Length of Belt connecting Two Pulleys.—Referring to Figs.

554 and 555, the length of belt in contact with the larger pulley is
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?^(7r + 2(/>)-D^~ + <^j. The length of belt in contact with the smaller

pulley is ±'2<l>)= d(^±<^y where the + sign applies to the crossed

belt (Fig. 554), and the - sign to the open belt (Fig. 555). The in-

clination of the straight portions of the belt to the line of centres is (/>,

and the length of each straight portion is e cos 4>. Hence if I is the

total length of the belt,

l:=D(^+<f>) + d(l±A + 2ccos^

If 4> is a small angle, then, approximately, <.p~sm4>, and

J sin <p= sm

Hence approximately

z= ^(D + ,1) + sin ^.(D ± ct) + 2c(l - 2 sin^
|)

- '^(D 4- rf) + >
-I- 2c, where the -b sign applies to

the crossed belt, and the - sign to the open belt.

Eeferring to the crossed belt (Pig. 554), it is evident that if D + c?

is constant, and c. is fixed, ^ will remain the same, and therefore I is

constant.

309. Stepped Pulleys.—^Two or more pulleys of different diameters

placed side by side form a stejiped pulley. A stepped pulley is, however,

generally cast in one piece.

A' pair of stepped pulleys and one belt form a common arrangement

for driving a shaft or spindle at different speeds from a shaft rotating at

a fixed speed. Fig. 556 shows a pair of stepped pulleys mounted on shafts

A and B, whose axes are parallel and at a distance c apart. Let the speed

of A bo H revolutions

per minute, and let it (JSs ^

be required to make B „ i

^
1 —Sd,,

rotate at Nj, Ng, or ' '

ISTg revolutions per ^1
, ' ' ? ^

minute as may be ne- 31 . 1 1 1

3

cessary. Each pulley

will requirethree steps. Fun 550.

Let the diameters of

the pulley on A be Dj
,
D2 , and Dg, and let the diameters of the pulley on

B be dp dg, and dg. The following equations can be stated at once, viz.

^ = — 4iud A value may now be selected for one
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ND,

3(5r>

f the fliaiueters, say D^, then = Having fixed Dj and r/,, no
^1

)tUGr diameters can be selected arbitrarily. The other diameters must

but they must be
d N

not t)nly satisfy the equations L? —^
such that the same belt will be equally tight when placed on eorrespond-

ing pairs of steps. This gives rise to two cases, (1) belt crossed, (2) belt

open.

For a crossed belt it was .shown in the preceding Article that if

the sum of the diameters of the pulleys is not altered, the length of the

licit wall be the same. Therefore, for a crossed belt, having fixed D-^ and
dp Di + dj is known, and Dg + dg, also Dg + dg must be equal to Dj + dp
The sum of a pair of diameters being known, and also the ratio of the

one to the Other, the diameters can be easily found.

Coming now to the case where the belt is an open one, and dj are

determined as before, then the length of the belt is

4«

Then for Do and d.,,

^ + ^^
2) + + 2c,

ND
but dg = therefore

a quadratic equation from which

where %
N

l-2c
If N., = N, then Dg^

The solution of the quadratic equation may be avoided, and a result

sufficiently accurate in most cases obtained,by first finding values for Dg and
dg on the assumption that the belt is crossed, that is, Dg + = D^ + dj

.

Let the difference between the values of Dg and dg thus found be equal

to a, then approximately ^(Dg + dg) + + 2« = Z, a simple equation from

which Dg + dg can easily be found. Use this more exact value of Dg + dg

,

.: “'.

^ . jsg- .

together with ^ = _.-, to find a more accurate value of Dg-dg, which

is to be substituted in the equation ^(Dg + dg) -1- + 2c = Z. The

value of D., + dg found from this simple equation is then used, together

d N
with the equation ^==— ,

to find Dg and dg.

310. Porms of Rims of Pulleys.—The rim of a pulley for a flat belt
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is either straight nr convex on the outside of its cross section. At first

sight it would seem as if the belt Avould remain on the straight rim more

readily tlian on the convex one, and that it would be still more secure

from falling off if the section of the rim were concave on the outside,

but ex])eriment shows that a flat belt tends to run on the largest diameter

of the pulley. Consider a belt on a conical pulley (Fig. 557). Eacli

part of the belt as it approaches the pulley receives a set towai’ds the

base or larger end of the cone, so that each part of the belt as it passes

Fig. 557. Fig. 558. Fig. 659. Fig. 550.

on to the jmlley is a little nearer the base than the part in front of it

;

but once in contact with the pulley, it remains in contact without slip-

ping until it leaves on the other side. The result is, therefore, that the

bolt ultimately reaches the highest part, and to prevent it falling off a

similar jnilley is placed, as shown by the dotted lines. From this the

form shown in Fig. 558 is obtained.

The straight rim is used when it is necessary to move the belt from
one part of the rim to another, as in the case where a pulley drives a

pair of fast and loose pulleys.

It must be borne in mind, however, that the convex section of rim
only helps to keep the belt on the iiulley when the belt and pulley rotate

together. If the belt should slip through the resistance being too great,

it will fall off the pulley more readily if the rim is convex than if it is

straight.

For hemp or cotton ropes the pulley rim has V shaped grooves, as

shown in Fig. 559, the angle of the V being generally about 45°. The
rope does not rest on the bottom of the groove, but on its sides only,

so that it is wedged in, causing the resistance to slipping to be much
greater. •

For wire ropes the design is altered so that the rope rests on the

bottom of the groove, as shown in Fig. 560. The resistance to slipping

is increased, and the wear of the rope reduced by lining the bottom of

the groove with some material softer than metal, such as leather, wood, or

tarred oakum.
311. Past and Loose Pulleys.—The motion of a shaft driven from

another by belt gearing may be stopped or reversed

without affecting the motion of the driving shaft by
using a combination of fast and loose pulleys. A “

fast
”

pulley is one which is fixed to the shaft, while a “loose
”

pulley is one which can turn freely on the shaft. Fig. 561
shows a pair of such pulleys, F being the fast pulley

secured to the shaft by a key K, and L is a loose pulley.

When the belt is on F the shaft A revolves, and when
the belt is shifted to' L the motion of A is stopped.

The belt is shifted from one pulley to the other by pressing on one edge
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of that part of the belt which is advancing towards the pulley by means
of a fork, which should be as close to the fast and loose pulleys as

possible.

Examples of the use of fast and loose pulleys are shown in Figs. 562
and 563. These arrangements of belt gearing are very frequently found

in connection with machine tools.

AB is a driving shaft, and CD
a counter-shaft. E is a broad

pulley fixed on AB. L, and Lg
are loose pulleys, and F is a fast

pulley. The machine is driven

by a belt from the stepped pul-

ley G. An open belt H and a
crossed belt K pass from the

pulley E to the pulleys on CD, -C'

as shown. MN is a rod carrying

forks, by means of which the

belts H and K may be shifted Eio. 563.

simultaneously. When the belts are in the position shown, CD is at rest.

If MN be moved to the right K will remain on Lj ,
H will embrace F, and

CD will rotate in the same direction as AB. By shifting the belts to the

left of the position shown, CD is made to rotate in the opposite direction

to AB. A modification of the arrangement just described, to give a quick

return motion, is shown in Fig. 663. The latter arrangement may be
used to get fast or slow motion as desired, in the same direction, by having
both belts open or both crossed.

In the arrangements of fast and loose pulleys shown in Figs. 562 and
563, the loose pulleys have a width not less than twice the width of

the belt. By using a suitable form of belt-shifting gear the loose pulleys

may be of the ordinary wudth, and then not only is space saved on the

shaft, but only one belt has to be shifted at a time. Fig. 564- show’-s

such an arrangement. Lj and L.^ are loose pulleys, while and Fg are

fast pulleys. The belt forks are attached

to levers A^^B,, and AgBg mounted on fixed

pins at C, and Cg. These levers are provided

with projecting pins at B, and B.
2 ,
which enter

into slots in a disc DE, keyed to a spindle F,

The lower parts of the slots in DE are con-

centric with F, and the up]3er parts are more
or less radial. In the position shown, both

^

belt.s are on the loose pulleys. If the disc

DE be turned in the direction of the arrow H
the lever A^B^ remains at rest, because the

pin at Bj remains in that part of the slot

which is concentric with F, but the pin at Bg
will be pushed to the right by the upper part

of the right-hand slot, and the belt which was

on Lg will be shifted to Fg . By moving DE
from the position shown in the direction- of

the arrow K the lever A.^Bg will remain at rest, and the lever A^Bi will

be moved so as to shift the belt which was on to F^. 7
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312. Belt Gearing for ITon-Paraller Shafts. —Motion may be trans-

mitted directly from one shaft to another when the axes are not in the

same plane by means of a belt and two
r*i

pulleys, one pulley on each shaft, provided —

f

that the pulleys are so arranged that the X
middle point of the width of the belt where f

j

it leaves one pulley is in the central plane V

of the other pulley. In other words, the V

—

centre line of each of the straight portions
\ ^ /

of the belt must be in the central plane of —- V- ^
the pulley towards which it is travelling.

An example is shown in Fig. 5G5, where the

axes of the two shafts are at right angles to

one another, but not in the same plane. The arrangement of the tw'o pulleys

mentioned above is oidy pos-

sible when the motion is in one
1

^^''..^

direction; if the direction of 'g-

the motion be reversed, the

belt comes off the pulleys,

When it is not possible ('
r %

or convenient to arrange the
\

/
1\ 1

pulleys on non-parallel shaft.s,
J / isyo I'

so as to permit of the one
|

/ /
driving the other directly, I

>/ / ,

one or more guide pulleys I

1

may be introduced. The
|

||i/
[

guide pulleys must be placed
[

||i P^ ]

so that all the straight ijor- 1

]

tions of the belt comply
with the condition already „
stated. Fig. 566 shows two

,

pulleys A and B, whose central planes intersect in the line CD. Any
convenient points E and F are taken in

CD, and tangents EH, EK, FL, and FM ^ H
...^

,

—

are drawn to A and B. Guide pulleys JST
pj

i-tir J
and O, touching these tangents as shovra, tJ Li

and having for their central planes the
|.| t \.

planes HEK and LFM respectively, will \\
serve to guide the belt botw'oon the pulleys I \\

A and B. As arranged in Fig. 566, the

belt may run in either direction.

Another example of the use of guide
^ ^

pulleys is shown in Fig. 567.

313.
^

Straining or Jockey Pulleys.—A belt passing round two pulleys

may be tightened without shortening it by placing —
a third pulley on the slack part of the belt, that

is, the part which runs from the driving pulley to \ i

the following pulley, as shown in Fig. 568. This q VplVf O )
third pulley, which is called a strami^, tighten-

/ \p|/
ing, or Jockey pulley, runs in bearings which
are loaded with a weight to press the pulley on

503 ,
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t-lie belt, or the dessired i^regsure may be obtained by means of an
adjusting screrv.

The use of a joekey pulley also permits of two pulleys, differing eon-

siderably in diameter, being placed much closer- together by increasing

the arc of .contact of the belt on the smaller pulley.

314, Power Transmitted by Belts.—When a belt is transmitting

power from one pulley AB (Fig. 569) to another CD, the motion being

in the direction of the arrows, the tension in the por-

tion BD is greater than the tension in the portion

AC. BD is called the tight side, and AC the slack

side of the belt. Let 1\ = the tension on the tight

side, and Tg ^ the tension on the slack side, then

T\ — Ty==P is the driving force at the rim of the ^
pulley CD. If V is the velocity of the belt in feet

per minute, v the velocity in feet per second, and H the horse-power

mitted, then H = where P is in lbs.
33000 ooO

The ratio of T^ to Tg when the belt is on the point of

discussed in Art. 243, p. 277. For most practical cases 1\ i

equal to 2T
2

.

If h is the breadth of the belt, and t its thickness, both in

/ the working stress in lbs. per square inch, then = btf, and if

where n is a fraction, P= (1 - ?/)T^ = (1 - n)btf. Hence H =

For leather belts, / is generally from 200 to 350.

315. Effect of Centrifugal Tension on Power Transmitted

Belts.—In Art. 92, p. 76, it was shown that a thin hoop revolving has

a tensile stress in it due to centrifugal force, and the demonstration there

given is applicable to a belt running on a pulley. If/^ is the stress on a

belt, in lbs. per square inch, due to centrifugal force, t]

a cubic inch of the belt in lbs., v its velocity in feet per

f = where w is the weight in lbs. of a portion of the belt

.<7 g
12 inches long and 1 square inch in section. For leather, w may be

taken at 0‘4 lb.



370 APPLIED MECHANICS

Inserting the value v-

~ 550 3^

H will be zero when/y= —

\/~ in the formula for the horse-power,

,
that is, when y— 0 or v =

316. Power Transmitted by Wire Ropes.—The principles involved

in the detcjrmiuation of the power transmitted by a wire rope are the same

as for a leather belt, but in the case of the wire rope it is necessary to allow

for the stress due to the bending of the wires to the circle of the pulley,

Let r7 =5 diameter of each wire of the rope in inches.

D = diameter of pulley in inches.

•y = velocity of rope in feet per second.

/’= maximum working stress in wire in lbs, per square inch,

and z; - stresses in tight and slack portions of rope respectively in lbs,

per square inch, neglecting the stresses due to centrifugal

force and bending.

/2
5=w/j, where " = '3'“’ (see Art. 243, p, 277).

— weight of 1 linear foot of rope per square inch net section

in lbs.

E s= modulus of elasticity of wire in lbs. per square inch.

H = horse-power transmitted per square inch of net section of rope,

wv^
Stress due to centrifugal force = —

Stress due to bending (Art. 109, p. 103),

, J. Eci lOV^ e j; Ef7 wv'^
/=/i +]+—» therefore -=/- 3 -y

Driving force per square inch net section of rope

Ec? wv\,. ,

Hence
D 550

The maximum working stress should not exceed 25,000 lbs. per
square inch, io may be taken equal to 4*16, which makes the weight of

the rope per foot of length equal to 3-27d^n^^ where is the number of

wires in the rope.

The maximum horse-power and the speed at which the horse-power is

a maximum may be determined in the same way as for a leather belt

(Art. 315).

It will generally be found that the speed at wliich the horse-power is

a maximum is greater than the safe rim speed for the pulleys.

The tensions in the rope are regulated by the amount of sag given to
the tight and slack portions of the, rope betw’een the pulleys.

317. Chain Gearing.—-Motion may be transmitted from one shaft to
another, the axes of the shafts being parallel, by means of a chain with
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links of suitable form which embrace toothed wheels, called sprooJkef

iifheels, carried by the, shafts. Fig. 570 show^s a simple form of chain and
the form of sprocket wheel to gear mth it.

The first point to notice about chain

gearing is that the pitch line of the sprocket

wheel is a polygon, whose sides are equal to

the pitch of the links of the chain. Generally

the links are all of the same pitch, but in

some forms of chain the links are alternately

of long and short pitch, and the pitch poly-

gon of the sprocket wheel has then an equal

number of long and short sides alternating.

It follows that the velocity ratio in chain

gearing is not constant, and if and Rg
are the radii of the circumscribed circles of

the pitch polygons of tw'o sprocket wheels

connected by a chain, and if and
are the radii of the inscribed circles of

the same polygons, then the velocity ratio may range from Rj/rg

to r^/Rg.

An inspection of Fig. 670 will show that if the outlines of the teeth

of the sprocket wheel are arcs of circles described from the angular

points of the pitch polygon with radii equal to the pitch of the chain less

the radius of the pin, the pins will just touch the faces of the teeth as

they come into or go out of gear, and if the outlines be arcs of circles of

a slightly smaller radius, as showm at a, the pins will clear the teeth as

they come into or go out of gear.

A second point to notice about chain gearing is that there is practically

no tension on the slack portion of the chain, and therefore the work trans-

mitted is equal to the tension on the tight or driving portion multiplied

by the distance through which it travels.

A third point about chain gearing is that in general the full tension

on the driving portion of the chain is supported by only one tooth at a

time on each wheel. Although the chain may have exactly the same

pitch as the teeth when new, the pitch of the chain soon increases

because of the w'ear of the pins and their bearings in the links of the

chain, and to a small extent by the permanent stretch of the links. To
permit of the lengthening of the pitch of the chain the space between the

teeth must be wider than the diameter of the

pins, as shown in Fig. 571, which also shows

that the load is carried by one tooth when the

pitch of the chain is only slightly greater than

the pitch of the teeth.

A consequence of the load being carried

by one tooth at a time on each wheel is that

there is considerable friction and probable

jarring as each tooth in turn takes up the

load. The friction may however be reduced

by providing the pins with rollers.

The objection to ordinary chain gear-

ing just mentioned is overcome in the Bmold’s chains shown in
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Fig. 572. The teeth of the wheels in this design are wedge-shaped, and

the links have wedge-shaped projections which gear with the teeth, as

shoAvn. When the chain

is new one edge of a wedge
on one link and the op-

posite edge of the adjacent

wedge on the next link

bear on the front of one

tnf)th and on the back

of the next respectively,

but wdien the pitch of

the chain has increased

through wear, the contact

is as shown in Fig. 572.

With this chain there is

no rubbing of the links

on the faces of the teeth

as they come into or go

out of gear.

Exercises XXII.

1. A belt inch thick drives a pulley 15 inches diameter, which makes 800
revolutions per ininute. Find the speed of the belt in feet per minnte, (a)

neglecting the- thickness of the belt, (ft) takihg the thickness of the belt into
account. Express the difference between the two results as a percentage of
the second.

2. Two pulleys are connected by a belt. The sum of the diameters of the
pulleys is 36’5 inches and while the one makes 50 revolutions the other makes
200 revolutions. Find the diameters of the pulleys.

3. A train of pulleys is shown
'

and D and E are fixed on another
shaft. The diameters of the pul-

leys, in inches, are, A = 30, B= 15,

0= 50, D = 16, E=?5, andF=12.
A runs at 80 revolutions per
minute. Find the speed of F,

() neglecting thickness of belts, Fig. 573.

() taking thickness of belts as
inch. Express the difference between the answers (a) and (ft) as a percentage

of answer (ft).

4. A shaft running at 200 revolutions per minute carries a pulley 50 inches
diameter, which drives a dynamo at 1200 revolutions per minute by means of a
belt I inch thick. Allowing for the thickness of the belt and a slip of 4 per
-cent

,
determine the diameter of the pulley on the dynamo.

6,

A pulley 36 inches diameter is connected to a pulley 18 inches diameter
by a crossed belt. The distance between the axes of the pulleys is 48 inches.
Calculate the length of the belt in inches, (a) by the exact formula, (6) by the
approximate formula (Art. 308).

6. Same as preceding exercise, except that the belt is an open one.
7. A pulley 60 inches diameter is connected to a pulley 10 inches diameter

by an open belt. The distan'*e between the axes of the pulleys is 45 inches.
Calculate the length of the belt in inches, (a) by the exact formula, (6) by the
approximate formula (Art. 308). Express the difference between the two results
as a percentage of the first. What will the results be for a cro.ssed belt ?

8. Referring to the stepped pulleys shown in Fig. 556, p. 364, Di= 36 inches,
cZ;^=12 inches, D2 =dg, £?3=4Dj, c=48 inches. The belt is an open one. Find
Dg, Da, and ds, and also the length of the belt I, all in inches.

9. Referring to Fig. 666, p. 364. The shaft A runs at a constant speed of
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200 revolutions per_ minute. The stepped pulleys are to be designed so that the
shaft B niay'be driven at 600, 300, or 100 revolutions per minute as required.

Di = 30 inches, c= 50 inches. Find the other diameters and 7, the length of the
belt, which is an open one.

10. Find the answers to the preceding exercise when a crossed belt is used.
11 . A cone pulley AE (Fig. 574) drives the cone pulley as by means of an

open belt. Diameter at A= diameter at e= 16
inches. Diameter at «= diameter at E= 8 inches.

The slant side of AE is straight. Find the r~[A
diameters at 6, c, and d, so that the belt may
be equally tight in each position. Draw the
pulley a& to scale, half size for diameters, and
Jth size for widths.

12. Taking the dimensions given in Fig. 574,

and in the preceding exercise, except that the
slant side of AE is no longer straight, determine
the diameters at B, &, 0, c, D, and d for an open,

belt, so that the speed ratios when the belt is j’iq., 574 ,

at Ac*, B6, Co, Dc^, and Ee in turn may be in

geometrical progression. Draw the pulley ae to scale, half size for diameters,
and Jth size for widths.

13. A belt drives a pulley 4 feet in diameter at 100 revolutions per minute,

and transmits 3^ horse-power. Assuming that the tension on the tight side is

twice that on the slack side, find these tensions.

14. Given H = 5, V= 3000, and Ti=l’8Ta, find and To.

16-20. In the exer-

cises given in the an-
nexed table H=hoi'se-
power transmitted by a
belt. V= speed of belt

in feet per minute.
Tj — tension on tight

side. Tg = tension on
slack side. 5= breadth of

belt In inches. i=thick-
ness of belt in inches.

/= working stress in lbs.

per square inch, w the
weight of 12 cubic inches of belt is to be taken at 0-4 lb. Find the unknown
quantities in each case, (1) neglecting centrifugal tension, (2) taking centrifugal

tension into account.

21. Taking the data of Exercise 16, with the exception of V, determine the

maximum horse-power which may be transmitted, taking into account the

centrifugal tension.

22. Given T| = 2T2, /--350, and 'zo=0-4, calculate the horse-power _H, per

.square inch of belt section, taking into account the centrifug^ tension, at

intervals of 10 feet per second, between the values of v which make H=0. Plot

the results on squared jjaper. Scales.—1 inch=6 horso-power, and 1 inch=20
feet per second. Determine H and v for the highest point of the curve.

23. Show that when a belt is transmitting the maximum power, the centri-

.Cugal stress is one-third of the greatest stress,

24. A countershaft, which runs at 300 revolutions per minute, is required^ to

transmit 10 horse-power from a main line shaft to a machine. Tlie driving

pulley of the machine shaft is 12 inches in diameter. The main shaft nms at

100 revolutions per minute, and the machine shaft at 900 revolutions per minute.

The diameter of the main shaft pulley is 3 feet. Assuming the coefficient of

friction between the belt and its pulley to be 0*3 in each case, and the belt
|
inch

thick, determine the width of each belt, taking account of the centrifugal

tensions. The weight of a cubic inch of belt may be taken as 0'035 lb., and the

tension per square inch as 350 lbs. Prove the formulae you use. - [U.L.]

25. Find the maximum horse-power which can be transmitted by a hemp
rope 1 inch in diameter at a speed of 70 feet per second if the rope is broken

with a pull of 5700 lbs., and it is desired to have a factor of safety of 30. The

Exercise 16 16 17 18 19 20

H 25 100 20 50

V 3000 2800 2500 3000 3500

Ti~T2 2 2 .
2 2

’2

1) 5
1

9 5 10

t 5'v iV ft
f 300 350 400 300 360
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angle of the groove iu which the rope runs is 60°, and the coefficient of friction

may be taken as 0-25, and the rope- is in contact with the pulley for half the

circumference. Find also the centrifugal tension in the rope if the fly-wheel is

10 feet in diameter, and the reduction in the horse-power transmitted due to this

tension. Weight of rope for 1 foot of length =0*28 lb. [B.E.]

26. Calculate the horse-power transmitted by a wire rope under the following

conditions. The tlriving pulley is 12 feet in diameter, and it runs at 150 revolu-

tions per minute. The rope consists of six strands, each strand having seven

wires, aud each wire having a diameter of 0'064 inch. The rope embraces half

the circumference of the pulley, and the coefficient of friction between the rope
and the pulley is 0-25. The weight of the rope is 0*56 lb. per foot of length. The
working stress is 21 000 lbs. per square inch of wire section, and the modulus of

elasticity E is 29,000,000 lbs. per square inch.

27. If the bending stress is not to exceed 12,000 lbs. per square inch, find the
minimum diameter of the driving pulley for a ware rope made up of wires
No. 15 l.fS.W.G. (0-072 inch diameter), the modulus of elasticity of the wire being
29,000,000 lbs. per square inch.

28. Adhering to the conditions given in Exercise 26, except as regards the
speed of the pulley, determine the velocity of the rope, in feet per .second, when
the horse-power transmitted is a maximum, and find the maximum horse-power.

29. _A wire rope made up of 72 wires each 0'048 inch diameter is used to
transmit power. Taking the maximum working stress in the wires at 25,000 lbs.

per .square inch, the bending stress at 13,000 lbs. per square inch, w=4’16, and
a=:0'4, plot the horse-power transmitted, and a; the velocity of the rope in feet
per second, between the limits v=0. and v=200. State the maximum horse-
power and the corresponding value of v. Scales.—Horse-power, 1 inch to 40
horse-power

;
velocity, 1 inch to 40 feet per second.

30. A chain of uniform pitch transmits motion from a sprocket wffieel having
15 teeth io another having 10 teeth. What is the mean velocity ratio ? Express
the difference between the possible maximum aud the possible minimum velocity
ratio as a percentage of the mean.



CHAPTER XXIII

TOOTHED GEARING
318. Definitions Relating to Tootked Wheels.—Tlie pitch surfaces

of two toothed wheels which gear with one another are the surfaces of

two imaginary friction wheels which have the same axes, and which
would have the same relative angular velocities as the toothed wheels if

one was to drive the other by rolling contact.

A section of a pitch surface by a plane at right angles to its axis is

called a pitrh line, or a circle, if the section should be a circle, which

it is in most cases.

The pitch of the teeth is the distance from a point on one tooth to the

corresponding point on the next, measured along the pitch line. In the

case of a circular wheel whose pitch circle has a diameter d, and which

has n teeth of pitch p, it is obvious tliat np-rd. The pitch just defined

is the circumferential or circular pitch, and is equal to the circumference

of the pitch circle divided by the number of teeth. If the diameter of

the pitch circle be divided by the number of teeth, the result is called the

diametral pitch. If p' denote the diametral pitch, then 7ip' = d and

J-)
= Trp'. In the designing of machine-cut toothed wheels it is usual to

arrange that p' is a simple fraction of the form A, where mi is a whole

number, then m is the number of teeth in the wheel jper inch of diameter,

and the number m is frequently called the diametral pitch.

When the term pitch is used without qualification, circular pitch is to

be understood.

The part of a tooth beyond the pitch surface is called the point or

addendum, and the part within the pitch surface is called the root. The
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acting surface of the addendum is called the face, and the acting surface

of the root is called the flarik. Circles con-

centric with the pitch circles, and passing

through the tops and bottoms of the teeth,

are called the addendum circle and root circle

respectively. In the case of an internal wheel

the addendum is inside and the root is outside

the pitch surface.

In a mortice lolisel (Fig. 576) the teeth are

made of wood, and have tenons formed on them
which tit into mortices in the rim of the wheel. The teeth in this case

are called cogs. The wood used is geiierally hornbeam or beech.

319. Ordinary Proportions of Teeth.—The following proportions

represent average practice for cast-iron teeth. Pitch arc ABC (Fig.

575). Thickness =AB = 0-47p. Width of space = BC = 0-53j;. Total

height = c = 0-7/?. Height beyond pitch line--a = O'S/;. Depth within

pitch line = c = 0'4p. Width = 2p to 'dp. For heavy mill-gearing the

width is sometimes as great as dp.

The cogs of mortice wheels have a thickness = 0’6/?, and the iron teeth

which gear with them have a thickness= 0-4p, so that there is no side

clearance when the teeth are new'.

320. Frectnency of Contact of a Pair of Teeth.—If N^^ and No be

the numbers of teeth on tw'o wheels A and wdiich gear Avith one

another, then the ratio of their angular velocities is as No is to Nj. Let

71^ and n
.2
be the quotients got by dividing N^ and No respectively by their

greatest common divisor, then if a particular tootli on A gears with a
particular tooth on B, the same pair will again come, in contact after

revolutions of A and revolutions of B. Also one tooth on A will in

turn gear Avith n.^ teeth on B, and one tooth on B will in turn gear with

teeth on A. For example, if A has 60 teeth and B has 20, the same pair of

teeth Avill come in contact after every revolution of A or after every three

revolutions of B. Also a particular tooth on A Avill come in contact with

only one particular tooth on B, and a particular tooth on B Avill come in

contact in turn Avith three particular teeth on A. If the number of teeth

on A be increased to 61, the A'elocity ratio Avill be altered to a small

extent only, but the same pair of teeth Avill noAV only come in contact

after 20 revolutions of A or 61 revolutions of B. Also each tooth on
one AA'heel Avill noAv come in contact in turn AS’ith every tooth of the other

AA'heel. The extra tooth added in this case is called a Iniuiinij tooih or

hunting cog. The effect of the hunting cog is to cause the teeth to Avear

more uniformly.

321. Condition to be Fulfilled by the Curves of the Teeth of Wheels
in order that they may Work correctly.—Twm toothed wheels, in gear

with one another, are said to work correctly when the ratio of their

angular velocities is exactly the same at every instant as that of their

pitch surfaces working in rolling contact Avithout slipping.

In Fig. 577, Oj and are the centres of two toothed wheels aaTioso

pitch lines PQ and PR are in contact at P. The shaded curA'es represent

portions of tAvo teeth, one on each wheel, which are in contact at the

point ah, a being the point on the tooth of the one wheel which is in

contact with the point h on the tooth of the other. In geometry it is

Fm. 57G.
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shown that when two curves touch one another they have, a common
normal. Let he the common normal of the curves of the teeth at

a&, and let O^Mi and OgMg be the perpendiculars from the centres of the

wheels on to this common normal. The point a moves in a circle aA

whose centre is Oj, and the point h moves in a circle SB whose centre is

Og . At the instant that the points a and h are in contact the point a is

moving in the direction ac, the tangent to the circle aA at a, and the

point & is moving in the direction ad, the tangent to the circle &B at h.

Let v-^ and Wg be the linear velocities of a and h respectively in the

directions in which they are moving at the instant when they are in

contact. Make ac — and ad = v^. N ow, although the points a and h are

moving in different lines with different velocities, the components of

these velocities in the direction M^Mg must be the same, otherwise the

points a and h would move relatively to each other along the line

but for a small movement of the wheels so long as the teeth remain in

contact the only possible relative motion of a and b is in a direction

perpendicular to M^Mg. Therefore if ce be drawn at right angles to

Mj^Mg it will pass through d, and ae~v will be the component velocity

of a and also of h in the direction M-j^Mg. Hence the ratio of the angular

velocities of the two wheels must be

V V _0gM2_02S

where S is the point of intersection of the lines O^Og and • But
with rolling contact between the X)itch lines PQ and PR the ratio of the

'

' O'P
angular velocities of the two wheels would be equal to Therefore if

'O S '

0
'P'

'

^ the point S must coincide with the point P.

The condition to be fulfilled by the curves of the teeth is therefore as

follows. The corrmnn normal to the curves of the teeth in contact must

pass through the pitch point, the pitch point being the point of contact of

the pitch lines.

Another way of proving that the common normal to the curves of the

teeth should pass through the pitch point is as foUom The relative
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motion of two teeth in gear will not be altered if one of the pitch circles

is considered to be at rest and the other pitch circle is supposed to roll

on the first. Let the pitch circle PQ (Fig. 577) be at rest, and Jet the

pitch circle PR roll on PQ. The direction of the motion of the point h is

perpendicular to P6, because, in the position considered, h is rotating

about P, and in order that the pure rolling of PR on PQ may not be

interfered with, and in order that the two teeth in gear may remain in

contact, the direction of the motioir of 5 must be tangential to the curves

of the teeth at a or h. Therefore the common normal to the curves of

the teeth passes through P.

322. Cycloidal Teeth.—Let APB and CPD (Fig. 578) be the pitch

circles of two wheels. Let the outline of the flank of a tooth on APB be

a portion of the hypocycloid aQ5, described by
the rolling of the circle PQR on the inside of

the pitch circle APB, Let the outline of the

face of a tooth on CPD be a portion of the

epicycloid cQ^Z, described by the rolling of the

circle PQR on the outside of the pitch circle

CPD. hTe-vt let the face cQ be brought round
so as to touch the flank «Q, and let Q be the

point of contact. The point Q must be on
the rolling circle PQR when the latter touches

both pitch circles, Ijocause the normal to the

hypocycloid at Q must pass through the point of contact of the rolling

circle and the circle APB when the former is describing that part of the

hypocycloid at Q, also the normal to the epicycloid at Q must pass

through the point of coirtact of the rolling circle and the circle CPD when
the former is describing that part of the epicycloid at Q, therefore, since

the two normals coincide, the rolling circle when it passes through Q must

touch both pitch circles.

Since the common normal to the curves aQ5 and cQcZ, at their point of

contact Q, passes through the pitch point P, the wheels will w'ork correctly

if the faces of the teeth on one arc epicycloids and the flanks of the teeth

on the other are hypocycloids, described by the same roUiny circle.

It is evidently not necessary that the flanks of the teeth of t'wo

wheels which gear together be described by the same rolling circle, but

the rolling circle which describes the flanks of the teeth on one wheel

must be used to describe the faces of the teeth on the other.

Since the hypocycloid becomes a straight line passing through the

centre of the pitch circle when the diameter of the rolling circle is ecpal

to the radius of the pitch circle, it follows that the flanks of wheel teeth

may be made radial.

If a number of wheels are to be interchangeable, that is, if any one

of them is to be capable of working correctly wfith any of the others,

it is obvious that the faces and flanks of the teeth on each must be

described by the same rolling circle,

323. Path of Contact.—^In the preceding Article it has been shown
that the point of contact of two cycloidal teeth must be on one or other

of the rolling circles when the latter are at the pitch point
;
it follows,

therefore, that the path of contact of two teeth must be made up of arcs

of these rolling circles.
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Drwer.

If APB and CPD (Pig. 579) be the pitch circles of two wheels with
cycloidal teeth in gear with one another, and if ode, be the addendum
circle of the teeth of the lower wheel, and

bf(j- the addendum circle of the teeth of

tlio upper wheel, then the rolling circles

being at the pitch point as shown, the

points a and b Avhere the addendum circles

cut tlie I'olling circles are the extreme

points of contact of the teeth, the upper

wheel being the driver, and having its

motion in the direction of the arrow. At
the point a a point on the flank of a

tooth on the driver wnll come in contact

with the extreme point of the face of a tooth on the follower,

the motion proceeds, the flank of the tooth on the driver will slide on

the face of the tooth on the follower until the point of contact, which

moves along the arc aP, reaches the point P. The face of the tooth on

the driver will then slide on the flank of the tooth on the follower until

the point of contact, which moves along the arc P/;, reaches the point b.

The arc aP is called the jjatli of aipproadi^ and the arc PS the ])ath

of recess. If the driver move in the opposite direction, the path of

contact will evidently be the line a'Vl/.

If man be the flank of a tooth on the upper wheel just coming into

contact with a tooth on the lower wheel, the point m on the pitch line

APB will come into contact when it has travelled to P, and the arc ml? is

the arc of approach. Again, if rbs be the flank of a tooth on the lower

wheel just going out of contact “with a tooth on the upper wheel, the

point r on the pitch line CPD will have travelled over the arc Pr since

being in contact, and the arc P?’ is the arc of recess. If the arc Po be,

made equal to the arc Pm, and the arc Pi be made equal to the arc Pr,

then either of the arcs oPr or niPt is the arc of contact.

The arc of contact may also be defined as that part of the pitch line

which passes the pitch point during the time of contact of a pair of

teeth.

In order that one pair of teeth may always be in contact, the arc of

contact must not bo less than the pitch of the teeth. If possible the arc

of contact should not be less than twice the pitch, so as to ensure that at

least tw'o pairs of teeth are always in contact. Generally the arc of

contact is not less than lA times the pitch.

324. Obliquity of Action and Effect of Friction.—Referring to Fig.

580, if a pair of teeth are in contact at a, and friction is neglected, the

line of action of the pressure between the teeth is the straight line caP,

and the angle a which this line makes with the common tangent to the

pitcli circles is the angle of obliquity of action.

With cycloidal teeth the obliquity of action during approach is

greatest at the beginning of the path of contact, and diminishes to

nothing at the pitch point. During recess the obliquity of action is

nothing at the pitch point, and increases to a maximum at the end of the

path of recess.

The effect of friction during approach is to increase the angle of

obliquity of action by the amount <)b, where ^ is the angle whose tangent
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is oqual to /i, tlie coefficient of sliding friction between the teeth. The
driving force on the tooth of the lower wheel is now along the line dae,^

and the angle of obliquity ,

of action is a + n
If h is a point of con- Drawer,

tact between a pair of ^
teeth during recess, ^ is

< p
the angle of obliquity of -* — y—

action at h when friction is
''

neglected. When friction

is considered, the angle of C /

obliquity of action at h is FolXoicer.

obviously ^ -
(jb,

® D
The effect of friction is

5gQ^
to increase the obliquity of

action during approach, and to diminish it during recess. Consequently

friction is more objectionable during approach than during recess.

The effect of friction in altering the direction of the pressure between,

a pair of teeth in contact may be better understood by reference to

Fig. 581. ???, and ti ai’e portions

of a pair of teeth in contact,
^ ,

and the arrows show the direc-

tion of sliding of the one tooth

on the other. R is the reaction

of n on m, and T is the reaction
^ ^ ^ ^

of 771 on ». T is of course equal
tl

and opposite to R. The left-

hand portion of Fig. 581 shows
the conditions during approach,

while the right-hand portion
1‘ia. 681.

shows the conditions during recess, m being on the driver and « on
the follower.

Referring further to Fig, 580, since the effect of friction is to divert

the line of pressure between the teeth from the pitch point P, it is

evident that during approach the length of the perpendicular from the

centre of the driver to the line of pressure is diminished, and for a given

turning moment on the driver at any. instant the pressure on the teeth

is increased by the action of the friction. During recess, however, the

length of the perpendiculai* . from the centre of the driver to the line

of pres.sure is increased, and for a given turning moment on the driver

at any instant the pressure on the teeth is diminished by the action

of the friction. Hence friction is more injurious during approach than
during recess.

Friction does not affect the accuracy of the working of the teeth so

far as velocity ratio at any instant is concerned.

325. Involute Teeth.—Although the involute of a circle is a
particular case of the epicycloid, being the epicycloid when the rolling

circle is of infinite diameter,, involute teeth are not considered as a
special case of cycloidal .teeth, because the involutes used are not
involutes of the pitch circles, but are involutes of smaller circles, called

the base circles.
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Let APB and CPE (Fig. 582) be tbe pitch circles of two wheels with
involute teeth in gear ^vith one another. Let aTb and cTe be the out-

lines of the surfaces of two teeth in contact at T, these outlines being

involutes of the base circles and Sg respectively. Since a line drawn
from any point on an involute to touch the base circle of that involute

is a normal to the involute at that point, it follows that the common
normal to the tw'o involutes in contact at T must be a common tangent

MN to the two base circles. Hence the point of contact is always on

the line MN, and a portion of that line is the path of contact.

Comparing the similar triangles O^PM and OgPN, it is clear that

if the ratio of the radii of the base circles be the same as the ratio of the

radii of the pitch circles, the common normal to the curves of the teeth in

contact must pass through the pitch point.

If the centres of the wheels be pushed closer together or further

apart, the wheels will still work correctly, because this is equivalent to

altering the radii of the pitch circles without altering their ratio. This

is a special property of involute teeth, and is a valuable one in cases

where the distance between the centres of the two wheels cannot be

maintained constant. This property also makes it possible to regulate

tlie amount of side clearance or back lash between the teeth. Altering

the distance between the centres of the wheels obviously alters the

inclination of the path of contact. The angle $ which tlie path of

contact makes with the common tangent to the pitch circles is usually

from 14.^ degrees to 151- degrees. In designing involute teeth the

direction of the path of contact is first fixed, and the base circles are then

drawn to touch it.

If on the tangent at P, PH be,made equal to the pitch of the teeth,

measured on the pitch circles, and if HK be drawn perpendicular to MN,
then since PK ; PH ; ; : OjP, PK must be the pitch of the teeth

mea.sured on the base circles. The pitch PK is called the normal pitch.

It is usual to make the parts of the path of contact on opposite sides of

P equal to one another, then if two pairs of teeth are to be in contact,

and PL be made equal to PK, KL will be the minimum: length of the

path of contact, and circles through - K and L with centres at Oj and Og

respectively will be the minimum addendum circles;. should be a
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small clearance between the root circle of one wheel and the addendum
circle of the other.

If the parts of the path of contact on opposite sides of the pitch point

are eqxial, and if there are two pairs of teeth always in contact, then PM
or PN, whichever is least, will be the maximum value of the normal

pitch of the teeth. Let r = radius of the smaller of the two base circles,

/? = maximum normal pitch, and 7i = the minimum number of teeth, then

27rr~7ip, but p — rt&nd, therefore nr taxi d — 2-!rr, and 7z = 27r/tan 9.

When 9= 15°, » = 24. With only one pair of teeth in contact at a time,

?i = -!r/tan 9, or 7«= 12 when 9== 15°.

When the pitch circle becomes of infinite diameter, as in a rack, the

l)ase circle will also become of infinite diameter, and the involute will

become a straight line. Hence in a rack

which geai’s with a wheel having involute

teeth, the teeth are straight on face and
flank, as shown in Fig. 583. The faces

axid flanks are perixendictilar to the path

of contact, and therefore make an angle

of 90° - 9° with the pitch line.

The essential condition that two wheels, or a wheel and rack,

having involute teeth, may gear correctly together, is that the teeth shall

have the same 7iornial pitch. Two or more wheels having difierent

numbers of involute teeth of the same normal pitch can be arranged to

rotate about the same axis and gear correctly with one wheel or one

rack. The base circles of the wheels on the same axis will of course be

of different diameters, and the paths of contact will be inclined at

different angles.*

326. Internal Teeth.—The theory of the forms and the methods of

drawing the outlines of the teeth for internal or annular wheels in which
the teeth are on the inside of the rim, as shown in Figs. 584 and 585,

are the same as for external teeth.

In the case of cycloidal teeth (Fig. 584) the face ah is a hypocycloid

of the pitch circle ABC described by the rolling circle which describes

the hypocycloidal flanks of the teeth on the w’hecl which is to gear with
ABC, and the fiauk be is an epicycloid of the pitch circle ABC described

by the rolling circle which describes the epicycloidal faces of the teeth of

the other wheel.

In the case of involute teeth (Fig. 585) the curve abc is the involute

of a base circle which must be concentric with the pitch circle ABC, and
which must touch the straight line, which is the path of contact.

327. Pin Wheels. — "V^en the rolling circle which describes the

hypocycloidal flank of a tooth on a wheel A has a diameter equal to that

* Except when the single wheel becomes a raoir, in which case the paths of

contact are inclined at the same angle.

Fig. 683.
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of the pitch circle the hypocycloid becomes a point, and no part of the

tooth lies within the pitch circle. The face of a tooth on a wheel B
which gears with A will be an epicycloid described by the pitch circle of

A as rolling circle. If a rolling circle which describes the face of a tooth

on A be diminished until it becomes a point no part of the tooth on A
will lie outside the pitch circle, and as this rolling circle which has
become a point must be used to describe the flanks of the teeth on B no
part of a tooth on B will be inside the pitch circle. The teeth on A
have thus become mere points, while the teeth on B will have epi-

cycloidal outlines lying entirely outside the pitch circle. This is shown
in the left-hand half of Fig. 586.

It is obvious that practically this

is an impossible case, but if instead

of mere points, cylindrical pins of

sensible size be used, as shown in

the right-hand half of Fig. 586,

where the outlines of the teeth

which gear with the pins are curves

parallel to the epicycloids and at

a distance from them equal to the

radius of the pins, then the w heels

will gear correctly, and either wheel

will drive the other.

The path of contact will be

either the arc Vab or the arc Fed*
If the pins are on the follower, contact will take place during recess only,

and if the pins are on the driver, contact will take place during approach

only. Since the friction is more serious during approach than during

recess, it is best to put the pins on the follower.

Figs. 588 and 589 show wheels gearing internally, one of them having

Fig. 68(5.

pins for teeth. Reasoning as for external contact, it is easy to show that

the curves of the teeth in the left-hand half of Fig. 588, where the pins

* For practical purposes this may be taken as true when the pins are small,

but the exact path of contact is a curve determined as

;

shown in Fig. 587, where a?d is the pitch circle of the
pin wheel, and P tlie pitch point. Take c any point on
the arc PeeZ, Join c2. Make co' equal to the radius of

the pin
;
then c' is a point on the real path of contact,

Kepeating this construction a sufficient number of

times and joining the points so obtained, the real path
of contact Pc'd' is determined. Fig. 587.
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aru mere jiuiiits, and the dotted curves on the right must be hypocycloids

described by tlie pitch circle of the pin wheel rolling inside the pitch

circle of the other. The coiresponding curves in Fig. 589 are epicycloids

described by the pitch circle of the pin wheel rolling on the pitch circle

of the other, the latter being inside the former.

An interesting case of the internal gearing shown in Fig. 588, is

where the pitch circle of the pin wheel has a diameter equal to the radius

of the pitch circle of the other. The faces of the teeth on the outside

wheel now become the sides of parallel slots, the centre lines of which

are radial lines of the larger pitch circle. Two examples of this case are

shown in Figs, 590 and 591. In Fig. 590 the pin wheel has two teeth,

while in Fig. 591 the pin

wheel lias four teeth. A
peculiarity of this gearing

is' that the path of contact

between a pair of teeth is

the circumference of the

pitch circle of the pin wheel
excepting a small arc in the

neighbourhood of the centre

of the larger wheel. When
a pin is in the neighbour-

hood of the centre of the

lai’ger w'heel the obliquity of action is approaching a right angle and the

driving effort is approaching zero, but when there are two or more pins

on the pin wheel, only one pin will be in a disadvantageous position at a

time. The path of approach is equal in length to

the path of recess, and it is therefore immaterial

which of the two wheels is the driver, except in the

case where the pin wheel has only one tooth. When
the pin wheel lias only one tooth it must be the

driver, otherwise motion of the follower would
cease when the pin reached tne centre of the

larger wheel, unless it was carried past this dead
centre by the inertia of the follower or the parts

• F r
moving with it. Contact in the neighbourhood of

^

the centre of the larger wheel can be insured, and larger bearing surfaces

secured by making the slots wider and placing blocks on the pins, as

shown in Fig. 592.

328. Bevel Wheels.—The pitch surfaces of bevel wheels in gear are

frusta of cones whose vertices coincide, the axes of the cones being the

axes of the wheels. Fig. 593
shows the pitch surfaces of

two bevel wheels in gear, the

one cone being external to

the other. In this case the

wheels are said to have ex-

ternal contact. Fig. 594
shows the pitch surfaces of

two bevel wheels having internal contact, one cone being inside the other
A mitre wheel is a bevel wheel whose pitch cone has a base angle of 45°.
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To understand the theory of the forms of the teeth of bevel wlieels, it

is desirable to refer again to the way in which the forms of the teeth

of spur wheels were derived. In Eig. 595,

APB is ‘the pitch circle of a spur wheel.

aPR is the rolling circle which is used to

describe the epicycloid ah, which is the

profile of the face of a tooth on the wheel.

The pitch surface of the wheel is a cylinder,

and if the rolling circle aPR be taken as the

end of another cylinder, the two cylinders,

being of the same length, and having their

axes parallel, the face aa^J) of a tooth on
the wheel is formed by the straight line aa^
on the surface of the rolling cylinder as the 595 ,

latter rolls on the pitch surface of the wheel.

For a bevel wheel (Fig. 5961, the pitch surface of which is the frustum

ABB,A,^ of the cone OAB, the rolling cylinder of Fig. 596 becomes the

frustum of a rolling cone,

and the curve ah becomes a Q/s

spherical epicycloid. The
face of a tooth on the wheel

is formed by a straight line

aa^ on the surface of the

rolling frustum as the

latter rolls on the outside

of the pitch surface of the

wheel. The flank of a tooth

is formed in like manner
by a straight line on a roll-

ing frustum when the latter rolls on the inside of the pitch surface.

As the cone OciPR (Fig. 596) rolls on the cone OAB, the point a

which describes the curve ah is always

at a distance from 0 equal to the

length of the slant side of the cone

OaPB ; the point a therefore moves
on the surface of a sphere whose
radius is OA, and whose centre is at

O. The surface of the outer ends of

the teeth formed in this way on a

bevel wheel is therefore a portion of

the surface of a sphere, and cannot

be developed. If, however, a cone

be taken enveloping the sphere and
having for its circle of contact the

pitch circle AB, this cone will cut the

true face of a tooth in a curve which,

when developed, will for all practical

purposes in ordinary cases be an epi-

cycloid. Hence the practical method,

due to Tredgold, of designing the forms

of bevel wheel teeth, shown in Fig. 597. Fie. 597.

Fig. 696.
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00, i.s the axis of tlie wheel. ACDA^ is one half of the jdtch surface,

0 being the vertex of the pitch cone. OAOj is a right angle. 0,AC is

one half of the cone, already referred to as enveloping the sphere whoso

centre is at O, and whose radius is OA. AE is an arc of a circde struck

from O, as centre. This arc is the deveioi)inont of part of the base of

the cone 0,AO. Tlien AE is considered as part of the pitch circle of a

spur wheel of radius 0,A, and the teeth are constructed on this as for a

spur wheel. A thin templet, tuade to the shape of the teeth on AE,
may be used to mark off the shape of the teeth on the edge of the bevel

wheel blank.

The theory of involute teeth for bevel wheels may be developed in a

similar manner to that of cycloidal teeth. In a spur wheel with involute

teeth a plane is taken touching a base cylinder, and a line in this ])lane

parallel to the axis of the cylinder desciibes the surface of a tooth as the

jdaue rolls on the cylinder. In a bevel wheel the base cylinder of the

spur wheel becomes a base cone whose vertex is at the vertex of the pitch

cone of the wheel, and as a plane rolls on the base cone a line in the

plane, and passing throngh the vortex of the cone, describes the surface

of a tooth on the wheel. Tredgold’s method is also applicable to involute

teeth.

When the diameter of a bevel wheel is mentioned wuthout qualifica-

tion, tlie larger diameter of the pitch surface is understood.

329. Stepped and Helical Teeth.—The smaller the lutch of the teeth

of two wheels in gear the smoother is the motion, but the teeth are

weaker the smaller the pitch. To combine the smoothness of the motion

due to fine pitched teeth with the strength

due to coarse pitched teeth, Dr. Hooke
invented stejjped teeth. These teeth are

shown in Fig. 598. Imagine a toothed

wheel having teeth of a pitch to be
divided into n discs of equal thickness

by planes at right angles to the axis of

the wheel, and let each disc he placed so 598 .

that the teeth on it are l~wth of the pitch

2) in advance of the teeth on the disc in front of it. These discs would
now form a Avheel with stepped teeth, which would have the strength of

teeth of pitch p, and which would work as smoothly as teeth of pitch pin.

If the number of steps on a stepped tooth be made infinite, its surface

becomes a screw or helical surface, and the teeth formed in this Avay are

called helical teeth. Simple helical teeth on a spur wheel have the

appearance shown in Fig. 599. The out-

line of the section of helical teeth by a
plane at right angles to the axis of the
wheel is designed as for ordinary teeth,

and their outline in the direction of the
width of the wheel is drawn by the rule

for drawing helices or screw curves. It

is obvious that two wheels gearing together
and having helical teeth must have their teeth of “ opposite hand,” that
is, one must be right-handed and the other left-handed. It is also evident
that the inclinations of the helices must be the same.
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The objection to the teeth shown in Fig. 599 is that when at work
there is a side pressure which tends to push

the wheels out of gear. To overcome this

difficulty, the double 7ieZ«ca? shown in

Fig. 600 were introduced, and are now
largely used. To ensure the proper bearing

of the teeth on one another, the shaft of

one of a pair of wheels having double heli-

cal teeth should have a slight amount of

Exercises XXIIL

1. A toothed wheel has 95 teeth, whose diametral pitch is J inch. Find the

diameter of the pitch circle and the circular pitch.

2. Taking the ordinary proportions for teeth, height above pitch line=:0

and depth below pitch line=0'4p, where p is the circular pitch, express these in

terms of the diametral pitch p'.

3. A wheel A, having 28 teeth, gears with a wheel B, having 35 teeth. How
many teeth on A will come in contact with a particular tooth on B ? Also, how
many revolutions will A make before the same pair of teeth are again in contact 1

Further, what will the answers be (1) when A has 28 teeth and B 36 teeth, (2)

when A has 29 teeth and B 35 teeth ?

In thefollowing exeroues, 4 to 1.5, there are given in cmh two wheels or a wheel and rack

in gear. I)raw,full size, a side elevation ofa portion ofthepnir in gear, in the neighbour-

hood of the pitch point, sufficient to show four teeth on each completely. Show dearly in

each ease the path of approach and the path of recess, the arc of approach and the aro of
reoess, also the maximum obliquities of actiop, during approach and during recess.

4. Two spur wheels in external contact. Diameters of pitch circles, 10 inches

and 16 inches. Numbers of teeth, 15 and 24. Cycloidal teeth. Bolling circle,

5 inches diameter for all curves.

6.

Spur wheel and rack. Diameter of pitch circle ofwheel, 15 ineho.s. Number of

teeth on wheel, 20. Cycloidal teeth. Bolling circle, 5 inches diameter for all curves.

6. Two spur wheels in internal contact. Diameters of pitch oircle.s, 10 inches

and 20 inches. Numbers of teeth, 20 and 40. Cycloidal teeth. Bolling circle,

6 inches diameter for all curves.

7. Same as Exercise 4, but with involute teeth.

8. Same as Exercise 5, but with involute teeth.

9. Same as Exercise (5, but witli involute teeth.

10. Two wheels in external contact. Diameters of pitch circles, 10 inches
and 15 inches. The smaller wheel to have 16 pins inch diameter.

11. Two wheels in internal contact. Diameters of pitch circles, 10 inches and
30 inches. The smaller wheel to have 16 pins § inch diameter.

12. Two wheels in internal coni act. Diameters of pitch circles, 10 inches and
30 inches. The larger wheel to have 48 pins | inch diameter.

13. Two wheels in internal contact. Diameters of pitch circles, 6 inches and
12 inches. The smaller wheel to have 6 pins | inch diamet.er.

14. Wheel and rack. Diameter of pitch circle of wheel, 10 inches. Wheel
has 20 teeth. Back has pins i inch diameter.

16. Wheel and rack. Diameter of pitch circle of wheel, 10 inches. Wheel
has 20 pins I inch diameter.

16. Design for a spur wheel w'ith cycloidal teeth. Diameter of pitch circle,

6 feet. Speed, 70 revolutions per minute. Bower transmitted, 350 horse-power.

For strength of teeth use the rule P= 200np®, where P is the driving force at pitch
circle, n the ratio of breadth of teeth to pitch, and p the pitch. Take n—2'75.
Diameter of shaft, inches, enlarged to inches inside the nave of the wheel.

17, Design for a bevel w h eel with cycloid^ teeth. Base angle of pitch cone, 30°.

Mean diameter, 5 feet. Speed, 80 revolutions per minute. Power transmitted, 400
horse-power. For strength of teeth use the raJe'Ps= 20Q«j3®,where P= driving force

at mean pitch circle, «= ratio of breadth of teeth to pitch at mean pitch circle, and

p = pitch at mean pitch circle. Take « 3, Wheel to have four arms of T section.

Diameter of shaft, 7^ inches. Diameter of wheel seat op shaft, inches.

end play.



CHAPTER XXIV

WHEEL TRAINS

330. Wheel Trains.—Two or more wheels in gear form a wheel train

train of loheds. In .Fig. 601 the wheels A and L are shown geared

Fia. 603.

directly together, and they will evidently rotate in opposite directions.

In Fig. 602 the wheels A and L are shown connected by an intermediate

or idle wheel M
;
here A and L rotate in the same direction.

In each of the Figs.

603, 604, and 605 the

wheels A and L are

shown connected by
a double or compound
wheel BC, the parts B

C being rigidly

connected, so that they

rotate together as one

wheel In Fig. 603 all

the wheels are spur x. 4w. uw.

w'heels with e.xternal teeth. In Fig. 604 L is an annular or internal

toothed wheel, and in Fig. 605 all the wheels are bevel wheels. In each
these three examplc.s there is the same number of wheels and the same

number of axes, but it should be noticed that while in the arrangement
shown in .Fig. 603 A and L rotate in tho same dii'oction, in the arrange-
ments shown in Figs. 604 and 605 A and L rotate in opposite directions.

Let do, dg, and d^ denote tho diameters, and Wj, Wo, and
denote the numbers of teeth in the wheels A, B, C, and L respectively,

and let Nj, Ng, and denote the speeds of the wheels A, B, and L
I'espectively in revoluti.ons in a given time, say per minute, then, from
the fact that when two wheels gear together the linear velocities of their

pitch circles must be the same, it follows that

Rg dir Wji

velocity ratio or the value of a train of wheels is the ratio of the
speed of the last wheel to the speed of the first wheel of the train. The

Nj dg d^
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velocity ratii') is pudtivc or negative, according as the first and last wheels

rotate in the mme or in opjjosite directions.

When the axes of two shafts are parallel

and near to one another, hnt not overlapping,

motion may be transmitted from the one

shaft to the other by spur wheels, as shown
in Fig. 606. The broad intermediate wheel

M is here called a Marlborough icheel.

331. Change Speed Gears.—There are many cases in pi-actice where

it is necessary to drive one shaft from another in a positive manner at

different speeds at different times. In a screw-cutting lathe, for example,

the leading screw is driven from the lathe .spindle by a train of wheels,

and the value of the train to be used is the ratio of the pitch of the

screw to be cut to the pitch of the leading screw. Hence to out screAvs

of different pitch different trains of wheels must be used. In the older

lathes a set of separate change Avheels are used, and different combinations

of them have to lae mounted to suit the Avork to be done. Modern lathes

and other machine tools are, however, generally fitted Avith change gears

which can be operated by the movement of one or more levers, all the

wheels being permanently mounted. Not only is thi.s done for the screw

cutting and feed motions, but the main driving of the machine is noAV

largely done by Avhat are called “ all-gear drives,” that is, the use of

stepped pulleys is dispensed Avith, there being only one driving pulley,

and all the changes of speed are obtained by putting different toothed

wheels into gear by the .simple movements of one or more levers. One
important advantage folloAving tJiis substitution of one belt pulley for a

stepped pulley is that the belt can be run at the speed most suitable to

it, and the poAver of the machine is not diminished at slower speeds

through having to reduce the speed of the belt by shifting it to the

larger steps of the stepped pulley.

The application of a sliding cotter key to a change .speed gear is

shown in Fig. 607. The driving shaft A carries three wheels C, D, and

E, which gear with the three wheels F, G, and H respectively, which are

firmly keyed to the driven shaft

B. The .shaft A is hollow for

part of its length,' and contains

a rod B, into AA'hich is fitted

the cotter key K, Avbich passes

through the slots L in the hollow

piart of A. Each of the Avheels

C, D, and E has six keyways,

and each is counter bored as

shown. In the position shown
the cotter key is in two of the

keyAvays in D, and the shaft B
is being driven through the

Avheels I) and G, If the rod B
be moved to the right a distance

equal to theAvidth of the cotter key the latter will be in the space formed
by the counter bore in E, and the counter bore in the right-hand side of D
and all the Avheels will be at rest. If the rod R be moved a step further to

Fig. 606.
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the figliC the cotter key mil engage with the wheel E, and the shaft ,B

Avill bo driven through the wheels E and H. The rod R is operatiid

l)y a lever not shown, which can he locked into definite positions cori'e-

sponding to the several positions of the_ cotter key when in gear or o\rt

of gear. This form of gear is very suitable for light work, such as is

roipiirod in fee(l motions of machine tools.

A form of the sliding wheel change speed gear is showm in Pig. 60S.

There are three

wheels, C, D, and
E, rigidly con-

nected together

and carried by
the driving shaft

A. A feather

key permits of

the wheels G, D,
and E being

moved longitudi-

nally on A, while

at the same time

they must rotate

with A. The
driven shaft B
carries three wheels, F, G, and H, which are rigidly fixed to it. By sliding

CDE into different positions, B may be put out of gear, or it may be driven

through C and F, or through D and G, or through E and H.

Another type of change- speed gear is shown in Fig. 609. A is a

shaft driven at constant speed by a belt on the pulley B. The pinion G
is keyed to A, and ia geared permanently to the wheel E through the

intermediate wheel F.

The wheel E is carried

by the shaft H, to which

it is connected by a pawl

and ratchet wheel, and if

H is not driven through

the other part of the

gear, to be presently

described, H is driven

through G, F, and E.

The shaft A also carries

a pinion TC, which it

drives through a feather

key. A wheel L carried

by the sliding tumbler
Fig. 609.

MN permanently gears with K, and by lifting and sliding llIN the wheel

L may be made to engage with any one of tlie wheels 0, P, Q, R, or S,

which are all firmly keyed to the shaft H, or L may be placed clear of

these wheels. When, the shaft H is driven through the tumbler gear it

rotates faster than w'hen driven through G, F, and E, but in the same
direction, this being possible bn account of the ratchet connection of E
to H. By using a separate ratchet drive for the slowest speed the shock
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due to tlirowing the tumbler gear in is diminished. The particular

example illustrated in Fig, 609 is from a radial drilling machine by the

Bickford Drill and Tool Co. of Cincinnati. The gear shown is placed on
tlie base of the machine, and the shaft H drives a vertical shaft in the

pillar through bevel wheels.

332. Epicyclie Wheel Trains.—In an ordinary wheel train the axes

of the w'heels are fixed, while in an epicyclic

train at least one axis revolves about another axis

which is fixed.

The first point about an epicyclic train -to

be thoroughly understood is that if a wheel B
(Fig. 610) be attached rigidly to an arm EF, and
the arm is made to rotate once about an axis

at E, the wdieel B will turn once on its own axis

in the same direction in which the arm rotates.

This is made clear by an inspection of Fig. 610, ^
where the arm and wheel are shown in four differ-

ent positions during one revolution. The arrow on the wheel is

supposed to be fixed to it.

Examples of epicyclic trains are shown in Figs. 611 to 616. In each

of these examples A is the first, and L the last wdieel of the train, and

EF is an arm carrying certain of the wheels and rotating about an axis

CD, The arm may be straight, as in Figs. 611 and 613, or bent, as in

Fig. 613. In Fig. 616 the arm
takes the form of a sjrar wheel.

In Figs, 614 and 615 the axes of

the first and last wheels of the

train coincide, and these trains are

called reverted udieel trains.

The gear shown in Fig. 615
is the well-known differential gear c ^

-

used on the driving axles of ^4-

motor cars to permit of the ^
driving wheels rotating at different

speeds in going round a curve.

The driving axle CD is divided, the part 0 carrying one driving wheel
and D the other. The wheelsA and L are fitxed to G and D respectively,

and the wheel EF is driven by the engine.



S, therefore the

Wheel A. Wheel D.

Revolutions.

A .simple method which may be adopted in solving problems on

cpicyclic trains will now be illustrated on a fairly complex example.

Fig. 616 .shows an epicyclic reverted train known 3.f>, Humpacje's gear.

A is a fixed wheel, that is, a wheel which
i.s not allowed to rotate. L is fixed to the

shaft H, and D is fixed to the shaft K.

J-> and G are fixed or cast together, but

turn freely on an arm EF, which can

rotate abt)ut the common axis of the

.shafts H and K. The wheels B and 0
and the arm EF are duplicated, as shown,
for the sake of balance and pure torque.

Let the numbers of teeth in the different

wheels be as follows : A, 48 ;
B, 40 ;

C,

25 j
D, 12 ;

and L, 40. First suppo.se the

whole .sy.stem to be turned once round in j'iq, 616 .

the direction S. The wheels A, L, and D
have therefore made one revolution in the direction S. If now A is turned
back through one revolution in the direction T, the arm EF being at rest,

the variou.s wheels will then occupy the positions which they would have
occupied had A been fixed while the arm EF turned once in the direc-

tion S. In turning A back through one revolution in the direction T

the wheel L ^vill evidently turn in the direction T through —
40 40 4

of a revolution. But L previously made one revolution in the direction

of a revolution in the

direction S. Again, in turning A back through one revolution in the

direction T, the arm EF being at rest, the wheel I) will make ~

revolutions iu the direction S. But D previously made one revolution in
the direction S, therefore the actual motion of D is 4 + 1 = 5 revolutions

in the direction S. Hence the speed of L is to the speed of D as - : 5,
' 4 .

'

or as 1 is to 20.

The working of the above problem may be tabulated as follows :

—

Wheel L.

Problems on epicyclic trains become quite simple when worked by the
above method.

APPLIED MECHANICS
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Problems on epicydie gears may however be solved by aid of a

formula constructed as follows :

—

Let a = number of revolutions of the arm EF in a given time.

'n'i = number of revolutions of the wheel A in the same time.

= number of revolutions of the wheel L in the same time.

The speed of A in relation to the arm is m - a, and the speed of L in

relation to the arm is n~~a, hence the value of the train or its velocity

ratio is In using this formula it is most important that the

projier signs be given to the values of a, niy n, and e. For example, if

the arm makes 20 revolutions in a direction talceii as positive, a= +20,
and if A inakes 30 revolutions in the opposite or negative direction,

then m = - 30 and m -a = - 30 - 20 = - 50. Again, the value of e is

positive or negative according as A and L rotate in the same or in opposite

directions respectively.

As an example on the use of the formula e take the gear
m~ a

shown in Fig. 611, and let the wheels A and L bo equal. Here e= - 1,

Let L be prevented from rotating about its axis, then w=0. and by

formula - 1 = or m — 2a, that is, the wheel A rotates twice as fastm-

a

as the arm in the same direction. This is the -well-known mn and jplanet

motion used by Watt as a substitute for the ordinary crank in the steam-

engine. A was fixed to the fly-wheel shaft, and L was bolted to the

connecting-rod.

In using the formula <5=^—^ to solve the problem on Humpage’s

gear, already -woz’ked out, two applications have to be made. First

consider the train made up of A, B, C, and L (Fig. 616). Here
48 25 3 .

'

e= X 7^= 7 ,
ni the speed of A — 0, and n is the speed of L. Hence

40 40 4 ..

^

= ^ and « = 7 . Next consider the train made up of A, B, and D.
4 0-a 4 r » j

48
Here e = “ p? " speed of A = 0, and n is the speed of D.

Hence - 4 = and n ~ 5a. Therefore the speed of L is to the spee. I

of D as 7 : 5a, or as 1 : 20, as before.

Exercises XXIV.
1. The axes of two spur wheels in gear are 37 inches apart. One wheel

rotates four times as fast as the other. Find the diameters of the pitch circles

of the wheels.

2. It is required to connect two shafts, whose axes are to he as nearly as

possible 40 inches apart, by spur wheels so that the velocity ratio may be
exactly 9 : 2. Find the number of teeth in each of the two wheels and the dis-

tance between the axes of the shafts, to the nearest hundredth of an inch, if the

l)itch of the teeth is 2^ inches.

3. The crank of a direct double-acting steam-engine is 16 inches long. A
spur wheel 9 feet in diameter on the crank shaft drives a pinion 2 feet in

N*’
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diameter. If the piston travels 500 feet in one minute, what is the speed of the

pinion in revolutions per minute ? If the diameter of the piston is 17 inches,

and the mean effective pressure on It is 25 lbs. per square inch, what is the

average force on the teeth of the pinion?

4. The gearing of the fast headstock of a lathe is shown in Fig. 617. The
spur wheel B is permanently keyed to

the spindle A. The stepped pulley 0
may be connected to B by a bolt, not

shown. When 0 is not connected to

B it can rotate freely on A. D is a
pinion fixed to C. E is a wheel and F
a pinion, both fixed to the back spindle

HK. Let the spindle HK be moved in

the direction of the arrow, so that the

wlieel E comes into gear wdth the

pinion D, and the pinion F with the

wheel B, and let 0 be disconnected
from B, If D and F have each 17
teeth, and B and E have each 08

Fig. 617.

Fig. 618.

teeth, find the number of revolutions of 0 for one revolution of A.

6.

The leading screw of a lathe has four threads per inch, and is geared to
the lathe spindle as follows. On the lathe spindle there is a wheel of 23 teeth,

which gears with one of K'.O teeth. Attached to the wheel of 100 teeth there is

one of 40 teeth, which gears with a wheel of 120 teeth on the leading screw.
Find the number of threads per inch in the screw to be cut,

6. In a planing machine the table is driven by a rack and pinion. For the
cutting stroke the pulley shaft is connected with the rack through the following
gearing. A pinion A (Fig. 618) rigidly connected to one of the pulleys has 24
teeth. This gears with a wheel B, which has 64 teeth.

On the same axis as B is a pinion C of 18 teeth, which
gears with a wheel D of 72 teeth, and on the axis carrying
the wheel D is the pinion E, which has 15 teeth and
drives the rack. The pitch of the teeth of the rack is

1^ inches. On the quick return stroke'D is driven direct

by a pinion F having 18 teeth, and rigidly connected to

another pulley on the pulley shaft. The stroke of the
table is 6 feet. Find

:
(a) The number of revolutions per

minute of the pulleys, if the cutting speed is not to exceed
25 feet per minute. {&) The time taken for one complete
reciprocation of the table, (c) The average force exei ted
by the tool during one cutting stroke, if the horse-power
passing to the planing machine through the belt during the cutting stroke

is 3, and if the efficiency of the mechanism is 37 per cent. [B.E.]

7. In the lifting-crab, shown in Fig. 619, the crank handle and the pinion A
ate fixed to the shaft HK. The wheel B and pinion C are fixed to the shaft

LM. The wheel D and pinion E are
fixed together, but are loose on the shaft
HK, The wheel F and the barrel G are
fixed together, but are loose on the shaft
LM. The diameters of the wheels and
pinions are as follows ; A, 4 -^ inches

;

B, 16 inches ; C, 7 inches ; D, 13-^

inches
;

E, 4f inches ; F, 15f- inches.

The radius of the crank is 15^ inches,
and the effective diameter of the barrel
is 10 inches. Neglecting friction, find

the weight W, in tons, when an effort of

50 lbs. is applied at the crat.k handle.
8. An epicyclio gear consists of three

wheels, as shown in Fig, 612, p. 391. A
is a dead wheel having 50 teeth. The
arm EF makes + 2499 revolutions in a certain time. Find the number of revolu-
tions made by L in the same time when the number of teeth on L is (1) 50,

(2) 61, and (3) 49.
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9 . In t.be epicyclic train, shown in Fig. 620, the wheel A is fixed. The
rotating arm a, which rotates about the axis of A, carries a wheel B, which
gears with A, and also a second
wheel C, which gears with B. To
the wheel 0 is rigidly fixed an arm
h. If the speed of the arm a is w
revolutions per minute clockwise,

what is the speed of the wheel C
about its axis? Find for one re-

volution of the arm a the path of

a point on the arm b, whose distance FiG. 620.
from the axis of 0 is equal to the
distance between the axes of A and 0. Find also the path of a point on the
arm h, whose distance from the axis of C is one half that between the axes of

AandC. [B.E.]

10. A and L (Fig. 621) are two wheels of nearly the same diameter. A has
49 teeth, and L has 50 teeth. A and L gear with a
broad wheel M, which turns on a stud orpin attached
to the arm EF, which turns about the axis of A and L.

A being a fixed wheel, find the number of revolutions

made by the arm while the wheel L turns once.

11. Keferi-ing to the reverted epicyclic wheel
train shown in Fig. 614, p. 391, the wheels A,
M, N, and L have 25, 35, 20, and 40 teeth respec-

tively, and M and N rotate together. If the
arm EF makes +14 revolutions per minute about Fig. 621.
the axis CD, find in revolutions per minute (1) the
speed of L when A is fixed, and (2) the speed of A when L is fixed.

12. In a “ Crypto” front driving gear for a bicycle there is a spur wheel A
(Fig. 622), having 14 teeth, and feed to the fork. There is an annular wheel
L having 38 teeth, and fixed to the hub of the
front wheel of the bicycle. In one witli the crank axle

C is a disc carrying four pins, upon which are mounted
four pinions M, each having 12 teeth, and each gearing
with A and L. If the front wheel of the bicycle is 4Ci

inches in diameter, what would be the diameter of a
driving wheel, driven directly by the cranks, which would
carry the bicycle the same distance per revolution of

crank axle ? In other words, what is the above bicycle
“geared to”?

13. If a bicycle, having a driving wheel 44 inches in
diameter, is geared to 64 inches by means of a Crypto gear, in which the wheel
A (Fig. 622) has 20 teeth, how many teeth must the wheel L have ?

14. An epicyclic train of wheels is constructed as follows. A fixed annular
wheel A, and a smaller concentric rotating wheel B, are connected by a com-
pound wheel A]Bi, the portion Aj gearing with the wheel A, and Bi with B. The
conipound wheel revolves on a stud, which is carried round on an arm which
revolves about the axis of A and B. A has 130 teeth, .

B 20, and B^ 80, the pitch of the teeth of A and A,
being twice the pitch of the teeth of B and Bj. How
many revolutions will B make for one turn of the arm '!

[Inst.O.E.]

16. A reverted epicyclic train is shown in Fig. 623.

A is a fixed annular wheel. BC is a double inter-

mediate wheel mounted on an eccentric E, which is

keyed to the shaft H. B gears with A, and C with
L, another annular wheel, which is loose on the shaft

H. Find the number of revolutions made by the
shaft H for + 1 revolution of the

,
wheel L when the

numbers of teeth on the wheels A,- B, 0, and L ate 60,

.55, 59, and 64 respectively. Show that the friction'
. g23 ,

of this gear would be large.

16. A pulley block for lifting a heavy weight is constructed as follows

Fig. 622.



(Sfio Fie?. G2‘JI-). Secured, to the block, so as not to revolve, is an annular wheel A
of 20 teeth. A second wheel JB, of nearly the same diameter, but having ,L tooth

lindle concentric witli A, and is bolted to a
of 7 inches, round which

he weight is lifted. A spur wdieel

C, deep enough to engage with A and B, is mounted, so as to

turn freely at the extremity of a short arm keyed to the

spindle. To the spindle is keyed a recessed pulley A', 10 inches

diameter, round which is led an endless chain for hauling.

Determine the velocity ratio of haul to. lift, [U.L.
]

17. An epieyclio gear consists of a wheelA with 84 internal

teetli, a pinion B, and a spur wheel C of 40 teeth concentric
with A, .B gearing with C and A. The arm whicii carries the
a.xis of B rotates at, 20 revohil.ions per minute. If A is fixed, find the syieed of C,
and if 0 is fixed, find the speed of A. If a force of 100 lbs. is applied perpen-
dicularly to the arm at a di.stance of 4 feet from the centre, find the pressure
between the teeth of .B and 0. Take the pitch circle of 0 as 13 inches in
diameter. [U.L.]

18. Beferring to the “differential motion” (Fig. (313, p. 391), in which the
wheels A and L are equal, if the speeds of EF and A are + 30 and + 30 revolutions
per minute respectively, wdiat is the speed of L in revolutions per minute ?

19. An arrangement of gearing involving an epieyclio train is shown in
Fig. (523. BO is a shaft rotating at the constant speed of -1-120 revolutions i)er

minute. The cone pulley MN and the
hevel wheel A are keyed to the shaft BC,
The bevel w’heel L and the wheel T are

conneoted together, but are loose
on the shaft BC. The wheel EF is loose

on the .shaft BO, and carries the two
bevel wheels which gea,r with A and L,
as in the ordinary differential motion
shown in Fig. (51.3, p. 391, The cone
pulley PQ au& the wheel B are keyed to
the shaft, PIK. The wheel R is geared
to EB’ through the idle wheel S. The
shaft HK is driven from the shaft BO
by an open belt on the cone pulleys, as
shown. The diameters of the cone
pulleys at N and P are three-fifths of
the diameters at M and Q, and their
diameters at the middle ai-e equal. The
diameter of the wheel R is half that of
BF. Find the speed of the wheel T, in
revolutions per minute, when the belt is (1) at the middle of the cone pulleys,

(3) at MP, and (3) at NQ.
20. In the epieyclio bevel gear, shown in the sketch (Ifig, 626), the wheels A

and B have each 40 tooth, and the wheel 0 has 20 teeth
;

the shafts D and E are in one solid piece, and rotate
together at the rate of 60 revolutions per minute about
the axis of B ; each wheel is free to rotate on its own
spindle, and the wheel A rotates 30 times per minute in
a direction opposite to the rotation of the shaft E. Find
the speed and direction of rotation of the wheel 0.

v,[B.B.],'.

21. In an example of Humpage’s gear, shown in
Fig. 616, p. 392, the numbers of the teeth on the different Fit}. 62(5.

wheels are as follows : A, 60 ; B, 48 ; C, 24 ; D, 16 ; and
L, 48- If the speedpf D is -t- 266 revolutions per minute, find, in revolutions per
minute, (1) the speed of L when A is fixed, and (2) the speed of A when L i)5

fixed.



CHAPTER XXV
MISCELLANBOUS MECHANISMS

333. Cams.—A earn is generally a routing piece wliicli gives a

reciprocating or oscillating motion to another piece called the folloiver,

the contact between the two being line contact. A cam may however

have a reciprocating or oscillating motion as well as the follower.

334. Motion of the Gam Follower.—In general the cam follower has

either rectilinear motion or angular motion about a fixed axis. Fig.s. 627,

629, and 631 show cam followers having rectilinear motion, AB being the

Fig. 627. Fig. 628. Fig. 629. Fig. 630. Fig. 631. Fig. 632.

length of the travel of the follower. Figs. 628, 630, and 632 show cam
followers having angular motion about a fixed axis O, the amount of the

movement being the angle AOB.
The velocity of the cam is generally uniform, but the velocity of the

follower is usually variable, so tliat equal movements of the cam are not

accompanied by equal movements of the follower, and in designing a cam
the first step is to assume equal movements of either the cam or the

follower, and then, from the given conditions, to find the corresponding

movements of the follower or cam.

Whether the motion or displacement of the cam be rectilinear or

angular, it may be represented by a straight line. Let AC (Fig. 633)
represent the displacement of the cam during the time that the follower

travels from A to B and
back again to A. Divide

AC into any convenient

number of equal parts, say

twelve. These parts null

represent equal intervals of

displacement of the cam,

and if the cam is moving
with uniform velocity these

Fig. 633.

parts will also represent equal intervals of time. . Let it he given that

during the 1st and 6th intervals the follower is to remain at rest,

that during the 2nd, 3rd, 4th, and 5th intervals the follower is to
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move 'i\(!r distances, starting from A at tlu' beginning of tlie 2nil

interval and romMng .!> at the cud of the bth interval, and during

the remaining intervals the, follower is to liave, liarmotiic motion, return-

ing frrtm li to A. It is ]-ct|uired to find tlie ])o,sitions of the •followcu’

(:iorresi)onding to the positions of the cam at the end of each of the equal

intervals of disjdacemeut of the cam. The construction is clearly shown

in the figure. DE is a straight line. FHC is a sine or harmonic curve

constructed in the usual way, as shoAvn. The ordinates of ADEFHC give

the positions of the follow’-er corresponding to the abscissa) Avhich give tbe

disjdacemeut of the cam. Considering AC as a time base, the diagram

ABEFIIC is a sj>a.ce-time diagram for the follower.

Fig. 631 slioAA’s in a similar manner tlie case Avhore the folloAver is to

rise half the distance AB Avith uniform positiA’e acceleration, and to

complete its traA^el to B Avith

uniform retardation or uni-

form negative acceleration.

The curve AED is made up
of two parabolas, AE and
ED. The j)arabola AE has

AB for its axis and A for its

vertex, and the parabola ED
has CD for its axis and I)

for its vertex, Tlie usual and most convenient construction for draAving

the parabolas in this case is shown in the figure.

In Figs. 633 and 634 the movements of the folloAver have been found
for equal movements of the cam, but from the same diagrams the move-
ments of the cam for equal movements of the folloAver can be found as

shoAvn in Fig. 635, Avhich is the case illustrated in Fig. 634.

When the folloAver has angular motion, as in Figs. 628, 630, and 632,
the length of the straight lino AB in Figs. 633, 634, and 635 must he
equal to the length of the arc AB in Figs. 628, 630, and 632, and the
suhdiAusions of the arc AB in Figs. 628, 630, and 632 must he
equal, each to each, to the subdivisions of the straight line AB in Figs.

633 and 634, that is, the arc AB must be divided similarly to the line AB
the space-time diagram.

335. Plane Sliding Cams,—The flat plate AC (Fig. 636) has a re-

ciprocating horizontal motion in its own plane, and its upper edge Avorks

in contact Avith the lower end of the follower AB. The follower is guided

®&.: 637.;"

direction, and rises and falls as the cam plate reciprocates.

The force to lift the folloAver comes from the cam plate, but in this

example the force Avhich brings the folloAver down is independent of the
cam, and may he the action of a Aveight or spring, "^he cam, however,
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I'esti'nins tlie downward motion of the follower, regulating the velocity of

fall. In Eig. 636 the acting edge of the cam is made up of straight

lines, and it is obvious that the follower will move through equal
distances, in rising and falling, for equal movements of the cam. Also,

there will be periods of rest for the follower at the bottom and top of its

travel.

Fig. 637 shows how the same kind of cam is designed to give the

same kind of motion, to the follower, except that the motion of the
follower is angular instead of rectilinear, that is to say, in both examples
the follower moves through equal distances, in rising and falling, for

equal movements of the cam, and there are the same periods of rest.

In Figs. 636 and 637 the outline of the cam is obtained by assuming
that the cam is fixed and that the follower moves towards the right

through equal distances A to 1, 1 to 2, 2 to 3, etc., and at the same time
rises through the distances A to 1, 1 to 2, 2 to 3, etc., shown by the
divisions on AB.

In Figs. 636 and 637 the lower end of the follower is wmdge-shaped,

the edge of the wedge being in contact with the cam. Greater durability

is obtained by replacing the wedge end by a pin, or by a pin and roller,

the axis of the pin taking the place of the edge of the wedge. With the

pin and roller there is less friction than with the pin alone. In designing

a cam to work against a pin or roller, the acting surface of the cam is

first determined as for contact with a wedge
;
this acting surface is called

the pitch surface of the cam, and the trace of the pitch surface on a

surface normal to it is called a pitcJi line. The axis of the pin or roller is

then supposed to travel so as to generate the jntch surface, and the proper

acting surface of the cam is the envelope of the moving pin or roller, as

shown in elevation in Figs. 638 and 639. In Fig. 639 the complete

envelope is used, and becomes a slot in the cam plate
;
such a cam will

move the follower positively in both directions. In Fig. 638 only one

side o.f the envelope is used, and this cam requires that the follower be

pushed against the cam during the downward stroke. A common defect

due to the use of a roller is referred to in Art. 339.

336. Plane Eotating Cams.—The method to be adopted in designing

plane rotating cams is similar to that already described for plane sliding

cams. Figs. 640, 641, and 642 show plane rotating cams for -working on

wedge-ended followers. The followers for the cams shown in Figs. 640

and 641 have rectilinear motion, and would have the form shown in Fig.

627. In Fig. 640, AB, the path of the end of the follower in contact

with the cam, when produced, passes through 0, the axis of rotation of

the cam, while in Fig. 641, AB produced does not pass through C. The
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follower for the cam shown in Fig. 642 has angular motion axis

O, and would have the form shown in Fig. 628.

AB, the path of the end of tlie folloAver in contact with the cam, is

lirst divided into parts, which are the displacements of the follower for

equal angular displacements of the cam. The parts of AB are deter-

mined, as explained in Art. 364, to suit the particular kind of motion
which the follower is required to have. The cam is now supposed to

remain at rest, while the path AB of the follower is revolved about the

axis 0 of the cam into as many
equidistant positions as there

are points of division on AB.
It should be noted that two
or more points of division on
AB may coincide. The next

step is to swing round, from
the centre 0, the various points

of division on AB to intersect

the corresjDonding positions into

which AB has been placed round
the fixed cam, as is clearly shown
in Figs. 640, 641, and 642. A
fair curve drawn through the

points determined in this way
is the pitcli line of the cam.

If the follow'er is provided with
a pin, or a pin and roller, the

outline of the cam is determined from the pitch line exactly as described

in the latter part of the preceding Article.

Figs. 643 and 644 show how a plane rotating cam is designed to

work against followers of the form shown in Figs. 631 and 632 respec-

tively. As in the three cases just considered, the cam is supposed to

remain at rest, while the follower is made to revolve about C, tlie axis of

the cam. into as many equidistant positions as there are points of
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division on AB, and in addition the follower has given to it its oorre-

s])onding radial (Fig. 643) or angular (Fig. 644) motions. Thcj contour

of the cam is obtained by drawing a fair curve to touch the various posi-

tions of the follower, as shown. The contour is therefore the envelope

of the follower, as the latter reciprocates or swings, and at the same time

revolves about the axis of the earn, the cam being at rest.

It may bo pointed out here that if the plane rotating cam is made a

circular eccentric cylinder working against a flat-footed or slotted follower,

as shown in Figs. 645 and 646, the mechanism becomes the equivalent of

a crank and infinite connecting-rod. Also the circular eccentric cylinder

(Fig. 647) working against the end of a bar, with or without a roller,

which can reciprocate in the direction of its length, is the equivalent of a

crank CP and connecting-rod AP. If the slot in the follower (Fig. 646) be

curved to a radius AP (Fig. 648), the mechanism becomes the equivalent

of a crank CP and connecting-rod AP.
337. Cylindrical Cams.—A cylindrical cam may be used to give

reciprocating motion to a follower in a direction parallel to the axis of

the cam. This form of cam may be looked upon as the plane sliding

cam bent round to the form of a cylinder, or the piano eliding cam may
be considered as the development of the cylindrical cazn.

Fig. 649 shows one half of one form of cylindrical cam, and an

approximate method of designing it. The roller shown is conical, and
its axis intersects the axis of the cam. To construct a cylindrical cam
practically, the acting surface should be cut by a milled roller or cutter

having the form of the roller or pin which is to work on it, the' axis of

the milled cutter being made to move over the pitch surface of the cam
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aw it cuts onfc tlic acting surface. The developments of tlie edges of the

correct cam surface will not be exactly the same as the shaded lines on

the developments to the right and left of Fig. 649, but when the roller

is small compared with the diameter of the cam, the difierences may
generally be neglected.

The cam may be made to drive the follower positively in both direc-

tions by having two acting surfaces on opposite sides of the pin or roller.

These acting surfaces will then form the opposite sides of a groove on the

cylinder. -

338. Form of Boiler for Cylindrical Cam.—It is obvious that a
cylindrical roller will not work correctly on a cylindrical cam, that is, it

wall not roll without slipping, since the path upon which the roller has to

travel is longer for the outer than for the inner end of the roller. It is

also obvious that on that part of the cam which is in contact with the
roller when the follower is at rest a conical roller will work correctly if the



MISCELLANEOUS MECHANISMS 403

v(irtt>x (if Hie. (xino is ou the axis of the cam, and the acting surffice of

tlK' ciim is also conical with its vertex at the vertex of the roller (’one.

ii’(.tr otlic!' cases the true form of the roller is not conical, and only when
the acting surface of the cam is a screw surface of constant pitch is it

possible to give the roller a form which will work correctly on all parts

of the cam.

A cylindrical cam in which the acting surface is a screw surface

of pitch p is shown in Eig. 650. Rj and Rg are the external and internal

radii of the screw surface respectively, and R is any other radius, and

?*o are the radii of the outer and inner ends of the roller respectively,

and T is the radius of the roller

corresponding to the radius R of the

screw surface.

Consider the half of the cam on
one side of a plane containing the

axis of the cam. AjB^^Gj^, AgBgCg.
and ABC are the helices which are

the intersections of the screw surface

with the surfaces of cylinders of radii

Rj, Rg, and R respectively, ac^, acg, and nc, the developments of tliese

helices, are shown to a reduced scale in Fig. 651. Let the cam make
half a revolution, then for pure rolling it is eyident that

aci

and V '

Butacj— s/ +^j ac^- -

h n/47r“Bg +p^

n/ Itt^RP

and ac—
/\J

7r-R2 +^. Hence r

s^/47r2R2+j;2
When R= 0,

\/47r‘-Ri +p^ ’ n/^tt^Rj +y
and the helix coincides with the axis of the cam, hence the axis of the

roller must be at a distance from the axis of the cam equal to

Squaring both sides of the equation, r=
r-j ^47r2R2

and rearranging the terms

of the form

/47rRi +jr

= 1 and this is
J \ph\) ’

1, which is the equation to an hyperbola.

The outline of the roller from R = 0 to R^R^ is EHLPKF, and

between R = Rg and R = Rj the form is EHKF. The true form of the

roller is an hyperboloid of revolution, but for ordinary cases the part

EHKF is practically conical. LP is the throat of the hyperboloid. A
plane section of the hyperboloid by a plane parallel to its axis and

touching the surface at the throat will be two straight lines, and if this

plane also contains the axis of the cam, one of the straight lines will

be the line of contact between the roller and the screw surface of the

cam. In the side elevation to the' right in Figi 650, PR^ is the pro-

jection on the axis of the cam of the line of contact between the roUer

and the screw surface of the cam, and BiP'Bj^ is the true inclination



404 APPLIED MEOHAN-ICS

of tills Hiio to the axis of the cam. A line CjOCg parallel to Bi?'' cleter-

iniuos the section of the screw surface by.a plane containing the axis of

the ca,in.

P]u^ roller may be turned in an ordinary lathe if the point of the

cutling tool is set at a distance below the lathe centres equal to OP',

whih^ th(‘ top slide rest is set at an angle to the axis of the lathe equal to

the angle In practice the distance OP' and the size of the

roller compared with the outside diameter of the cam will generally be

much smaller than shown in Fig. 650. •

If the follower is to be driven positively by the cam in both direc-

tions, a, second roller, shown by the dotted circles at O^, will be
neaissaiy.

It shf)uld be pointed out that in the roller designed as just described

there is an end tlirust which is taken by a collar on the pin carrying the

roller, and the friction and wear of the roller on this collar may more
than neutralise the saving of friction and wear due to pure rolling

between the roller and the cam.

339. Interference in Cams.—In designing a cam to fulfil certain

conditions, it may happen that the formation of one part may cut away
a part already formed. For
example, in Fig. 652, let ABC
be a part of the pitch line of

a cam to work against a roller.

As the axis of the roller

moves along AB the envelope

DLE is the corresponding

jxirt of the outline of the

cam, and as the, axis of the

roller moves along BC the

envelope FLK is the corresponding part of the outline of the cam. It

will be soon that the parts DLE and FLH interfere with one another,

and the possible outline for the cam is DLH. The axis of the roller

will then'ioro move along the path AKC instead of along ABO, the

dotted }>avt at K being an arc of a circle whose centre is L. The amount
of interference in this case will evidently ho greater the more acute

the angle between AB and BG at B is, and also the larger the roller is.

Interference may also occur in other cases, as, for instance, when the part

of the follower which works against the cam is a fiat plate. Fig. 653
shows such a case, the required outline of cam being the envelope of the

lines A, B, C, etc. It will be seen that the fair curve which touches

the lines A, B, I), etc., will not touch the line C. In a case like, this all

that can be done is to make a compromise by drawing a curve to more
nearly approach G and cut the adjacent linos at acute angles, as shown
by the dotted curve.

340. Velocity Eatio of Follower and 0am.—In Figs. 654, 655, and
656 EPF is part of the pitch line of a cam, EPT is the tangent, and
GPD is the normal to EPF at P. In the position showm the follower is

in contact with the cam at P. The point P on the cam has a velocity

Vj = PA in the direction PA, and the point P on the follower has a velocity

t’a = PB in the direction PB. If the velocities and be resolved along
and perpendicular to the normal GPD, the components along the normal

Fig. 652 . Fig, 653 .
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must oacli. bo equal to v = PG.
,

a and ^ are the inclinations of EPT to

PA and PB respectively.

For a sliding cam (Fig. 654), in which the direction of the motion of

R E D R E 6 D

Fia. 654. Fig. 655. FiG. 656.

the cam is perpendicular to the direction of the motion of the follower,

— tan a — cot B.
’h

For a cylindrical cam, of which Fig. 654 is the development, if is

the radius of the, cylinder and w its angular velocity, then

'/.q = RjW, and ^ = B.| tan a = Rj cot

For a plane cam rotating about 0, and a follower having rectilinear

sin a 01) .
'

, , . „ ,

motion (lug. 6t)5), f Qp •
H oms the angular velocity of the

cam, then s-tid therefore ^ = 0D, where OD is perpendicular

to the line of stroke of the follower.

For a plane cam rotating about Oj and a follower swinging about Og
(Fig. 656), if oq is the angular velocity of the cam and Wg is the angular

velocity of the follower, then in the position shown,

V , V

where O^M and 0.,N are perpendicular to CPU. Join OgOp and produce

<u., V V 0,M OvI)
it if necessary to meet CPU at D, then^ = q-^ ^ O M ~ O N ~ 0~D

‘

341. Hooke’s Joint or Universal Conpling.—By means of a Hooke’s

joint a motion of continuous rotation may be transmitted from one shaft

to another when the axes of the shafts intersect, but are not in the same
line. This joint is frequently used when the axes of the shafts are

nominally in the same line, but through a lack uf rigidity in the frame

carrying the bearings of the shafts the axes may get slightly out of line

several times during a revolution. The Hooke’s joint forms a flexible

and yet positive coupling for the .shafts. The theory of this coupling

will now be considered.

Referring to the lower part of Fig. 657, c and d are two shafts whose
axes are assumed to be horizontal and to intersect at o, the acute angle

between them being B. The ends of the shafts are forked, and the forks

carry between them a cross aajbh-^^ the arms of ' which are at right angles

to one another, and the axes of these arms intersect at o. The arms of
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tlic croati uro jointed to the forks, so that they may turn freely about their

axes. As the shafts rotate the axis of aa^ describes a circle whose plane

is perpendicular to the axis of

the shaft c, and the axis of bh-^

(lescri])es a circle whose plane

is })erpundicular to the axis of

the shaft d, and as the axes of

the shafts arc assumed to be /

horizontal, the planes of these \r~

circles are vertical. Referring

now to tlie upper part of Fig.

657, the circles described by
the axes of the cross are shown
projected on a plane pierpendi-

cular to the axis of the shaft c.

The circle described by the axis

of acii pjrojects into an equal

circle AXAjY, and the circle

described by the axis of hbi

projects into an ellipse YBjB,
the semi-minor axis of whicli

is equal to rcoaO, where »•

is the radius of the circles

described by the axes of the

cross.

If OA be the projection of the axis of the arm oa carried by the shaft

e, then OB, the projection of the axis of the arm oh carried by the shaft d,

must be perpendicular to OA, since these axes are perpendicular to one
another, and they are projected on a plane containing one of them. Also,
when OA has turned from the horizontal po.sition OX through ari angle
a, OB will have turned through an equal angle a from the vertical position

OY. But the actual angle /3 through Avhich the arm oh has turned is not
the angle BOY but the angle B'OY, the point B' being on the circle

AXA/Y and in a lino B'BN perpendicular to OY.
The connection between a and ^ has now to be found.

BN B'NBN - B^'N cos dj hence == cos 0, therefore tan a = tan cos B.

^

The angular velocity wj, of oh at any instant is evidently not neces-
sarily the same as w,,, the angular velocity of oa at the same instant, and
the ratio of the.se two angular velocities will bo the ratio of the indefinitely

small increase of /? to the corresponding increase in a. Differentiating

the equation tan a = tan B cos 6, the result is^'
’ da cos B sec-^ p

Eliminating /5, this reduces to -
•® 1 - sin^ 6 cos- a

, 1

-y ha.s a maximum value = --a when cosa=^l or ~ 1, that is, when
COH fr

a-0®orl80®.

ly
has a minimum value = cos 6> when cos a = 0, that is, when

tt-90° or 270°.
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Hence the ratio of the fluctuation of speed to the mean speed is

0^ - cos 0 = sin 6 tan 9, assuming to„ to be constant.

= -when cos 0 = 1- sin^ 9 cos‘^ a, that is, when cos a ~
Jl-

sin 9
If co^ be assumed constant, and be represented graphically by the

radius of the circle AXA^Y, and if (Dj be calculated for various values of

a and the results be measured off from O on the projections, such as OA
of the axis of the arm oa, the polar curve showm dotted is obtained, which
exhibits graphically the variations in the angular velocity of for all posi-

tions of the arm oa. It will be seen that the angular velocities of oa and
ob are equal four times in each revolution. In Fig. 657-, 9 is 45°.

Fig. 658. Fig. 659.

The actual form of Hooke’s joint varies greatly in practice. One
design is shown in Fig, 658, and a more compact form, known as

Bocorselski’s universal joint, is shown in Fig. 659.

By using a double Hooke’s joint, as shown in Fig. 660, the shafts A and
C will have the same angular velocity at every instant, provided that their

axes are in the same plane

and make equal angles with
-/fif T'

the axis of the intermediate

shaft B, This follows at

once from the formula al-

ready proved. Thus if the

A, B, and C turn

through angles a, and y respectively from the position shown in the

same time, then tan a = tan /3 cos 0 = tan y, therefore a = y. It is however

very important to observe that for the above to be true the axes of ikejoints

in the forks on the intermediate shaft B mvAst he in the same plane as shown

in Fig. 660. Judging from the number of examples to be met with in

practice on motor cars and machine tools, in which the forks on the

intermediate shaft are arranged wrongly, it would seem that the theory of

Hooke’s joint is not properly understood by many who have to construct

it. Assuming that a)„, the angular velocity of the shaft A, is constant, it

is easy to show that if the axes of the joints in the forks on the inter-

mediate shaft B are arranged at right angles to one another, as is

commonly but erroneously clone, the fluctuation of speed of the shaft 0 is

from ---rA "to cos- 0, whereas if C were coupled direct to A with a
cos'-^d

,

' -

single Hooke’s joint the fluctuation of speed would only be from to

(a„ cos 0.
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342. Oldiiain’s Coupling.—^When the axes of two shafts are parallel,

and the distance between them is- small and variable, the shafts may be

coupled, so that one will r—rri i
drive the other at the same T-l^
speed liy means of OldJiarn’s ^ \\
coupling, which is shown in ila--!' -

i ^ 1

Fig. 6G1. KL and MN are L m-’ H- -!i-
-- 1 /

the axes of the shafts. A
1|

\~ yJ
and B are flanges secured or I !! J

^

forged to the shafts E and F O^UJ
respectively. 0 is an inter-

’

mediate piece. In one with

C on its opposite faces are prismatic pieces a and d at right angles to one

another. These pieces fit into grooves formed in A and B, as shown. It

is evident that whatever angle A turns through C must turn through the

same angle, and whatever angle 0 turns through B must turn through

the same angle; hence A, C, and B must, at every instant, have the same
angular velocity.

343. Eatchets.—The principal parts of a ratchet mechanism are, a
wheel or sector or rack having teeth, and o. ratchet, click, or which
engages with the teeth. In general the ratchet mechanism is used either

to give intermittent motion in one direction, or to permit of motion in one

directioir and prevent it in the opposite direction.

In Pig. 662 A is a ratchet wheel, and B a paAvl carried on a pin

attached to a lever C. The lever has an oscillating motion, in this ease

about the axis of A. When the lever is moving in the direction of tlui

arrow, the pawl B engages with a tooth on the wheel, and the lever and
wheel move as one piece. When the motion of the lever is reversed the

pawl B rides over the teeth of the wheel, which remains at rest, either

because of some resistance, such as friction, or because of the action of the

pawl or catch or detent D, which is mounted on a fixed pin.

In the arrangement shown in Fig. 663 an almost continuous rotation

of the wheel A in the direction of the arrow is obtained by the use of two
pawls B]^ and B^ mounted on pins attached to arms on the lever G,

which oscillates on a fixed pin E. In Figs. 662 and 663 the teeth of the

wheel exert a thrust on the pawls when the latter are in action, but the
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pawls may be arranged to be in tension when in action, as shown in

Pig. 664.

If friction is neglected, the reaction of a tooth on the pawl acting on
it will be perpendicular to the face of the: tooth, and in order that the
pawl may not slip out of gear the line of action of the reaction must
evidently pass between the axis of the wheel and the axis of the inn
which carries the pawl when the pawl acts with a thrmst, as in
Figs. 662 and 663

;
but when the pawl acts with a pull, as in Fig. 664,

tlien the above-mentioned line of reaction must lie beyond the axis of the
pawl pin away from the axis of the wheel.

The limiting position of the line of the reaction of the tooth on the
pawl, when friction is considered, is shown in Fig. 665 for a pushing

Fio. 665.

ratchet, and in Fig. 666 for a pulling ratchet. LN is the normal to the

face of the tooth. "When slipping is about to take place between the

tooth and the pawl, LR, the line of action of the reaction of the tooth on
the pawl, will make Avith LN an angle NLR equal to the friction angle,

and when this force is just about to rotate the paw'l on its pin, LR will

touch the friction circle F, as showm.

In order that there may be no lost motion of the lever C in Figs. 662
and 664, the angle through 'which it swings must be an exact multiple of

the angle 6 subtended by one tooth of the 'vidieel at its centre, and the
amount of possible lo.st motion or back lash will be slightly less than 0
when the angle of swing of the lever is

not an exact multiple of 6. The po.ssible

back lash is therefore smaller the smaller

the pitch of the teeth of the wheel.

Reducing the pitch of the teeth reduces

their strength, and in order to reduce the

possible back lash without reducing the

pitch of the teeth, t\vo or more pawls are

generally used in the manner shown in

Fig. 667, which represents the ratchet

mechanism of the Williams universal

ratchet drill. In this example the ratchet

wheel has twelve teeth, and there are five

pawls, but only one pawl at a time can ’

gear with the -wheel. The maxim-um
possible back lash is in this case just under one-sixtieth of a revolution,

or just under 6®.

Reversilh rr(t<‘hf>ts are used when it is desired to drive the ratchet
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Fia. 6GS.

u,serl oil a screw-jack. A common example of the reversible ratchet is to

be found in the feed

motions of planing and
shajiing machines.

In the various forms of

ratchet which have been

illustrated, the ratchet is

kept in contact with the

wheel either by the weight

of the ratchet or by the

action of a spring, and
when tlie pawl is moving
backwards over the teeth

it drops from one tooth

on to the next with a clicking noise. To avoid this clicking several forms

of ffilent ratchet have been designed. In the form shown in Fig. 609,

the pawl B has attached to

it an arm C, at the lower

end of which there is a

recess containing a plug D
pressed outwards by a spring

against a facing E on the

ratchet wheel A. When the

relative motion between the

wheel and the pawl would
cause the latter to rise and
fall on the teeth of the

wheel, the friction between

E and D causes the arm 0 and pawd B to swing round until B comes in

contact with the stop S, and the pawl remains clear of the teeth on A.

Wlien the relative motion between the wheel and
the pawl is in the opposite direction, the friction

between E and D causes C and B to swing back

until B engages with a tooth on A. Another

method of operating the arm C is shown in Fig.

670. An extension of the rim of the ratchet wheel

has a groove cut in it into which is sprung a ring .

• ^ •

H, between the ends of which there is a gap to receive the lower end of the

arm C. "Vilien C is pressing against one end of the ring H, the pawl is

pressed against the stop, and is out of gear, and when C is in contact with

the other end of H, the

pawd is in gear with a ^
tooth on the wheel. The
friction between tlie ring

H and the bottom of the

groove into which it fits is

sufficient to operateCwhen
there is relative motion be-

tween the wheel and the

pawl.

Friction ratcli^s have been very successful, their application to

Fig. 669.

Fig. 671.
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“ free-wlicol ” bicycles being well known. In Fig. 671, A is a ratchet

wheel of special form connected to the hub of the driving wheel of the

bicycle. C is a ring encircling A and forming part of the sprocket wheel,

lloccsses formed on A contain hard steel rollers B, which act as ratchets.

The recesses containing the rollers are of variable depth, and the rollers

are pressed lightly forward towards the shallower ends of the recesses

by light springs behind them. When C is driven forwards in the direc-

tion of the arrow, the rollers are rolled up the

slight inclines on A, and A, B, and C are locked

together j
but if C should stop, A will continue

to move forward, or if A should tend to overrun

C, it may do so because the rollers are then

rolled back on the inclines and A is free from C.

A slight modification of this gear is shown in

Fig. 672, where the springs are spiral and are partly concealed within

guide blocks behind the rollers.

A form of friction ratchet, known as the mitoloc, has been applied in

a number of ways. One application of this mechanism is shown in

Fig. 673. A is a fixed case

or cup which is mounted

on a pin or stud, which

also carries the separate

levers B and E. Between

the case A and the boss

H on B there is an an-

nular space which contains

two lugs FF formed on

the lever E. The lever B
lies in the right - hand
space betw^een the lugs FF.
In the left-hand space

bet'ween the lugs FF there

are twm balls CC separated by a spiral spring D. The balls CC have
bearings in a shallow groove in A and also on the boss H of B, but the

surface of H in contact with the balls is not concentric wnth A, but is

shaped so that the annular space containing the spring I) and tlie balls

CC gets shallower in both directions from the centre line XX. The
object of the contrivance is to move the lever B through any angle, and
then lock it in the now position automatically. In the position shown,

the lever B is locked by the balls CC, which are wedged between A and
H by the action of the spring D. If the lever E be moved, say upwards,

the lower lug on E unlocks the lower ball, and the upper lug moves the

lever B downwards, and as soon as the force actuating E is removed, the

spring again wedges the balls between A and H, so that no force applied

to B will move it.

Exercises XXV.

1. A plane reciprocating cam has nniform motion and a stroke of 5 inches.

The follower reciprocates at right angles to the line of stroke of the cam and in

the plane of the cam. For the first | inch of the,forward Stroke of the cam the
follower is at rest at the bottom of its stroke. For the next 2 inches of the
cam stroke the follower rises IJ inches with xuiiforin acceleration.- For the



412 APPLIED MECHANICS

next 2 inches of the cam stroke the follower rises 1 1 inches with uniform re-

tardation, and then remains at rest until the cam has complete,d its forward

stroke. The follower is provided with a roller inches in diametei;, which
works on the cam. Draw the outline of the cam.

2. Same as Exercise 1, except that the cam has simple harmonic motion,

instead of uniform motion.
3. A straight lever oscillates in the plane of a sliding cam, about an axis at

one end, though angles of 23° on opposite sides of a line parallel to the line of

stroke of the cam. The lever has simple harmonic motion, and one complete
oscillation of the lever is performed during two strokes of the cam. The stroke

of the cam is 5 inches. The cam works against a roller 1 inch in diameter,

whose axis is at the free end of the lever and 6 inches from the axis about
which the lever swings. Assuming that the cam has uniform motion, draw its

contour.

4. Same as Exercise 3, except that the cam has simple harmonic motion,
instead of uniform motion.

6.

Draw the profile of a cam to do the following work :—It has to lift a bar
vertically with uniform velocity, the length of the travel of the bar being (i

inches ; it then has to allow the bar to descend again with uniform velocity,

but at oue half the speed of the asoent. The two movements occupy one
revolution of the uniformly rotating cam. The diameter of the roller working
on the cam is inch, and the least thickness of metal round the cam centre
must be 2 inches. The line of stroke of the moving bar passes through the
cam centre. [B.E.]

6. Set out the form of a plane cam, rotating with uniform velocity, to give a
bar reciprocating motion of the following character. During each stroke the
bar is to have simple harmojiic motion. The out stroke is to he performed while
the cam makes one-half of a revolution, and the in stroke while the cam makes
one-third of a revolution. There are to be equal periods of rest at each end of
the stroke. Stroke of bar, 3 inches. Line of stroke, ^ inch to one side of axis of
cam. Diameter of roller which works on cam, 1 inch. Minimum distance be-
tween axis of cam and axis of roller, 2 inches. If the cam makes 30 revolutions
er minute, what is the maximum speed of the bar, in feet per minute, (a)

uring the out stroke, {b) during the in stroke ?

7. 0 is the axis about which an arm OA swings, OA=3'S inches. A is the
axis of a roller, O'o inch in diameter, carried by the arm, and this roller works
against a cam which rotates with uniform velocity, and whose axis 0 is 4 inches
from 0. The greatest and least distances of A from 0 are 3’5 inches and 1*25

inches respectively. Design the cam so that the arm shall have uniform
angular velocity when swinging, and periods of rest at each end of the swing
corresponding to one-twelfth of a revolution of the cam.

8. A cam mechanism is shown in Fig. 674. The cam C rotates uniformly
about 0, and actuates the slider S by
means of the bent lever LL. The slider

has an intermittent motion as follows

:

(a) A period of rest while the cam turns
through 150°. {b) The upward half of
a simple harmonic motion from A to B
while the cam turns tlirough the next
121°. (c) The downward half of another
simple harmonic motion while the cam
turns through 90°, Set out the true
shape of the cam profile, working to the
given dimensions and not copjnng the
diagram. tB.E-1

9. A vertical bar with a flat horizon-
tal foot (see Fig. 031, p. 397) is driven
upwards with simple harmonic motion,
and lowered with uniform acceleration,
by a cam mounted on a horizontal
shaft, and having uniform angular velocity. The up stroke of the bar is per-
formed while the cam turns through an angle of 180°, and the down stroke
while the cam turns through an angle of 90°. The bar is at rest at the bottom
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ol its stroke while the cam turns through anangle of 90“, In its lowest position
the sole of the foot of the bar is 3 inches above the axis of the cam, and the stroke
of the bar is 5 inches. Draw the outline of the cam.

10. The arm EF (Fig. 675) swings about the axis 0 through an angle of 30°.

In its lowest position the under surface of

EF is inclined at 20° to the .horizontal.

The swinging motion of EF is controlled by
a cam rotating about the axis O, the cam
being always in contact with the under sur-

face of EB'. The cam has uniform angular
velocity, and the arm has simple harmonic
motion during its upward and downward
swings. The time of each swing is one-third

of a revolution of the cam, and the arm has
equal periods of rest in its top and bottom
positions. Design the cam.

11 . Design a cam to give reciprocating

motion to a frame carrying a bobbin to be
filled with yarn to the barrel shape shown in

Fig. 676. The yarn is fed on to the bobbin at a fixed level A. There are
two cases to be considered, namely, (o) the bobbin revolves at constant speed,
and (&) the yarn is delivered at a constant rate.

[/imis.—Divide the bobbin into zones 1, 2, 3, etc.,

of equal height. Let rg, rg, etc., be the mean
external radii of these zones respectively. The
angle through which the cam turns while the zones

1, 2, 3, etc., are passing the level A are proportional

to (rj ”»’), (ra-r), (rg-r), etc., respectively in case

(a), and to (rg-r®), etc., respec-

tively in case (b)].

12. In the case shown in Fig. 643, p. 401,

where a cam works against a flat-footed follower,

show that, if the displacement of the follower is

proportional to the displacement of- the cam, the

curve of the latter is the involute of a circle.

13. Eeferring to the Hooke’s joint shown in

Fig. 657, p. 408, ^=30°, and the shaft c has a
uniform speed of 200 revolutions per minute.

Construct the angular velocity curve and also the polar angular acceleration

curve ^ for the shaft d.

14. In a single Hooke’s joint d is the acute angle between the axes of the

shafts. One of the shafts has a uniform speed. Express the fluctuation of the

speed of the other shaft as a percentage of the speed of the first for values of 6

from 0° to 50°, and plot the results.

16. In a double Hooke’s joint (Fig. 660,

p. 407) the axes of the joints in the forks of

the intermediate shaft B are wrongly placed, ^ J 11 |

being at right angles to one another instead ] jy f

of parallel. The shaft A has a uniform speed.

Express the fluctuation of the speed of the

shaft G as a percentage of the speed of A for

a number of values of 6 from 0" to 50°, and FlQ-. 677.

plot the results.

16. Hooke’s joint is frequently made with the axes of the cross not inter-

secting, as shown in Fig. 677. Examine this arrangement, and discuss its

defects.

Fig. 676.
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344. Centrifugal Force of Revolving Mass—E{
3[uivalent Mass at

Different Radius.—If a mass A (Pig. 678) of weight W be attaelied to

a straight arm OA at a distance r from an axis 0 about which the arm

revolves with an angular velocity o), the centrifugal force of A is

(Art. 31, p. 19). If the mass A be

removed and another mass B of weight

\Vj be attached to the arm at a distance

rj from tlie same axis O about which it

revolves with the same angular velocity

0
), then the centrifugal force of B is

If the centrifugal force of B

is equal to that of A, then

Woi^r W
__ _-i—

1

that is, W.r. Wr, and when this relation holds, the mass
g .<7

,

B at the radius is said to be equivalent to the mass A at the radius r.

345. Balancing one Revolving Mass by Another.—^Referring to

Fig. 678, the centrifugal force of the mass A revolving about the axis 0
causes a ten.sion in the arm OA, and this force will be transmitted to the

bearings of the axle carrying the arm. As the arm revolves the direction

of the forces on the bearings due to the centrifugal force of A will be
continually changing, with the result that serious vibrations may be set

up in the framing carrying the bearings, and through the framing the

vibrations will extend to the foundations. If, however, a mass G of

weight Wg be placed on the arm produced beyond the axis 0
,
and at

a distance from O, so that A atid C are on opposite sides of O, and if

’VVgr^ — ’Wr, then the centrifugal force of 0 will cause a pull at O equal

and opposite to the pull caused by the centrifugal force of A. The
revolving masses will then balance one another, and there will be no
straining actions on the bearings of the axle or the frame carrying them
due to the centrifugal forces.

346. Balancing any Number of Revolving Masses by means of

one Mass, all the Masses being in the same Plane of Revolution.

—

Let A, B, C, etc. (Fig. 679), be a number of masses of weights W^, Wy,
W3 ,

etc,, respectively at distances 7’^, 7
*

2 ,
etc., rosYjectively from an

axis O about which they revolve in the same plane with angular velocity

CO
;

it is required to balance these by one mass in the plane of the others.

Let W denote the weight of a mass X at a radius ?• which will

balance the given masses. The centrifugal forces of the given masses
414

g

Fig, 678.
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A, B, C, etc., are Yf-^orrjg, W2
w%

2/(7,
WgCD^rg/gf, etc., respectively, and the

centrifugal force of the mass X is Woj^^. Since is common to all

the forces, it will be

sufficient to consider the

forces as represented in

magnitude by

W2
?’
2 J

Wg^’g, etc., and
Wr. The problem evi-

dently reduces to the

simple one of finding a

force Wr which will

balance the forces

forces acting in the same plane and at the same point. This is easily

done by drawing the polygon of forces shown to the right in Fig. 679.

The closing line x gives the direction and magnitude of the force W?’.

The radius r may be chosen, and thenW=a;/r.

347. Variation in the Pressure on the Road of an Unbalanced
Rolling Wheel.—If the want of balance of a wheel carrying a load W
(including the weight of the wheel) rolling on a road is equivalent to

a weight m at a distance r from its axis, and if the angular velocity of the

wheel is <x), there will be at every instant a radial force F equal to imh'jg

acting from the centre of the wheel, and the vertical component of this

force will cause a variation in the pressure of the wheel on the road.

The greatest pressure on the road will be W + F when the centrifugal

force is acting vertically downwards, and the least pressure will be W - F
when the centrifugal force is acting vertically upwards. 'When the line

of action of the centrifugal force F makes an angle d with its position

when acting verti-

cally downwards -p--...

(Fig. 680) the ver-

tical component of

F is F cos 6, and the

pressure on the road

is thenW -f- F cos $.

Fig. 681 shows
the obvious con-

struction for draw-

ing the curve whose
ordinates represent

Fig. 680. Fig. 681.

the terra F cos 0 on a base CA, representing the distance travelled by
the centre of the wheel during half a revolution.

If F is greater than W, then once during each revolution the wheel
will rise off the road and return with a blow.

If D is tlie diameter of the wheel in feet, V the speed of the centre

of the wheel in miles per hour, then the number of revolutions made by

the wheel in one second is
5280y

ttI) X 60 X 60

44V
, and (0

,
the angular

velocity of the wheel in radians per second, i$

30tD’

2rx44Y_a8V .

BOttD 'sod'’
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348. Balancing one Eevolving Mass two Others, all the Masses
being in Separate Planes of Eevolution.—Let A be the one mass, and B
and C the other two masses (Figs. 682 and 683). Let the weights of

the masses beWj, Wg, and Wg
respectively, and let the dis- fey
tances of their centres of BST SsT T i-y ^

gravity from the axis of
T*^ , H Tg

revolution be rg, and
respectively. Also let the -4—-:pi Lp__^ ^ — —i

—

distances of the planes of — i—

C

--|—

h

revolution of A and G from j.±- ^2 Tjs ' ^

the plane of revolution of B j,
Bj~yj.JL

be a and c respectively. The
centres of gravity of fc three ^ 333^
masses must obviously he m
a plane containing the axis of revolution, and in Figs. 682 and 683 the

plane of the paper has been taken as this plane.

The centrifugal forces of the three masses A, B, and C are pro-

portional to "Wg^g, and Wgrg respectively, and the problem evidently

reduces to the balancing of three parallel forces in the same plane. The
conditions of equilibrium are, (1) for the case shown in Fig. 682,

Wpq = Wgrg + W,r„ and W,r,a = W,r,c ;

and (2) for the case shown in Fig, 683,

-f Wgrg ==
'Wgj'g, and WjrjU == WgrgC.

For each case there are therefore two equations from which two
unknown quantities may be determined.

If the planes of revolution of the masses B and 0 (Figs, 682 and 683)
be the central transverse planes of the bearings of a revolving shaft

carrying the given mass A, then when the given revolving mass is

unbalanced by other revolving masses the centrifugal forces of the masses

B and C determined as above will be the forces exerted by the bearings

on the shaft due to the centrifugal force of the mass A.

349. Balancing two or more Eevolving Masses by two Others,

the Masses being in Separate Planes of Eevolution.—Let A and B
(Fig. 685) be two given masses which have to be balanced by masses P

Fig. 684. Pig. 68C. Fig. 686.

and Q in the planes of revolution 1 and 2 respectively. Figs. 684 and
686 are face views of the planes 1 and 2 respectively, with the masses A



BALANCING 417

and B, and the arms to which they are attached projected on to them.

By the preceding Article the forces A^ and Ag acting in the planes 1 and
2 which will balance the centrifugal force of the mass A are determined.

Also by the same Article the forces Bj and Bg acting in the planes

1 and 2 which will balance the centrifugal force of the mass B are

determined. By the triangle of forces (Figs. 684 and 686) the

resultant of Aj and Bj, and Rgj the resultant of A, and Bg, are determined,

and and Rg are the centrifugal forces of the masses P and Q respec-

tively, Hence if the radii at which the masses P and Q act are fixed,

the weights of P and Q can be found.

If there are more than two given masses to be balanced the pro-

cedure is the same, but instead of the triangle of forces, the polygon of

forces will be used to find Rj and Rg.

In solving this problem it is desirable to tabulate the working, as

shown in the form below :

—

Centri-

fugal

Force
when

Distance

Balancing Forces
when

Weight
Radius.

of Mass
Mass, of Mass. from '

W r
Plane 2.

Wr X Fi^5^ F2=Wr-Fa.

A
B
C
etc.

P Wj = Rj/rj n wp-i^Ri 1 —
Q ^2 W2^2= I^2 0 Ra

Care must be taken to give the proper signs to the forces in the last

two columns. When the mass in the first column lies between planes 1

and 2, then Fj and Fg have both the same sign
;
but when either plane is

between the mass and the other plane, F^ and Fg have opposite signs.

R| and Rg are obtained from the polygon of forces in planes 1 and 2

respectively.

If the planes 1 and 2 (Fig. 685) are the central transverse planes of

the bearings of the shaft carrying the given masses, then, when these

masses are unbalanced by other revolving masses, the centrifugal forces

of the masses P and Q, determined as above, will be the forces exerted

by the bearings on the shaft due to the centrifugal forces of the given

masses. , ,

Exercises XXVIa.

1. Three masses, A, B, and G, revolve in the same plane about an axis which
cuts the plane of revolution at O, The centres of gravity of A, B, and C are 16

inches, IH inches, and 20 inches respectively from O, and the angle AOB is 90°.

The weights of A and B are 80 lbs. and 50 lbs. respectively. Find the weight
of G and the angle BOO in order that the revolving masses may balance one
another.

2. Two masses, of 10 lbs. and 20 lbs. respectivelyj are attached to a balanced
disc at an angular distance apart of 90°, and at radii 2 feet and 3 feet respec-



418 APPLIED MEOHAlsriOS

tirely. Find the resultant force on the axis when the disc is making 200 turns
per minute, and determine the angular position and magnitude of a mass placed
at 2'5 feet radius which will make the force on the axis zero at all speeds.

[Inst.C.E.]

3. A, B, and C are the centres of gravity of three masses revolving in the
same plane about a centre O in that plane, OA= 18 inches, 03= 25 inches,

OG = 15 inches, angle AOB= 90% angle BOC= 120“, The weight of the third

mass is 50 lbs. Find the weights of the first and second masses, so that the
three masses may balance.

4. A locomotive wheel 6 feet in diameter is out of. balance to the extent of

200 lbs. at a radius of 1 foot. The load on the wheel, including its own weight,
is 7 tons. What are the maximum and minimum pressures of the wheel on the
rail, in tons, when the speed of the locomotive is 60 miles per hour 1 Draw for

a complete revolution of the wheel a diagram to show the variation of the
imessure of the wheel on the rail. At what speed, in miles per hour, would the
locomotive have to run to make the minimum pressure on the rail zero ?

6.

A wheel weighing 2100 lbs. has its centre of gravityOA inch from its axis. The
wheel is mounted on a shaft which runs in two bearings 5 feet apart on opposite
sides of the wheel, one bearing being 2 feet from the plane of revolution of the
wheel. What are the forces on the bearings due to the centrifugal force of the
unbalanced wheel when the latter is making 200 revolutions per minute ? What
weight placed at a radius of 3 feet G inches in the plane of revolution of the
wheel will balance it ?

6. The crank shaft of a gas-engine carries two fly-wheels A and B, the planes
of revolution of which are 3 feet 6 inches apart. The plane of revolution of the
crank is between the wheels, and 1 foot 7 inches from the plane of revolution of

A. The crank arms and crank pin are equivalent to a weight of 108 lbs. at a
radius of 10 inches in the plane of revolution of the crank. What weights placed
at a radius of 2 feet, one on each wheel, wiE balance the crank ?

7. The centrifugal force of an overhung crank is equal to that of a weight of
644 lbs. at a radius of 1 foot. The crank shaft is supported on two bearings
6 feet apart, the one nearest to the crank being at a distance of 1 foot 6 inches
from the plane of x’evolution of the crank. Find the forces on the bearings due
to the centrifugal force of the crank when the speed of the shaft is 150 revolu-
tions per minute. What weights placed at 2 feet (5 inches radius, one in each
of two planes 2 feet G inches apart, between the bearings, and equally distant
from them, will balance the crank?

8. The following particulars relate to an ordinary inside cylinder locomotive.
There are two cranks at right angles, the left-hand crank leading. Distance
between centre lines of cylinders, 25 inches. Stroke of pistons, 24 inches.
Distance between planes of revolution of balance masses in wheels, 60 inches.
The revolving parts which have to be balanced are equivalent to 700 lbs. at the
centre of each crank pin. Find the weights of the masses aud their angular
positions in relation to the cranks to balance the revolving parts, the centres of
gravity of the balance masses being at a radius of 32 inches

9. A shaft, 10 feet span between the bearings, carries two weights of 10 lbs.

and 20 lbs. acting at the extremities of arms 1| feet and 2 feet long re.spectively,

the planes in which the weights rotate being 4 feet and 8 feet respectively from
the left-hand bearing, and the angle between the arms 60°. If the speed of
rotation be 100 revolutions per minute, find the displacing forces on the two
bearings of the machine. Moreover, if tlie weights are balanced by two addi-
tional rotating weights, each acting at a radius of 1 foot, and placed in planes
1 foot from each bearing respectively, estimate the magnitude of the two
balance weights and the angles at which they mu.st be set relative to the two
arras. [Inst.C.E.]

10. A, B, G, and D are the planes of revolution, taken in order, of four
masses connected to a shaft. The weights of the masses are 10, 16, 12, and 20
lbs. respectively, and the distances of their centres of gravity from the axis of
the .shaft are 2, 1’5, 1, and 1'26 inches re.'-pectivoly. The angular positions of
the radii from the axis to the centres of gravity of the masses with respect to a
reference radius OX are 0°, 90°, 150°, and 240° respectively. The distances of
the planes B, C, and D from the plane A are 10, 18, and 32' inches respectively.
The given masses are to be balanced by masses at 1 inch radius, one in a plane
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P inidway between A and. B, and one in a plane Q midway between C and D.

l^'ind the weights of the balancing masses and the angular positions of the
radii from the axis to their centres of gravity with respect to the reference

radius OX,
. .

11. Four masses. A, B, 0, and D, weighing 70, 90, 120, and a; lbs. respectively,

revolve about an axis-, each at a radius of 1 foot, in planes w'hich are at equal
intervals apart. Determine a; and the angular positions of B, 0, and D in rela-

tion to that of A in order that the masses may balance one another-

350. Disturbing Forces due to Acceleration of Eeciprocating

Parts.—^Consider the steam-engine mechanism shown in Fig. 687, where

the connecting-rod is of the slotted bar type, which is the equivalent of

the connecting-rod of infinite length. The resultant of the steam

pressures on the cylinder ends is a force P, which tends to move the

engine frame to the left. The
resultant of the steam pressures

on the piston is a force Q, equal

to P, which tends to move the

piston to the right.

If the piston is at rest, or

if it is moving with uniform

velocity, there will be a thrust

R on the crank pin equal to Q
and to P. If forces S and T, each equal to R, be applied to the crank

shaft in the plane of revolution of the crank pin, as shown, then R and

T will form an effort couple whose moment is the turning moment on the

shaft, and which will be balanced by the resistance couple. The reinain-

ing force S will be the thrust of the shaft on its bearings carried by

the frame. Hence the frame is pushed to the right by a force S, and

at the same time it is pushed to the left by a force P, which is equal to S;

there is therefore no tendency for the frame to move on its foundations.

If, however, the piston is increasing or decreasing in speed, the force

R, and therefore the force S, will he less or greater than P, and there

will therefore be a resultant force on the frame tending,to move it to the

loft or right. The force tending to move the frame on its foundations is

the difference between the forces P and S, and this is evidently the force

necessary to accelerate the piston, and tliis force can he determined with-

out any reference to the steam pressures within the cylinder. For the

mechanism shown in Fig. 687, if the crank shaft is rotating wdth uniform

velocity, the piston and the parts reciprocating with it have harmonic

motion. AVlieu the piston is at a distance x from the middle of its stroke,

the force in lbs, required to give the reciprocating parts the necessary

acceleration ia (Art. 269. p. 298). trhere W
gr^ g g ^

is the weight of the reciprocating parts in lbs., V the velocity of the

crank pin in feet per second, to the angular velocity of the crank in

radians per second, r the radius of the crank or half the stroke of the

piston in feet, and 9 the inclination of the crank to the line of stroke

(Fig. 687).

During the first half of a stroke the.accelerating force on the piston varies

uniformly from to zero, and acts in the -direction of the motion

of the piston. During the second half of the stroke the accelerating force

varies from zero to Wcah'lg, and acts in the opposite direction, that is, the
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accelerating force becomes negative; Tlie force tending to displace the

frame of the engine is at every instant equal and opposite to the

accelerating force on the piston. It follows that if the engine frame is

not bolted down it will oscillate backwai'ds and foinvards, making one

complete oscillation for each revolution of the crank shaft. Bolting

down the engine frame wdll not eliminate the oscillations, but will

reduce their amplitude to an amount depending on the rigidity of the

connections and the mass of the foundations.

It is important to understand that the disturbing forces on the frame,

as determined above, are independent of the way in which the reciprocat-

ing masses are driven, whether by the action of fluid pressure on the

piston, as in a steam-engine, or by a torque on the crank shaft, as in a

pump or air compressor.

351, Effect of Transferring Reciprocating Mass to Crank Pin.

—

Sup])Ose that tlie reciprocating parts which are comuicted to the crank

pin by a slotted bar connecting-rod are removed, and
that a mass C of ecpial w'eight W is placed at the

crank pin (Fig. 6S8). The centrifugal force of this

revolving mass at the crank ])in is Let

this force be represented by OA, and let OX be

the line of stroke of the reciprocating jiarts (now
removed). Draw' AB perpendicular to OX. The
force OA is equivalent to tw'o forces OB and BA acting at O, OB

being equal to — and BA equal to Itw'asshowm

iir the preceding Article that the effect of the acceleration of the recipro-

cating parts was to cause a thrust on the crank shaft in the line of

Wtoh" cos 6
stroke, the magnitude of this thrust being , Hence a mass

equal to that of the reciprocating parts, but placed at the crank pin, has

the same disturbing effect on the frame in the line of &troTce as the reci-

procating parts themselves have.

352. Changing the Direction of the Disturbing Force.—If two
masses DL) (Fig. G89) be placed on the crank arras produced so as to

balance the mass 0 referred to in the preceding Article, then at every

instant the component of the centri-

fugal force of DD in the line of stroke

will balance the component of the

centrifugal force of C in that lino.

Hence if the mass C be removed from
the crank pin, and the reciprocating

parts be again connected to it, the

thrust on the frame in the line of
strolce, due to the acceleration of the

reciprocating parts, will be entirely balanced. But the centrifugal force

of DD has a component at right angles to the line of stroke, the magni-
Wft)% sin (9

The effect of the balance w'eights DD is therefore to balance the

disturbing force in the line of stroke, and to introduce another disturb-
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ing force at riglit angles to tlie first. The second disturbing force

evidently goes through the same variations in magnitude as the Jii’st,

The first varies from Woih'jc/ at the beginning of the stroke to zero at the

middle of the stroke, and from zero at the middle it varies to -'Woh'ftj
at the end of the stroke. The second varies from zero at the beginning
of the stroke to at the middle of the stroke, and diminishes again

to zero at the end of the stroke.

If the mass of DD at crank radius, and opposite to the crank pin, as

in Fig. 689, be less than the mass of the reciprocating parts, then the
disturbing force in the line of stroke will be only partly balanced, and the
disturbing forces will now be, first, a force in the line of stroke equal to

,
and second, a force at right angles to the line of stroke

equal to
wofir sin 6

y
where xo is the combined weight of the masses DD.

i(Ks
mi

The obvious construction for finding Tl, the result-

ant disturbing force for any position of the crank,

is shown in Fig. 690, where = -x(!)M~rfg, and
r^=^xmh'lfj.

In some cases the kind of balancing just de-

scribed, where the disturbing force in the line

of stroke is entirely or partially balanced, may
be advantageous, as in locomotives, where a
liorizontal disturbing force is generally more
injurious than a vertical one, but in many other jn©. 690.

cases there would be no advantage whatever.

353. Distribution of Weight of Connecting-rod.—The part of the
connecting-rod in the neighbourhood of the craiik pin has almost pure
rotary motion with the crank pin, and the part in the neighbour-

hood of the cross-head has almost pure reciprocating motion with the
piston. If A is the centre of the cross-head end of the connecting-rod,

B the centre of the crank pin end, and C the centre of gravity of the

fSb c

Fig. 69L

whole rod, and if W is the total weight of the rod, then the usual prac-

tice is to reckon — . W as the part of the weight of the rod which is

to be credited as a revolving v/eight at the crank pin centre, and the

BC
remaining part . W is to be credited as reciprocating with the piston.

Ai>
The position of the centre of gravity of an actual connecting-rod may

be determined by balancing it in a horizontal position on a knife edge.

The values of the weights to be reckoned as revolving and reciprocating

respectively may, however, be obtained by direct weighing, as shown in
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B'ig. 601. Tlie connecting-rocl is supported on two knife edges placed

at right angles to its axis and passing through the centres of the faces

of the end brasses. One of the knife edges is placed on the platform of

a weighing machine, and the other rests on a support on the ground.

When the crank or large end of the rod is on the platform, the weight

indicated is the weight to be credited as revolving, and when the cross-

head or small end is on the platform, the ^weight indicated is the Aveight

to be credited as reciprocating.

In many cases in px'actice the weight of the part of the connecting-

rod to be credited as revolving is about two-thirds of the total weight of

the rod.

354. Balancing of Locomotives.—As regards the revolving parts

of a locomotive there is no difficulty in balancing them entirely, but the

difficultie.s in the way of completely balancing the reciprocating parts

are so great, that in practice only an approximate solution is attempted.

If the horizontal disturbing forces due to the acceleration of the reci-

procating parts be completely balanced in the manner explained in

Art. 352, tlie vertical disturbing forces introduced may be so great as to

cause serious damage to the permanent way, to the bridges, and to the

wheel tyres. As the re.sult of the extensive experience of locomotive

engineers, the practice now generally adopted is to balance all the re-

volving parts completely and two-thirds of the reciprocating parts. That
is to say, as regards the reciprocating parts, the horizontal disturbing

forces due to the acceleration of two-thirds of the reciprocating parts are

balanced by revolving masses, but it must be remembered that these

revolving masses introduced cause vertical disturbing forces equal to

those which they balance horizontally.

The balance weights, are, in practically all cases, placed between the

spokes of the wheels near the rims.

In what follows, the pistons are assumed to have harmonic motion.

355. Inside Cylinder Uncoupled Locomotives.— These engines

have two cylinders placed between the frames, and the driving axle is

cranked, the two cranks being at right angles to one another. The
important revolving weights which have to be balanced are, the crank
arms, the crank pins, and the parts of the connecting-rods, determined
as explained in Art. 353. All these should be reduced to equivalent

weights at the crank pin centres.

To the equivalent revolving weight at each crank pin centre has to

be added two-thirds of the weight of the reciprocating parts for one
cylinder. The problem is then to find the weights to be placed in the

wheels, at a given radius depending on the diameter of the wheels, in

order to balance the weights assumed to be at the crank pin centres.

This problem is a simple case of the one considered in Art. 349, but
on account of its importance the solution for this case will bo given
here.

Since all the revolving masses have the same angular velocity, the

centrifugal forces may be represented by the products of the Aveights of

these masses and the ra'dii of the respective circles - described by their

centres of gravity.

Eeferring to Fig. 692, 1 and 2 are the circles described by the centres

of gravity of the required balance weights. A is the left-hand and B
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the right-hand crank. P and Q are the centrifugal forces of the revolving

masses and two-thirds of the reciprocating masses at crank radius, as

already explained. P and Q are in general equal.

wm
2a + c'

Forces P^ and Pr,, in the planes of the circles 1 and 2 respectively,

which will balance P, are determined from the equations

P-j(2a + r) — P(a -4- c), and P2(2a + c) = Pa-

Forces Q-i
and Qg, in the planes of the circles 1 and 2 respectively,

which will balance Q, are determined from the equations

Q ^(2a -f c) = Qa, and Q2(2a + c) ~ Q(a + c).

Ki, the resultant of Pj and Q^, and resultant of Po and Qg,

can now be determined. Ri= x/(Pi + Ql), and R.^- ^(^a+Q's)-
angles 6-^ and are determined from tan 0j = Qj/Pj and tan

If P = Q, then Pj = Q2, Pg^Qj, Ri = R2, and 6)2 =

Let = weight at each crank pin, including equivalent revolving

weight and two-thirds of the reciprocating weight for one cylinder.

"VV = weight of each balance weight, r = radius of cranks. R = radius

of circles described by the centres of gravity of balance weights.

Then P = vr

WR = 9
also tan 0^

356. Outside Cylinder Uncoupled Locomotives.—These engines

have two cylinders placed outside the frames, and the two cranks, which

are at right angles to one another, arc placed at the ends of the driving

axle, which is straight. Generally the crank arms are formed in the

driving wheels.

Referring to Fig, 693, 1 and 2 are the circles described by the centres

of gravity of the required balance weights which are placed in the driving

wheels. P and Q are the centrifugal forces of the weights which are

considered as revolving at the centres of the crank pins A and B respec-

tively. The weight considered as revolving at each crank pin includes

two-thirds of the weight of the reciprocating parts for one cylinder, two-

thirds of the weight of that part of the connecting-rod which is reckoned

as reciprocating, the weight of that part of the connecting-rod which is

reckoned as revolving, and the weight of the. part of the crank pin which
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projects from tlie crank arm. S and T are tlie centrifugal forces of the

crank arms and the parts of the crank pins which they contain.

S
Porces and P^, in the planes of the circles 1 and 2 respectively,

which will balance P, are determined from the equations

Pj(c - 2a) = P(c ” a), and P
2
(c - 2a) = Pa.

Forces Q I
and Q.^, in the planes of the circles 1 and 2 respectively,

which will balance Q, are determined from the equations

Q^(c - 2a) = Qa, and Q2
(c - 2a) = Q(c - a).

Forces and S^, in the planes of the circles 1 and 2 respectively,

which will balance S, are determined from the equations

Si(c - 2a) = S(c - 2a + d), and - 2a) = Sd

Forces and Tg, in the planes of the circles 1 and 2 respectively,

which will balance T, are determined from the equations

Ti(fl - 2a) = Tri, and T
2
(c - 2a) == T(c - 2a + cf ).

Pj and Sj, Pg and Sg, and T,
, Qg and Tg, act respectively in the

same straight lines and in the same directions, as shown.

Ri= 7(Pr+S;)* + (Qi + f,?, and Ej= ./P^'3"2 + (Q. + Tj)^

tan and tan =
Jr

j
-I- Dj ^2+ I 2

If P = Q,andS = T,thenPi = Q3, Pg^Qi, S^-Tg, Sg-T,, E,=E.„
and = ^g.

Using the same notation as for inside cylinder engines, with in addition
i:6'(.= the weight of one crank arm and the part of the crank pin which it

contains, reduced to crank radius, then P = wr, P^ = _)
, ,

S-,v, T,.
^ c - 2a ’ ^

w^rd

C“ 2a
’

and E;^ =WE= ~ a) + wlc - 2a + d)}^ + {wa + lo^d ^,

: wa+Wcd
w{c -n a) + wJ^G - 2a+ (i)

*
also, tan 6^
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357. Coupled Locomotives.—In order to increase the adhesion or

resistance to slipping, and thus enable a larger tractive force to be
utilised, two or more pairs of wheels of a locomotive may be coupled
together. The coupling together of two wheels is effected by a coupling-

rod connecting the crank pins on two equal cranks, formed one in each,

wheel. The cranks may, however, be separate from the wheels and be
fixed to the axles. It is obvious that coupled wheels must be of the

same diameter.

So far as the coupling-rods affect the balancing of the engine they

behave exactly as revolving weights at their crank pins, the amount of

weight at any one crank pin being equal to the portion of tlie weight of

the rod supported by that pin. Hence the coupling-rods with their

cranks and crank pins maybe completely balanced in the manner ex-

plained in Art. 349 by weights in the wheels. In the case of driving

wheels, the balance weights for the coupling-rod cranks, with their pins

and the weights of the coupling-rods carried by them, may be combined
with the balance weights determined, as in the two preceding Articles,

and resultant balance weights found. The resultant balance weights on
the driving wheels of a coupled engine may, however, be obtained directly

by simply including in the planes 1 and 2 (Figs. 692 and 693) the forces

which will balance the centrifugal forces of the coupling-rod cranks, crank

pins, and the weights of the coupling-rods which they carry.

Fig. 694 shoAvs the arrangement of the various cranks in an inside

cylinder engine with two pairs of wheels coupled. It will be observed

that the cranks connected by the coupling-rod CD are at right angles to

the cranks connected by the coupling-rod EF, also the crank pins C and E
are opposite to the main crank pins A and B respectively.

In the case of an outside cylinder coupled engine (Fig. 695), the

driving cranks serve also as coupling-rod cranks, each crank pin on these

cranks being long enough to carry a connecting-rod end and a coupling-

rod end. Here also the cranks on one side of the engine are at right

angles to those on the other side.

The coupling-rod cranks on an inside cylinder engine may be, and

generally arc, shorter than the driving cranks, but on outside cylinder

engines all the cranks are of the same radius.

358. Balancing Reciprocating Parts in Coupled Locomotives.

—

The reciprocating parts to be balanced in a coupled engine may be

balanced in the' driving wheels, or .this balancing may be distributed

amongst all the coupled wheels. All that is necessary is to consider each

axle as a dri\dng axle, with imaginary cranks parallel to the respective

cranks on the real driving axle, the imaginary crank pins on, a particular
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axle oarryiiig revolving masses equal to the portions of the reciprocating

masses to he balanced in the wheels of that axle. The revolving masses

of the imaginary cranks are of course neglected.

Another way of proceeding is to find the separate masses necessary in

the driving wheels to balance the reciprocating masses which are to be

balanced and then divide these uj) into parts, which are placed in similar

positions in the various wheels. For example, if A| and (Fig. 696)
are the masses in the left-hand and right-hand driving wheels respectively

whicli will balance, say, two-thirds of

the reciprocating masses, and if equal

portions of A-j and Bj be transferred

to Ag and Bg in the left-hand and
right-hand coupled trailing wheels, the

radii from Ag and Bg being equal and
parallel to the radii from A^ and Bj

‘

respectively, then this new distribution

of balance weights -will have the same effect horizontally in balancing

the reciprocating parts, but vertically there will now be a less variation in

the pressure on the rails per wheel. The balance weights thus found in

the wheels to balance the reciprocating parts are then combined with the

balance weights for the revolving masses, and the resultant balance weights

determined.

359. Complete Balancing of Reciprocating Parts having Harmonic
Motion.—:Iu Art. 351 it was shown that the disturbing forces due to

the acceleration of the reciprocating parts are the same as those produced
in the line of stroke by a revolving mass equal to that of the recipro-

cating parts concentrated at the crank pin, but this revolving mass
produces equal disturbing forces at right angles to the line of stroke.

Now suppose a number of sets of reciprocating masses to be connected

to the same number of cranks on a shaft. Next suppose that these re-

ciprocating masses are removed, and masses equal to them are concentrated

at their respective crank pins. The disturbing forces in the various lines

of stroke will now be the same as before, but if the various imaginary

revolving masses at the crank pins be of such magnitudes, and if their

relative positions be such that they balance one another, then it is obvious

that not only will the disturbing forces in the lines of stroke balance one

another, but the disturbing forces in the directions at right angles to the

lines of stroke will also balance one another.

The problem of the complete balancing of reciprocating masses there-

fore reduces to that of balancing a number of revolving masses, a problem
which was discussed in Art. 349. It must, however, be remembered that the

revolving masses now being considered are imaginary, and that recipro-

cating masses can only be completely balanced by other reciprocating masses.

A few cases will now be considered in illustration of the foregoing.

First, take the case of a single-cylinder engine (Fig. 697), the piston

being connected 'to a crank pin A. revolving in a circle of radius r. Let
B and 0 be two other crank pins revolving in circles of radii /q and r^

respectively, the planes of revolution of these pins being at distances

h and c respectively from the plane of revolution of the crank pin A.
Let w be the weight of the reciprocating masses connected to the crank
pin A. Then, if the crank j)ms B and C be in the same plane with the
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craulc pill A and the axis of the shaft, and if B and C are on the opposite

side of the axis to A, revolving masses of weights and v\, placed at

B and C respectively will balance a revolving

mass of weight to at A if w^i\ih + c)~wrc,
~iorh.

Hence if reciprocating masses I) and E
of weights io^ and lOo respectively be connected

to the crank pins B and G, as shown, the

reciprocating masses D and E will completely

balance the reciprocating masses connected to

the crank pin A. Beciprocating masses, such

as D and E, introduced to balance other re-

ciprocating masses are called bob-weights,

.

and
they serve no other purpose than that of

balancing. Instead of the masses D and E,

which are useless except for balancing purposes,

two additional cylinders might be introduced,

and the reciprocating parts belonging to these

cylinders would take the place of the bob-

weights, and the reciprocating parts of this three-cylinder engine would
then completely balance one another.

If the stroke of the bob-weights is small, they may lie driven by
eccentrics instead of ordinary cranks. The weights and w,, of the

bob-weights must of course include the weights of the reciprocating

parts connected to them.

As a second illustration, consider a three-cylinder engine with three

cranks at definite angles apart, say, 120® each. A, B, and C (Fig. 698)
are the three crank pins, and it is required to balance the reciprocating

parts by bob-weights driven by cranks or eccentrics on the crank shaft in

the planes 1 and 2.

Imagine masses equal to the reciprocating masses to be concentrated

at their respective crank pins. The centrifugal force of the mass at A is

balanced by forces Aj and Ag in the planes 1 and 2 respectively, and
these forces are determined as in Art. 348, p. 416. In like manner
forces B^ and B^, and C.^, which will balance the centrifugal forces of

the masses at B and 0, are determined. the resultant of A^, B;^, and

0;,, also the resultant of A^, Bg, and C^, are determined by the

polygons of forces shown. A crank pin d at radius in plane 1, and a

crank pin e at radius in plane 2, will be the drivers for gIic required



428 APPLIED MEOHANIOS

Iwlvweiglits, If tCj and n\2 are the weights of the bol>weights, including

the weights of the reeipi’ocating parts connected to them, then =
a,nd — the various centrifugal forces being represented by the

[iroducts of weight and radius,

A four-tsylinder engine with four cranks is one that lends itself to

(^OInplete balancing of the reciprocating parts without the addition of

balance weights. The quantities to be considered are : first, the ratios (jf

the weights of the four sets of reciprocating parts to that of one of them

(3 (piantities)
;

second, the ratios of tlu; distauc<3s between the centre

lines of the cylinders to one of the distances (3 quantities)
;

third, the

angles lietwoen the cranks (3 quantities) ; in all 9 (juantitics, and if any

5 of these be given, the other 4 can be found.

In this Article reciprocating masses only have been referred to.

Eevolving masses, including any cranks or eccentrics introduced to drive

bob-weights, must be balanced separately by other revolving masses.

Exercises XXVIb.

1. The reciprocating part.s of a single cylinder horizontal steam-engine weigh
200 lbs., and tlie remaining parts of the engine weigh 6400 lbs. The stroke of

the piston is 1(1 inches, and the crank shaft makes 600 revolutions per minute.
Assuming that the engine is not holl.ed down, but is free to oscillate, find the
amplitude of the oscillations, and the magnitude of tlie disfilacing force at the
end of each oscillation. Assume that the reciprocating parts have harmonic
motion.

2. After the engine of the preceding exercise is bolted down, suppose that it

is found that a force of 2000 lbs., applied to the crank shaft in the line of stroke,

displaces the engine frame O’OOl inch, and that the displacement up to five times
this amount is proportional to the displacing force. Assuming that all the yield

takes place between the frame and the foundations, what will now be the
amplitude of the oscilla.tions of the engine frame ?

3. A connecting-rod, 6 feet 2 inches long between centres, was found to

balance in a horizontal position on a knife edge placed at 24| inches from the
large end centre. When a weight of 14 lbs. was placed at the small end centre,

it was found that the whole balanced in a horizontal position on a knife edge
placed at 2GJ inches from the large end centre. Find the weight of the rod and
the weights of the parts which should be credited as revolving and reciprocating
respectively,

4. Find the balance weights at crank radius, in order to balance all the
revolving masses and two-thirds of the reciprocating masses of an inside single
locomotive, having given the following data. Cranks at right angles, left-hand
crank leading. Distance centre to centre of cylinders, 2 feek Distance between
pianos containing mass centres of balance weights, 5 feet. Mass of reciprocating
parts per cylinder, reduced to crank radius, 600 Ihs. Mass of revolving parts
per cylinder, reduced to crank radius, 700 lbs. [Inst.C.E.]

6. The recii)rocating parts of a» inside cylinder uncoupled locomotive weigh
660 lbs. per cylinder. The revolving parts are equivalent to 650 lbs. per
cylinder at crank pin. The stroke of the pistons is 24 inches, and the distance
between the centre lines of the cylinders is 25 inches. Find the balance weights
which must be placed in the driving wheels at 2 feet 6 inches radius, their
planes of revolution being 6 feet apart, in order to balance the whole of the
revolving parts and two-thirds of the reciprocating parts. Cranks at right
angles, left-hand crank leading.

6. The following particulars relate to an outside cylinder uncoupled loco-
motive. Stroke of pistons, 26 inches. Length of connecting-rod, 78 inches.
Distance of centre of gravity of connecting-rod from centre of large end, 26
inches. Weight of connecting-rod, 450 lbs. Weight of reciprocating parts per
cylinder, 400 lbs. Equivalent weight of one crank arm and the portion of the
crank pin within it, 130 lbs. at 13 inches radius. Weight of one overhanging
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crank pin, SO lbs. Distance between centre lines of cylinders, 74 inc.he.'-'.

Distance between planes containing centres of gravity of balance widglU.s,

no inches. Distance betw'een planes containing centres of gravity of crank
arms, (52 indies. Determine the balance weights to be placed in the driving

wheels at 3 feet radius. All the revolving parts and two-thirds of the recipro-

cating parts are to be balanced.

7. Take the data of Exercise 5 as applying to an inside cylinder engine with two
pairs of wheels coupled, together with the following additional data. Radius of

wheel cranks, 11 inches. Distance between planes of motion of couiiling-rods,

G feet 3 inches. Distance between planes of rotation of wheel cranks, 5 feet

2 inches. Weight of each coupling-rod, 270 lbs. Weight of each wheel crank,

including the weight of the portion of the crank pin within it, reduced to .

11 inches radius, 120 lbs. Weight of each overhanging crank pin, 30 lbs.

Determine the balance weights in. the driving and trailing wheels, at 2 feet

6 inches radius, to balance all the revolving parts and two-thirds of the recipro-

cating parts, one-third of the reciprocating masses being balanced in the
driving wheels, and one-third in the trailing wheels.

8. Determine, from the following data, the balance weights for an outside
cylinder locomotive with two pairs of wheels coupled. Stroke of pisi.ons, 2(5

inches. Distance between centre lines of cylinders, 7a inches. Distance be-

tween planes of motion of coupling-rods, 67 inches. Distance between planes of

revolution of balance weights, 60 inches. Distance between planes of revolution

of cranks, 60 inches. Weight of reciprocating parts per cylinder, 350 lbs.

Weight of one connecting-rod, 225 lbs. One-third of weight of connecting-rod
to be considered as reciprocating with cross-head and two-thirds as revolving

with crank pin. Weight of one coupling-rod, 230 lbs. Weight of one crank pin

within coupling-rod, 15 lbs. Weight of one crank pin within connecting-rod,

12 lbs. Weight of one crank with part of crank pin within it, reduced to 13

inches radius, 90 lbs. Centres of gravity of balance weights at 26 inche..s radius

in driving wheels and 271- inches in trailing wheels. All the revolving and two-
thirds of the reciprocating parts to be balanced, the balance for the reciprocating

parts to be in the di'iving wheels only.

9. Find the difference between the maximum and minimum pressures on the

rail of a driving wheel of the engine in Exercise 7 when the speed is 60 miles per
hour, the diameter of the wheel being 7 feet.

10. Calculate the difference between the maximum and minimum pressures

on the rail of a driving wheel of the engine in Exercise 8 when the speed is

50 miles per hour, the diameter of the wheel being 6 feet 1 inch.

11. The pisf;ou of a single cylinder direct-acting engine has a stroke of

2 feet. The weight of the reciprocating parts is 300 lbs., and these parts are to

be balanced by two bob-weights driven by cranks of 6 inches radius. The lines

of stroke of the bob-weights are 5 feet apart, and the line of stroke of the
piston is between the lines of stroke of the bob-weights and 2 feet from one of

them. Determine the weights of the bob-weights.
12. A, B, and C are the jparallol lines of stroke of the pistons of a three-

cylinder engine. 13 is between A and C, and is 26 inches from A and 30 inches
from C. Each piston has a stroke of 24 inches. The reciprocating parts in the
line A weigh 210 lbs. Find the weights of the reciprocating parts in the lines

B aTid 0, and show how the cranks must be placed so that the reciprocating parts

of the engine may balance one another.
13. The diagram (Fig. 699) shows the crank shaft of a three-cylinder triple

expansion engine for a torpedo boat. The cranks make equal angles with one

Fl«. 699.

amotlier. The reciprocating parts connected to the- crank pins A, B, and 0
weigh 150 lbs., 160 lbs., and 260 lbs. respectively, and they are to be balanced
by bob-weights in the planes X and Y. The one, bob-weight in the lAane X has
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j I stroke of 4 indies, ;ind the other in plane Y has a siiroke of 5 inches. The
TK)b-\veiglit.s are driven by eccentrics on the crank shaft. Determine the vreight.s

of the bob-weights and the angular positions of their eccentrics.

14. A, B, G, and T) are tlie parallel centre lines of the cylinders of a, four-

cylinder engine, taken in order. The distances between A and B, B and G, and
G and D are 5, 7, and (i feet respectively. The angle between the cranks of the

first two cylinders is 150°, and the reciprocating parts connected to them weigh
;1500 and 4800 lbs. respectively. Find the weights of the reciprocating parts of

the third and fourth cylinders and the angular positions of their cranks in order
that the reciprocating parts may balance one another completely. The first

crank (A) leads. All the pistons have the same stroke. Assume that the pistons

have harmonic motion.



CHAPTER XXVII

HYDROSTATICS

360. Huids.—Fluids are of two kinds, Liquids and Gases. A fluid

is not capable of resisting change of shape or volume unless it is con-

strained by the sides of a vessel surrounding it.

For instance, if a cylinder (Fig. 700), closed at one

end and fitted with a frictionless piston, have the

space between the piston and the closed end of the

cylinder full of fluid, the piston will support a

force F tending to push it further into the cylinder, „ „ ....

but if a hole be made in the side of the cylinder

(Fig. 701), a force P, however small, will be sufficient to push the piston

in and cause the escape of the fluid through the hole.

If a definite volume of a liquid be placed in a vessel of greater volume

the liquid will only occupy a portion of the vessel equal to the original

volume of the liquid, but if a quantity of a gas, however small, be

introduced into a vessel, however large, it will expand and fill the whole

of the vessel.

A liquid when confined, as in Fig. 700, offers a very great resistance

to decrease in volume
;
in fact, for the purposes of the engineer, a liquid

can in general be taken as incompressible. Water, for example, loses

0'007 of its original volume for each ton of pressure per square inch

applied to it, and the compressibility of mercury is only about one-tenth

that of water. A gas, on the other hand, is, within certain wide limits,

readily compressible.

A fluid is said to be more fluid or more like a perfect fluid the less

the friction of its particles on one another, or the less the resistance which

it offers to a body moving through it. A fluid is said to be more viscous

tlie greater the friction of its particles on one another, or the greater the

resistance which it offers to a body moving through it. The viscosity of

. a fluid does not affect its equilibrium, but it does affect its motion.

The branch of mechanics which treats of the equilibrium of fluids and

the forces acting on them when at rest is called hydrostatics. That part

of hydrostatics which deals with gases is called pneumatics.

361. Direction of Fluid Pressure on a Surface.—The pressure of

a fluid on a surface is perpendicular to that surface at

every point (Fig. 702). This is true for viscous as well

as for non-viscous fluids at rest. A viscous fluid in

motion exerts a slight tangential force on a surface over

which it is moving, and the pressure of the fluid on

the surface will therefore not be perpendicular to the

surface in this case. Fiu* 703.

'
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362. Transmission of Pressure.—If a fluid at rest have any pressure

applied to any part of its surface, tliat pressure is transniitled e(jua,l]y

to all parts of the fluid. Eor example, if the vessel

shown in Fig. 703 be -full of water or air, and if

it has attached to its sides equal cylinders fitted wdth'

frictionless jiistons, which are kept at rest by suit-

able forces, any additional force apjflied to one of

the pistons will i-equire that an equal additional force

be ajiplied to each of the other pistons to keep them
at rest.

It follows from this that if one of the cylinders be enlarged until the

piston which fits it has double the area, this piston will require double

the force to keep it in equilibrium against the fluid

pressure, and generally if a is the area of one piston

and q the force pushing it in, and if A is the area

of another piston and Q the force pushing it in, then

for eipiilibriuin a/A = f//Q. This is the principle of

the hydraulic press (Fig. 704), in which a compara-

tively small force P acting on a small piston or

plunger is able to balance a largo force W on a large piston or ram.

363. Pressure at any Point of a Liquid due to its Weight.—Let A
(Fig. 705) be a very small horizontal disc of area a immersed in a liquid

at a vertical depth h below its free surface. The pressure

of the liquid on the top of the disc will not be altered if a

cylindrical tube, open at both ends, and having an internal

diameter equal to that of the disc A, be placed over it in a

vertical position, as shown. This tube above the level of the

disc contains a cylindrical column of liquid whose volume is

ah and whose weight is ahw, where w is the weight of a unit

of volume of the liquid. If the liquid surrounding the tube

AB be removed, the pressure on the upper surface of the disc A will not
be altered, because the pressure of the surrounding liquid on the tube is

horizontal, the sides of the tube being vertical, and therefore self-

balancing. The load on the top of the disc is now ahii\ and the

pressure per unit of area is dfmla = liw=p, wdiich shows that at any
pmint in a liquid the intensity of the pressure due to the weight
of the liquid is directly proportional to its depth below the free surface

of the liquid;

If the area a be in square feet, the height h in feet, and lo the weight
of 1 cubic foot of the liquid, then hv) will be the pressure per square

foot at the depth h. The depth li is called the head of liquid at A, and
the head is evidently a measure of the pressure.

364. Total Pressure on a Plane Horizontal Surface Immersed in a
Liquid.—From the preceding Article it follows that the total pressure on
a plane horizontal sirrface due to the weight of a liquid in which it is

immersed is equal to the weight of a right prism of the liquid, whose base

is the given surface, and whose height is the depth of the surface below
the free surface of the liquid,

365. Total Pressure on a Plane Inclined Surface Immersed in a
Liquid.—Let MN (Fig. 706) be a plane inclined surface immersed in a
liquid, and let the surface

,

be divided into a large number of narrow

Fia. 704.

Fto. 708.
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Fia. 706,

hol’izoutal strips, of which EF is one. Let y be the depth of the strip EF
Ix'low the free surface of the liquid, and let a denote the true area of the

strip. By Art. 363 the intensity of the

pressure at the depth y is wy, and there-
~ ~

fore the total pressure on the strip EF
is wya, and the total pressure on the

whole surface MH will be the sum of all

the jn-essures on the separate strips, and

will therefore be, equal to "^loya or wHya.

But by a property of the centre of gravity

of a surface ^ya = hA, where h is the

dejith of the centre of gravity of the surface below the free surface of the

liquid, and A is the true area of the surface. Hence the total pressure

on the surface MN is W’AA. But iohA is the weight of a right prism of

the liquid, whose base is the given surface, and whose height is the depth

of the centre of gravity of the surface below the free surface of the

liquid.

366. Artificial Head.—In the three preceding Articles the effect of

any external pressure on the free surface of the liquid has been neglected.

If the free surface of the liquid is exposed to the atmosphere, or to steam,

as in a boiler, or if it support a loaded piston in a cylinder, then the

pressure on the free surface will be transmitted to the surface immersed

in the liquid. Letjpi^ be the intensity of the pressure due to the weight

of the liquid at a depth Aj, below its free surface. Let
y-i

he the intensity

of the external pressure on the free surface of the liquid, and let be

the head of liquid, which, by its weight, would cause a pressure of

intensity p^. Also, let p be the intensity of the total pressure at the

depth and lastly, let li be the head of liquid which, by its weight,

would cause a pressure of intensity p. Then p =^Py +p^^ and since 7i ---^5

U. and 7i., it follows that li = /q + h,. The head A,, which is the
^

^ tv ‘'to "
.

head of liquid equivalent to the external pressure, may be called the

artificial head.

367. Resultant of Pressure.—If a surface be exposed to pressure,

either uniform or varying, the single force, acting at a point on the

surface, w’hich will produce the same effect on the surface as a Avhole as

the pressure over the surface, is called the resultant of the pressure. The

magnitude of this resultant is, for plane surfaces, the same as wdiat has

been called the total pressure in preceding Articles.

368. Centre of Pressure—If a surface be exposed to pressure,

either uniform or varying, the point on the surface at which the

resultant of the pressure acts is called the centre of pressure. In

w^hat follows, the surfaces exposed to pressure will be assumed to be

plane surfaces.

If the pressure is uniform over the surface, the centre of pressure is

obviously at the centre of gravity of the surface.

The other important case is where the pressure varies uniformly in

one direction, and is uniform in a direction at right angles to this as

when an inclined surface is immersed in a liq^uid.



Let MN (Fig- 707) be a plane surface immersed in a liquid, and let

the straight line in -u-hich the plane of the surface intersects the free

surface of the liquid be taken as
. _ ____

the axis about which luonieuts are

to be taken, in what follows this N—
axis will be referred to as the '

'

axis. Oonsider a narrow hori- ^
zoutal strip EF which is at a 'v n.

distance x from the axis, and let view. ^ edge view.

a be the true area of this strip.

The total pre.ssure on the strip EF is

wax sin 0, Avhere -?/; is the weight of a unit of volume of the liquid, and 0

is the inclination of the surface MN to' the horizontal. The moment of

the total pressure on EF about the axis is waxx sin 9, and the sum of all

such quantities for the Avhole area of the given surface is sin 6, or

i0'mi9'2ax^, and this must be equal to the moment of the resultant

pressure about the axis.

The magnitude of the resultant pressure on the whole area is

wkx-Q sin 9, where A is the true area of the given surface, and iTq the

distance of its centre of gravity from the axis. If x is the distance of the

centre of ])ressure from the axis, then

^
xwAxq sin 9 — ^o sin B1ax“, therefore »;= •

But lax- is the moment of inertia of the surface about the axis
;
calling

this I., 3;= i.
If the moment of inertia of the surface about an axis parallel to the

above-mentioned axis, and passing through the centre of gravity of the

surface, be denoted by I, then (Art. 68) since Iq = I + Ar^j,

ai = + = AF+ Aa
;f, ^ Jf^ + x-

' Axq Axq «o
’

where /c is the radius of gyration of the surface referred to the axis

through its centre of gravity.

The foregoing demonstration shows that the position of the centre of

pressure is independent of the inclination of the immersed surface if the

distances of the various points of the surface from the free surface of the

liquid measured in the 'plane of the. surface remain unaltered.

The depth of the centre of pressure below the free surface of the

liquid is obviously iS sin 6*.

As to the lateral position of the centre of pressure
;

if the locus of

the middle points of the horizontal lines which can be drawn on the

surface is a straight line, this line will obviously contain the centre of

pressure, and in practically all cases where the centre of pressure is

required in practice, the surface satisfies this condition.

369, Examples of Centre of Pressure.—The following are the cases

of most frequent occurrence in practice. In the illustrations, c is the

centre of pressure in each case. The distances d, \ and x are measured
in the plane of the figure or surface.

Fig. 708. A rectangle or parallelogram, with its highest side below
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and parallel to the surface of the liquid, c is in the lino which bisects

the hori/iontal sides of the rectangle dr parallelogram.

_ 2/d7i“ + + Tf 7i —. n - _2//

Fig. 709. A triangle with its base below and parallel to the surface

of the liquid, the vertex being below the base.,

the vertex and the middle point of the base.

6A2 +4M + C72

67i + 2d7
’

Fig. 710. A triangle with its base parallel to the surface of the

liquid, the vertex being above the base and below the surface of the

liquid, c is in the line joining the vertex with the middle point of the

6A2 + 87iri + 3f72

<o}i +U *

Fig. 711, A circle entirely immersed, its centre being at a distance

h from the surface of the liquid.

I TJ: I ... .
^

'

16A*

370. Resultant Pressure on a Body Immersed in a Liquid.—It is

evident that the horizontal components of the pressures on the surface

of the immersed body balance one another, there being no tendency to

move the body horizontally, and the resultant pressure must therefore act

vertically.

Suppose the body to be divided into a large number of vertical prisms,

of which AB (Fig. 712), having a horizontal sectional area a, is one. Let

the upper end of AB be at a depth 7ij^, and the lower

end at a depth 7i^ below the free surface of the liquid,

and let lo be the weight of a unit of volume of the liquid.

The downward force exerted by the liquid on the top of

AB is and the upward force exerted by the liquid

on the bottom of AB is wah.^. Hence the resultant

upward force on AB is waOi^-Ti^, and this is the

weight of a volume of liquid equal to the volume of

AB. This result will be true for each of the prisms

into which the body is divided; hence. the resultant pressure of the liquid

on the body is an upward force equal to the weight of a volume of the

liquid equal to the volume of the body.

Stating the foregoing result in another way ; if the body is weighed
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while it is immersed in the liquid, its loss of weight is equal to the weight
of the liquid which it displaces.

371. Floating Bodies.—A consequence of the result of the preceding

Article is that when a body floats in a liquid the weight of the body is

equal to the weight of the liquid which it displaces. Another obvious

.result is that when the floating body is at rest, the straight line which
joins the centre of gravity of the body and the centre of gravity of the

displaced liquid is vertical. The centre of gravity of the displaced liquid

is called the centre of tmoyancy. The resultant fluid pressure on the

body acts vertically upwards in a line through the centre of buoyancy.

Fig. 713 shows a floating body slightly displaced from its position

of equilibrium. CG is the line joining the centre of buoyancy and the

centre of gravity of the body when the body is in

its position of equilibrium. G' is the new position

of the centre of buoyancy. The body is now under

the action of two vertical forces, each equal to the

weight of the body, one acting downwards through

G, and the other upwards through O'. If the vertical

line through C' meets the line CG or that line pro-

duced at M, the point M is called the metacentre of

the floating body. The equilibrium of the floating body is evidently

more stable the higher the point M is above G, the centre of gravity of

the body, and the equilibrium is unstable when M is below G.

372. Weight of Water.—The weight of a cubic foot of water varies

with the temperature, as shown in the following table :

—

Temp. Cent. 0” 4° 16*67° 40“ 60“ 80°
,

100°

„ Fahr. . . 32“ 39*2° 62“ 104“ 140° 176“ 212°

Weight in lbs. of 1 cubic foot 62 -.34 62*35 62*28 61*87 61*31 60*r>9 69*76

The above weights are for pure distilled water free from air.

At the temperature 62° Fahr., and the barometer at 30 inches, a cubic

foot of distilled vvater, freed from air, weighs 0*046 lb. more than when
nearly saturated with air.

A gallon of water at 62° Fahr. weighs 10 lbs.

Exercises XXVII.

1. Referring to Pig. 704, p. 432, if the diameter of the larger piston i.s 12
inches, and the diameter of the other is 14 inches, what is the force W when P
is 150 lbs. ?

2. A vertical tube 3 feet long, and having an internal diameter of 1 inch, is

filled with equal volumes of water and mercury. Assuming that the weight of
the mercury is 13*66 times the weight of the water, calculate the pressure in
lbs. per square inch at the bottom of the tube due to the head of liquid. Also,
what is the weight of water in the tube t

3. What pressure, in lbs. per square inch, corresponds to 160 feet head of
water, and what head of water, in feet, corresponds to a pressure of ISO lbs. per
square inch ?

4. Peed water is pumped into a boiler from a tank. Just before starting the
feed-pump the levels of the water in the boiler and tank are 38*5 inches and

Pia. 713.
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23-7 inches respectively above the floor level, and when the pump is stopped

these levels have changed to 39-4 inches and 17 *4 inches respectively above the

floor level. A change of 1 inch in the level of the water in the tank corresponds

to a change of 19-3 lbs. of water in the contents of the tank. The mean gauge
pressure of the steam in the boiler while the pump is at work is 80 lbs. per

square inch. Neglecting friction, find the number of ft.-lbs. of work done by
the feed-pump.

6.

A tank of the form of a right circular cylinder 7 feet in diameter lies with

its axis horizontal. Find the total pressure on one end when the tank is full of

water.

6. A lock gate is 35 feet wide, and the heights of the water above the bottom
of the gate on the two sides are 26 and 13 feet respectively. Find the resultant

pressure and the height, measured from the bottom of the gate, at which it

acts, the weight of the water per cubic foot being 64 lbs. [Inst.O.E.]

7. The width of a lock is 12 feet, and that of each gate feet. If the

height of the water be 10 feet inside the lock and 4 feet outside, find the re-

sultant fluid pressure on each gate, and also the pressure (as.sumed to be acting
symmetrically) between the two gates. [Inst.O.E.j

8. A box in the form of a cube, of internal dimensions 1 foot, has its base
horizontal, and is half-filled with water. One vertical side is kept in its position

by four screws only, one at each angular point. Find the tensions in these

screws due to the water pressure. [InstC.E.]

9. In the vertical side of a tank there is a rectangular opening 2 feet high

and 1 foot wide, the shorter sides being horizontal. This opening is covered by
a door held by two bolts placed in the middle of the width, one 13|' inches

above and the other 13-|- inches below the centre of the door. When water
stands in the tank at alevel of 10 feet above the centre of the door, what are

the tensions in the top and bottom bolts ? What would be the best positions

for the two bolts so that they may be subjected to the same tension, and what
would then be the tension in each bolt 1

10. A vertical wall, 2 feet thick and 18 feet high, weighing 124 lbs. per

cubic foot, suppoiiis the pressure of water on one side. How high may the

water rise without causing the resultant force on the base of the wall to pass

more than 8 inches from the middle of the wall’s width? [Inst.C.E.]

11. An opening in a reservoir dam is closed by a plate 3 feet square, which
is hinged at the upper horizontal edge

;
the plate is inclined at an angle of 60°

to the horizontal, and its top edge is 12 feet below the surface of the water. If

this plate is opened by means of a chain attached to the centre of the lower

edge, find the necessary pull in the chain if its line of action makes an angle of

45“ with the plate. The weight of the plate is 400 lbs. [XJ.L.]

. 12. A dock entrance, whose level floor is 24 feet below the water, has a width
of 62 feet at the water level and 50 feet at the floor, the side walls being built

with a straight batter. The entrance is closed by a caisson, and on one side of

the caisson the floor is dry. Calculate the total horizontal pressure upon the

caisson, and the height of its centre of action above the floor. Take weight of

water as 64 lbs. per cubic foot. [Inst.C.E.]

13. A vessel of water is weighed on a parcel spring-balance, the reading of

which shows that the vessel and water weigh 11 lbs. A 7 lb. iron weight is

suspended by a fine wire from the hook of an ordinary spring-balance, and is

lowered into the water until it is completely immersed. Under these conditions

find (i.) the reading of the spring-balance from which the weight is suspended,

(ii.) the reading of the parcel spring-balance on which the vessel stands. Give
the reasons for any change in the readings of the balances. (Specific gravity of

iron=7-5.) [Inst.C.E.]

14. A rectangular wooden barge, without a deck, is 20 feet long, 1 1 feet

wide, and 3 feet deep, outside measurements, and the sides, ends, and bottom
have a uniform thickness of 3- inches. Taking the weight of the wood at 50 lbs.

per cubic foot, determine the position of the water line when the empty barge

floats in water weighing 63 lbs. per ctibio foot. What load, in tons, will this

barge carry when the water-line is 2 feet from, the bottom ?

' 16. If the area of the horizontal section of a ship at the water line is 15,000

.square feet, and the sides are vertical wkere they cut the water, find the extra

depth the ship will sink when loaded ih freshwater with 750 tons of cargo.
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Wliat depth would the ship sink if floating in salt water of specific gravity 1’026

when loading ? [Inst.C.E.]

16. A steamer loading 25 tons to the inch in fresh water dock is found after

ten days’ voyage, burning 52 tons of coal a day, to have risen 25 inches in sea
water. Determine the ' &splacement in tons, taking 35 and
36 cubic feet per ton as the specific volumes of salt and fresh
water respectively. [U.L.]

17. If a uniform triangular prism floats freely in water with
one edge on the surface (Fig. 714), prove that the opposite face
must be vertical. [Inst.C.E.]

18. A cube, edges 5 feet long, floats in vrater with half its

volume immersed, the bottom face being horizontal. The
centre of gravity of the cube is 20 inches below its geometrical
centre in a vertical line through it. A weight equal to one-fiftieth part of the
weight of the cube is placed at the middle point of one of the top edges of
the cube. Determine the angle through which the cube will tilt under the
additional weight.

Fig. 714.



CHAPTER XXYIII

GENERAL PRINCIPLES OF HYDRAULICS

373. Energy of Water—Bernoulli’s Theorem.—In connection -witii

hydraulics, the total energy in a given quantity of water consists of three

parts
: (1) The potential en&i'gy, or the energy due to the height through

which it may fall, or the energy due to its position
; (2) the pressure

energy, or the energy due to the pressure which the water exerts on the

sides of the containing vessel or pipe; (3) the kinetio energy, or the

energy due to its motion.

In what follows, the energy of one pound weight of the water will he

considered.

(1) The potential energy of 1 lb, of water which is capable of falling

through a height of A feet is h foot-pounds.

(2) The pressure energy of 1 lb. of
,
water which exerts a pressure of

P lbs. per square foot is P/w.», where v) is the weight of a cubic foot of

the water, Por if 1 cubic foot of water be admitted into a cylinder

,
which is fitted with a piston having an area of 1 square foot, then the

piston will move through a distance of 1 foot
;
and if the Avater exerts all

the time a pressure of P lbs. per square foot, the work done by the cubic

foot of water will be P foot-pounds. Therefore the work done by 1 lb.

of water is P/w foot-pounds. It is important to notice that in proving

that the pressure energy of 1 lb. of water is P/?^, it is assumed that the

full pressure P is kept up during the time that the 1 lb. of water is being

used to do the w^ork Vjw.

(3) The kinetic energy of I lb. of water which is moving with a

velocity of v feet per second is v^l2g.

A portion of water may have all three of the above forms of energy,

but one, two, or all of them, may be zero. Also, the energy in one form

may be so small compared with the energy in another form, that it may
be neglected. For example, in the transmission of power by water

pressure amounting to, say, 1000 lbs. per square inch, the W'ater will have

a velocity seldom exceeding 5 feet per second. Here the pressure

energy is = 2311 ft.-lbs., and the kinetic energy when the

52
velocity is 5 feet per second is ^ = 0’39 ft.-lb., a quantity so small

compared with 2311 that it may be neglected.

If H is the total energy in one pound weight of liquid, then

H=.A+? + |‘.
v> .2g

If all the particles of a 1 lb., mass of -water are moving with the same

velocity at any instant, and there is no frictional resistance to the motion,
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also if the liquid may be considered as incompressible, so that there is no

internal work due to change of volume, then, if the mass of liquid con-

sidered moves without doing external w'ork or without having external

work done upon it, not only is H = at any instant, but H is a
w 2g

constant quantity, although the quantities Ti, v, and P may vary. This

is known as BernoulWs theorem.

374. Flow through a Smooth Pipe of Varying Section.—Fig. 715
shows a pipe of varying cross section

.

conveying winter from a tank to a
datum level, say the level of the

sea. The free surface of the water

in the tank is at a height H above
jatum. Neglecting friction, and
assuming that the motion of the

water is steady, the total energy of

a 1 lb. mass of the water will be

the same in every position. The
table below shows the amounts of , ^
the various forms of energy in a
1 lb. mass of the water in four

~

different positions. Where Pj and
- o.

pQ are the presisures of the water at A^ and Ag respectively, w is the

Position.
Potential

Energy.
Pressure
Energy.

L ^ '

nil

Ax h
w

Ag hi &
B nil nil

Kinetic
|

Energy.
Total Energy.

• .nil H
,

, ^

“ w ' 2y

%
n=!-

^9

specific weight of the water, v^, and v are the velocities of the water
at Aj, Ag, and B respectively.

If and a are the areas of the cross sections of the pipe at

A^, Ag and B respectively, then, if the pipe is running full, the quantity
of water passing through each cross section in a given time must be the

same, hence = UgWg = au
375. Venturi Water Meter.—Bernoulli’s theorem has an important

and interesting application in the Venturi w'ater meter, by means of

which the rate of flow of water through a water main may be deter-

mined without interposing any moving ]3art in the flowing water.

Figs. 716-719 * show the main parts of a Venturi meter. There are two
conical pipes AB and GD (Figs, 716 and 717), whose smaller ends are

connected by a short pipe BC, forming the throat of the meter. This
combination is introduced so as to form a part of the water main, the

* Fisjs, 716-719 have been prepared from working drawings kindly supplied
by Mr. George Kent, High Holborn, London.
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delivery of which is to be measured. The axis of the water main in the

neighbourhood of the meter is horizontal. The water enters the meter
at Aj and leaves at D. A hollow belt is cast round the pipe AB at EF,
and the interior of this belt communicates with the interior of the pipe

by four small holes, the positions of which are shown in the cross section,

Fig. 718. These holes are bushed with vulcanite to prevent incrustation.

A copper tube leads from the annular space at EF to the top of a vertical

cast-iron cylinder containing mercury. The throat is lined with a gun-

metal casting, having an annular space round its centre which communi-

cates with the interior of the throat by four small holes arranged as at

EF, and shown in Fig. 719, which is a cross section at the throat. A
second copper tube leads from the annular space round the throat to the

top of a second cast-iron cylinder containing morcury. The two vertical

cylinders containing mercury communicate with one another at their

bottom ends, so as to form the equivalent of a U tube mercury gauge,
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the levels of the mercury being indicated by cast-iron floats with vertical

rods attached to them.

It may be left as an exercise to the student to show that the quantity

of water flowing through the main in a given time is equal to c^Jk,

where c is a constant for a given meter, and k is the head of mercury

equivalent to the difference between the pressures in the main and in the

throat of the meter.

The diameter of the throat of the meter is frequently one-third

of the diameter of the main.

In order tliat Bernoulli’s theorem may apply without sensible error,

it is necessary that the interior of the Venturi tube lying between the

annular pressure chambers should be as smooth as possible. In practice,

the error in the Venturi meter does not exceed 2 per cent.

It is usual to fit a recording apparatus to the Venturi meter, con-

sisting of a clock-driven drum, upon which a diagram is traced by a pen
actuated by one of the cast-iron floats mentioned above. The abscissae of

this diagram represent time, and the ordinates rate of flow, and the area

of the diagram between any two ordinates represents the quantity of

water delivered in the time I’epresented by the distance between these

ordinates. A mechanical integrator oiierated by a clock and the second

float is generally added
;
this shows on a dial the total quantity of water

delivered.*

Venturi meters are suitable for mains of almost any diameter,

and have been made for mains as large as 10 feet in diameter.

They are, however, not suitable when the velocity of the water is very

small.

376. Radiating Current.—Fig. 720 shows two horizontal co-axial

discs whose distance apart is a. At the centre of the longer disc there is

an opening into a pipe, from which water flows into the space between the

discs. Consider the flow across a
section of the water between the

discs made by the surface of a

cylinder of radius r whose axis

coincides with the axis of the

discs. Let the velocity of the

water across this section be v, and
let Q be the volume passing per

unit of time, then Q 27rrai?, and
rv = Q/27ra. But for all values

of r the quantity Q is constant,

therefore ry = a constant, and if r
and V bo plotted in a plane con-

taining the axis of the discs, the

resulting curve is a rectangular

hyperbola.

Let P be the pressure of the water at radius r, as shown
by a pressure gauge, then the pressure head is P/w;, and the
kinetic energy per unit of weight is vy2g. Let h be the height of

* For an illustrated description of the recording apparatus of a Venturi
meter, see Engineering, Feb. 22, 1907.
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tlie horizontal stream between the discs above datum, then by
:Bernouni’s theorem

7;. + — +^ = H = a constant.
P_«^__ Q"

w ^gTr'^cfir-

= a constant.

If r and — be plotted in a plane containing the axis of the discs, a

curve known as R'r.r7o?i)’s cwrue is obtained.

The foregoing discussion will obviously also apply to the case where

the current is reversed, flowing inwards instead of outwards.

377. Vortices.—A mass of rotating fluid is called a When the

motion is produced by the action of forces of weight and fluid pressure only,

the /ortex is called a free vortex. When the law of motion in a vortex

is different from that of a free vortex, it is called a forced vortex. The
simplest form of forced vortex is that in which all the particles have the

same angular velocity ; this form of forced vortex is considered in Art.

380, under the heading of “ whirling liquids.”

378. Free Circular Vortex.—If instead of having simple radial

motion the water between the discs in Fig. 720 moves in cii’cular currents,

and at the same time moves slowly in a radial direction from one circular

current to another, assuming freely the velocities proper to the currents

which it enters, a /ree arcMZur wr/ea; is produced.

Consider a portion ABCD (Fig. 721) of a ring of the water in a free

circular vortex. Let r be the internal radius of

this ring, and dr its radial thickness. Let the

length and depth of ABCD be such that the area

of the vertical face AB is unity. The faces AD
and BC are radial, and since the thickness dr of the

ring is very small, the area of the face CD may
also be taken as unity. Hence the voluTue of ABCD
is dr, and its weight 'wdr. Let P and P + dP be the

fluid pressures, and v and v->t-dv be the velocities at the inner and outer

faces of the ring respectively.

The centrifugal force of ABCD is -”7“ » and this must be balanced

by the difference between the fluid pressures on the outside and inside,

namely, dP. Hence, dP = • Again, by Bernoulli’s theorem,

^
P + dP,(u + dy)2 ^Y^v^ .... .

1= + ^qiich gives the result — +
-y

= 0.

wd^dtT
Substituting for dP its value ^ vdr+rdv-(i is obtained.

Hence vr= constant, and v varies inversely as r as in the radiating current.

It follows that the law of variation of pressure will also be the same as in

the radiating current.

379. Free Spiral Vortex.—By superposing on the fluid particles the

motions of a radiating current and of a free circular vortex, a free spiral

u+dr



If ^ is the height of the cup^ then 7i==5-r2.

The volume of a paraboloid is half the volume of the circumscribing

cylinder, hence the volume of liquid in the cylinder above the level AX is

—n --
. If OD (Fig. 724) is the level of the liquid when at rest, then
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voTtej) is ]>roduced. Lot A (Fig. 722) represent a fluid j.iarticle in a free

circular vortex whose axis is O. Let AC at right

angles to OA represent the velocity of A in the free

circular vortex. Again, let A represent a fluid par-

ticle in a current radiating from O. Let AB on OA
produced represent the velocity of A in the radiating

current. If the two motions be combined, A will

have, when in the position considered, a velocity

represented by AD, a diagonal of the rectangle BC.

AG • AO = a constant, and AB • AO = a constant,

it follows that AC/AB = a constant = tan 6. Hence the path of the fluid

particle will at every instant make the constant angle 6 with the radius

drawn from the particle to the axis, and this is a property of the

logarithmic or equiangular spiral.

380. Whirling Liquids.—Let a cylinder of radius r (Fig. 723), con-

taining a liquid, revolve about its axis YYj^, which is vertical, with an
angular velocity w. Let P be a point on
the free surface of the liquid, and let to

be the weight of a very small portion of

the liquid at P. Con.sider the forces acting

on the liquid at P in a vertical plane con-

taining P and the axis YY^. There is the

weight w acting vertically downwards, the

centrifugal force Q acting horizontally, and
the fluid pre.ssure which must be per-

pendicular to the free surface of the liquid,

and which must balance the resultant E
of Q and w. Let the horizontal through P

Fia. 723.

meet the axis at N, and let the line of action of E meet the axis at Gr.

Q = -ojSpH, and = o ~ ..GN =
p " Q

Hence GN, the sub-normal of the free surface at P, is a constant, and
therefore the free surface is a paraboloid, and the, section of the free surface

by a plane containing the axis YYj is a parabola.

The equation to tho parabola, taking the axes as AX and AY, where
A is the vertex, is (Art. 11, p. 10) — 4ay,\vheTG a is the focal distance

of the vertex, PN == a:, and AN = ?/. Now in a parabola tho sub-normal is

constant and equal to the semi-latus rectum. But the semidatus rectum
is the value of a; in the equation x^ = 4ay when y = a, therefore GN = 2a,

but GN = -^ , therefore 2a= , and the equation to the parabola is
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,
and therefore 7t. == ==

;

A, the bottom of the cup below the original level of the liquid, is pro-

p(>rtional to the square of the angular

velocity.

When the top of the cup reaches the top

of the cylinder, as shown by the dotted

parabola in Fig. 726, h-^ = 2Jc^, where Jc^ isparaDoia lu rig. > xo

the depth, of the original level of the liquid

below the top of the cylinder.

Suppose now that the top of the cylinder

is closed, and that the angular velocity

is still further increased. The cup will

Still be a paraboloid. Let the total depth

of the cup be now and its greatest radius

• then, since the volume of the cup of height 7q must be the same as

that of the cup of height = y^xl

,

or xl = -V, but
^/i
=

,
therefore

= ,
and ’

where oii is the angular velocity. This
1

2(7 y ^

shows that after the cup touches the top of the cylinder its total depth is

directly proportional to the angular velocity.
^ ^ . .jc —x

The preceding investigation gives the
1

—
theory of a well-known instrument for

'

indicating the speed of revolution of a

shaft at any instant. The cylinder contain-

ing the liquid is made of glass, and the

spindle upon which it is mounted is geared

to the shaft whose speed is required. A
graduated scale placed beside the cylinder

shows the speed at a glance by indicating

the position of the vertex of the paraboloid. 726.

From the level CD to the level EF (Fig. 725)

the graduations of the scale are unequal, but below the level EF they

Aimther problem on whirling liquids may be considered here. A tube

AB (Fig. 726), of length 2r, closed at both ends and full of liquid, revolves

with its axis in a horizontal plane about an

axis bisecting the axis of the tube with an
^

angular velocity w. It is required to find the A\

pressurc exerted by the liquid on the ends of the

tube. Let a be the area of the cross section of Fm. 726.

the tube, and '/f;the weight of a unit of volume
_

of the liquid. Consider a small portion of the liquid between t\\ 0 pla le

perpendicular to the axis of a tube and at a distance apart equa to dx md

let the distance of this portion of Uquid from the a«s of retotation be

.
wadx(t)^x ,

— . .n If Vorr +niQ T»nai+.iAn nf linilld IS j



fore, neglecting friction,
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the total force transmitted to each end of the tube will he

f’’ wadxufix_ waufi p

Jo

and the intensity of the pressure will be -

2p

Fia. 727. .

If the loss

381. Torricelli’s Theorem.—^I’ig. 727 shows a tank containing
liquid with jets issuing at a depth h below the

free surface of the liquid and at a height \ above

a datum line AB.
Let Pq be the pressure of the atmosphere, and

V the velocity of the liquid as it leaves the orifice

and issues into the atmosphere. At the free sur-

face of the liquid in the tank the potential energy

is the pressure energy is VqI%o, and the

kinetic energy is ssero, per pound of liquid. The
pressure of the liquid in the jet is Pg, and its

pressure energy is therefore the potential

energy is and the kinetic energy is v2/2 (7,
per pound,

of energy due to friction be neglected, then

7i 4- +^ + 0 = /i. + ~ -f ,
and therefore 7i = ~

.

w ^ w Mr 2g

That is, the velocity of the issuing liquid is that which a body would
acquire in falling freely from rest under the action of gravity through a
height equal to the depth of the orifice below the free surface of the
liquid. If the jet be directed vertically upwards, as shown to the left in

Pig. 727, the liquid will rise to nearly the level of the free surface of
the liquid in the tank. It will not quite reach the level of the free

surface of the liquid, on account of the air resistance and the friction of

the liquid on the sides of the orifice or nozzle.

If the jet enters into a second tank (Pig. 728) in which the liquid

stands at a height above the jet, then the pres-

sure of the liquid in the jot is P^
,
and if v

is its velocity, the total energy of the jet per

pound of liquid is 7^^ H-

+

i

LJL

Fig. 728.

and therefore h — which shows that the

velocity is that due to a head equal to the

difference of level of the liquid in the two tanks, and is independent of

the depth of the jet below the free surface of the liquid in the second
tank.

In like manner it follows that if the jet enters a vessel in which
there is a partial vacuum, such as a steam-engine condenser, the head
due to the pressure in this vessel will be negative and equal to, say, -

then =
2g
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382. Influence of Velocity of Approach.—-in the preceding Article

the total energy per pound of the water at the free surface in the tank in

p
Fig. 727 was assumed to be + the water being assumed to be

at rest. But since the water is leaving at the orifice, the water in the

tank above the orifice must have a downward velocity, called the velocity

of approach. Let a denote the area of the cross section of the jet, and
A the area of the free surface of the water in the tank, then if v is the

velocity of the jet, and V the downw'ard velocity at the free surface in

p ya
the tank, the energy per pound at the free surface is + + +

and the energy of the jet per pound is ;
also V = hence

P(, v'^ Pq a2.„2
1

• 1

A’

Generally a/A is so small that a^/A^ may be neglected.

383. Plow through Sharp-edged Orifices. — When water issues

through a sharp-edged orifice (Fig. 729) in the side or bottom of a tank

it is found that the jet contracts to a minimum section, called the

contractf'd section or vena eontracta, which is a little distance in front of

the orifice., Tliis contraction of the jet is due to the fact

that the water particles in approaching the orifice are not

moving in parallel lines. For a circular orifice the

distance of the contracted section in front of the sharp edge

of the orifice is about half the diameter of the orifice. The
ratio of the area of the contracted section of the jet to the

area of the orifice is called the coefficient of contraction. If ^29.

A is the area of the orifice, a the area of the contracted

section, and h the coefficient of contraction, then a= lcA. The value of

fefor sharp-edged orifices may be taken as 0‘63, but it varies slightly with

the shape of the orifice and the head of water. The value of h in

different cases may be determined from direct measurements of the jet.

On account of friction the velocity of the water at the contracted

section of the jet is less than given by Torricelli’s theorem

(Art. 381), and the ratio of the actual

velocity to the theoretical velocity is called

the coefficient of velocity. If v is the actual

velocity, and c the coefficient of velocity,

then -y c An average value of c is

about 0-97. The value of c may be found

from observations on the path of the jet

(Fig. 730). If the face of the orifice is

vertical, then in t seconds a particle of water

will travel a horizontal distance, a; =4?^ from

the contracted section, and it will in the same time fall a distance

y:=.lqt‘K Hence -=—

=

and c = » It will be seen from
^ y 9 ’

.

2 ^hy
the equation = ic’^hy that the path of the jet is a parabola whose



vertex is at the contracted section, and whose directrix is horizontal and
at a distance cVi above the vertex.

If Q is the actual volume of water flowing through the orifice per

second, then Q - aw= kKc = CA where C (which is equal to

ck) is called the coefficient of discharge, and is the ratio of the actual dis-

charge to the theoretical discharge. By the theoretical discharge is

meant the discharge neglecting friction and the contraction of the jet.

The coefficients k, c, and C are called the hydraulic coefficients for

an orifice. The coefficient C is the one which is of most importance in

practice, and it is the one which is most easily determined by direct

measurements. Taking k = 0‘63, and c = 0-97, then C = 0'63 x 0‘97 == 0-61,

which agrees with the mean value of C, as determined directly from
numerous experiments with slxarp-edged orifices.

384. Miner’s Inch,—In selling water in mining districts the water
is frequently measured by delivering it through rectangular orifices

under a small but constant head. The mmer'’s inch is the quantity of

water delivered per minute through an orifice 1 inch square, in a vertical

plane, under a head which varies in different localities from 6 to 9
inches, measured to the centre of the orifice. With a head of 6|- inches,

measured to the centre of the oxnfice, the miner’s inch is equivalent to
about 1 1 cubic feet of water per minute.

385. Entire and Partial Suppression of Contraction of Jet.—
Fig. 731 shows the form of the jet issuing through a sharp-edged orifice

in a plate, the thickness of which is such
that its outside face is in the plane of

the smallest section of the jet. The
space shown in black is the empty space

between the surface of the orifice and
that of the jet. It is obvious that if

the .space shown in black be filled up,

or if the orifice be shaped to the natural

form of the jet within the plate, the

smalle.st diameter of the jot will then be
the same as the smallest diameter of the orifice, and the coefficient of con-
traction will become unity.

Bounding the inside edge of the orifice to a greater or less extent, as

.shown in Fig. 732, will evidently have the effect of diminishing the con-

traction of the jet, and therefore of increasing the coefficient of contraction.

An orifice which is to be used for the measurement of the water
delivered by it should be sharp edged and of the form shown in Fig. 729,
bccau.se the coefficient of contraction for an orifice with a rounded edge is

uncertain, varying with the amount of rounding.

386. Loss of Energy or Head.—When water is discharged through
an orifice under a head Ji, it has b^n shown that the actual velocity at

the vena contracta is equal to c ^2gh, where c is the coefficient of velocity.

The energy in 1 lb. of water at the vena contracta is therefore equal to c^h.

If the water lost no energy in reaching and passing through the orifice, its

energy at the vena contracta would be h. The loss of energy per lb.

of water is therefore h-c^h= h{l~c% This is also the exiiression for

the loss of head, that is to say, the head which would produce the actual

APPLIED MECHANICS
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velocity c sj^gh, if there were no friction, is less than the actual head

by the amount Ti{l~c?). The ratio is called the
e?h

('Qp.ficient of resistance for the orifice.
‘

387. Drowned or Submerged Orifices.-~It was shown in Art. 381
(Fig. 728) that when the water stands above the orifice on both sides,

the effective head to be used in calculating the velocity through the

orifice, neglecting friction, is the difterence between the levels on the two
sides. This is also the head to be taken in calculating the discharge

through a drowned orifice when friction and the contraction of the jet are

considered, but it has been found by experiment that in the case of a

drowned sharp-edged orifice the coefficient of discharge is slightly less

(about 2 per cent.) than when the discharge is directly into the

atmosphere.

388. Time of Flow through an Orifice for a given Change of

Water Level in a Vessel.—Let a be the area of the orifice, and k its

coefficient of discharge.

The simplest case (Fig. 733) is where the level changes from AB to

CD, the water flowing in. under a constant liead k. Let V denote the

volume of water ABCD. The discharge through the orifice per second is

kct J2g/i, and therefore the time in seconds to discharge the quantity V is

YlkaJ^gh. ,
.

_
:

^

A common case is that in which the level is to be raised from AB to

CD (Fig. 734), the water passing through an orifice at O, the level EF

c

rriT
\
\ 5 so

of the water on the inflow side being at a constant height above O
;
or

tiie level is to be low^ered from AB to CD (Fig. 735), the water passing

through an orifice at O, the level EF of the water on the outflow side

being at a constant height above O. When the, free surface of the watei-

in the vessel is at a distance y from the level EF, let its area be Y. In

the time dt let y change to y - dy,. then

j-H

ka • dt == Ydy. Hence i =
j

-

where t is the time required to change the level from AB to CD. In

practical cases the vessel ABCD is generally either a vertical cylinder or

a vertical prism, and Y is a constant— A, then # — r

—

j^( a/H- JJi).
ka ly
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An important application of the foregoing formula

emptying of a canal lock (Fig. 736). The iii,>per anc

the canal may be assumed to have

constatit levels during the operation

of filling or emptying the lock. When
the gates are shut, communication

between the lock and the upper or

lower reaches of the canal is either

througli sluices in the gates themselves,

or through culverts in the walls of

the lock.

Ill the foregoing cases the head

on one side of the orifice has been

assumed to be constant, but when one vessel of limited capacity discharges

into another, the level in the second rises as the level in the first falls.

Assuming that the vessels (1) and (2), .

Fig. 737, have vertical sides, let A and C D

B denote the areas of the free surfaces
j „

of the water in (1) and (2) respectively, i
+

~

and let the level in (1) fail from CD ^ F

to EF by discharging into (2) through "
T

the orifice O below the level KL of the
| ,

i

water in (2). | V'l y _ r
When the free surface of the water , . ^ ^

n

in (1) is at the height ?/ above KL, (IJ ^0 (2)

the level in (2) will have risen

through the height such that
‘

A(H - 2/),== By'. In the time let y change to y-dy, then

V2y(y - y')
’ dt = Ady, but y - y' =

,

therefore

V(ra5)ra-H}.

When the level has become the same in both vessels, li will become

,, and then
^ -A. + B (A + B)/fa J%j

389. Large Rectangular Orifices.—When the orifice in the side

of a vessel is small compared with the head of water over it, the head
may be assumed as the same for all parts of the orifice; but when the

orifice is so large that this assumption involves serious erroi-, the formula

for the discharge must be determined by taking into account the variation

of head,

Large orifices are generally rectangular. Consider a rectangular

-Lock Gatei

Hence

D

1

+:
-

"l
V ^

“1

i-i-i-K

(1) 1 20 (eT

“
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Fig. 739. Fig. 740. Fig. 741.

739 tli3 iveii’ lias two end contractions. In Fig. 740 there is only one

end contraction, and in Fig. 741 there are no end contractions.

In a weir witli no end contractions, called a suppres^sed weir, the

width of the outflowing stream is uniform, and the discharge is directly

proportional to the width, and is given by an ex-

pression of the form h^h-^hl. To prevent any lateral

spreading of the stream as it flows over a suppressed

\veir, the sides should be prolonged, as shown in

Fig. 742.

The effect of an end contraction is to reduce

the effective width of the stream through the weir,

but the influence of the end contraction only extends over a limited

orifice (Fig. 738) of breadth h, the upper and lower edges being at depths

and \ below XX, the free surface of the water. Consider a narrow
horizontal strip of the orifice of depth dy at a depth

7/ beloAv XX. Neglecting contraction and all losses,

the discharge through this strip is dQ = hdy ^/2f/y,

and the theoretical discharge through the Avhole

orifice is

Q = ^>chj sj2gy = h

If it may be assumed that the coefficient of discharge k is the same
for all values of h, and then the actual discharge is

Experiments on the flow through large vertical rectangular orifices

however show that k depends on the proportions of the orifice, and also on

the head of water over it. An approximate average value of Ans 0’62

890. Rectangular Notches or Weirs.—If the head 7)^ over the

rectangular orifice of the preceding Article is zero, the orifice becomes a

rectangulcr notch or 7mir (Fig. 739) ;
and if the formula of the preceding

Articl^still- applied, .the discharge w'ould be given by the expression

J2g • h^, w'here A takes the place of Kj. This expression may be used

in determining the discharge through a rectangular notch if the value of

the coefficient k is known with sufficient certainty for the particular notch

to which it is applied.

When the vertical edges of the notch project into the stream, as in

Fig. 739, the notch or weir is said to have end contractions. In Fig.
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B'la. 743.

tvidtii h.^ of the weir, and the disehai'ge ov<ir tlii.s [lortiou is given l)y an

expre.s.sion of the form The w-idth A.i will dejiond on the height A,

and znay he written Hence for a weir with n end cozzti-actiozts,

where n is equal to 2, 1, or 0,

Q ~ + 7z/r„fq)7ii = (AqA ~ 4-

where a and are constants to be determined by experiment.

The above formula Q ~ a{h ~ is know'U as Franriti’i^ formula,

and although it w'as finst derived empirically from oxjicriments, it

will bo seen from the foregoing that it has a rational basis. Thi.s

formula is sometimes called the Lowell formula, from the fact that

the experiizients upon which it was founded were conducted at Lowell,

in Massachusetts. The expei-iments of Francis w^ere made on weirs

from 4 to 10 feet long, with heads varying from 0‘6 to 1 ‘6 feet,

and the mean values of the constants a and /? were found to be
3'33 and OT respectively. Francis’s formula may therefore be w'ritten

Q = 3-33(A-0-Lz7z)Ai,

The head h in the discharge formulae for weirs given in this Article

is usually taken as the head measured from the crest of the weir to

the still water level just above the •weir, as shown in

Fig. 743, and not as the depth over the crest. Generally

the upper surface of the -water drops and curves slightly

before reaching the weir. In the experiznents of FranGi.s,

the head was measured from the crest to the level of

the water 6 feet above the weir.

The eifect of velocity of approach is considered in the next Article.

391. Velocity of Approach in a Strcam.'-'When the water in the

stream has velocity before it reaches the weir, this velocity is equivalent

to an additional liead at the weir. In oz'dor that

the water in a stream may flow, its upper surface

must slope downwards in the direction of motion,

and the effective head at any point, neglecting

friction, must be measured to the level of still

water up-stream. Fig. 744 shows a longitudinal

section of the stream in the neighbourhood of the

weir, and the horizontal line XX is the still water

level u{)-stream. The height ha is the additional head dzro to the

velocity of approach.

Reasoning as izr the three preceding Articles, it follow.s that the

ordinary formula Q = %hh velocity of ap)proach being neglected

becomes ^~%kh sj2g{{li + ]ia'f -h\] when velocity of appn/ach is con-

sidered.

iVlso Fz'azzeis’s formula beeome.s Q - 3’33(A ~ 0 lnh)\{1i -f- A„)i -

when velocity of approach is considered.

Since hfl is generally small compared -^vith h + ha, the term h'^ is often

neglected, and the ordinary formula then becomes Q — ‘ikh + 7zo)'",

and Francis’s formula becomes Q = 3'3(7» - 0TnA)(7z + ha)--

When it is not convenieirt to measure ha directly, the velocity of

approach Vq may be computed approximately as follows. Let A denote
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llic iirc-ii of the eross section of the stream above the weir, (.faioulali^

(.,)', the <.Iis(4iargo over the v;eir, neglecting velocity of aiiproacL, then

=-;Q7A a])proximately, and =

392. Triangular Hotehes.—A triangular or V notch lues one gi-eat

advantage over the rectangular notch. In the former the linear

diincn.sions are in a fixed ratio to one another, whatever be the depth (h

water in the notch, and it follows that the

cross sections of the issuing streams will be

similar, and the coefficient of contraction there-

fore constant.

Let the edges of the notch (Fig. 745) have

equal inclinations to the vertical, and letthe angle

between them be 2d. Neglecting in the finst

in.stance the contraction of the jet and the effect of friction, consider a

strip of the notch at a depth '// and of /widtli <7//. The length of this

strip is 2{li - y) tan d, its area is 2(7i - y) tan d • dy, and the- velocity of

the water through it is J2gy. Hence

dQ = 2(7i - y) tan d • dy J^y = 2 tan 6 J^{hyl - y'yiij,

and Q - 2 tan d - y^yiy - 2 tan d - -Ae)

If k is the coefficient of discharge, then the actual discharge is

Q = .j?-j,7i: tan d J2<i • hi.

The late Professor James Thomson found k to he 0'617
;
taking this

value of /t*, and making 2d = 90°, which is the usual angle of the notch,

Q = 2-C)47i^ = 2-G47iV7/.

393. Partially Submerged Orifices.—When a rectangular orifice is

partially submerged, as shown in Fig. 746, the orifice may
be considered as made up of two parts, the upper of depth

luj, - 7i, - h', and breadth h discharging into the atniosxherc

under a head varying from \ - h' to A,, and the lower of

depth Id and breadth h fully submerged and discharging

under a constant effective head7j2-7A Let Qj and

denote the discharges from these upx)er and lower x)arts

respectively, then, by Articles 389 and 383.

= |/r& j2g{{h.^ - hj. - Af}, and Q, = IcW

The total discharge is Q;, + Q2
.

394. Drowned Weirs.

—

A weir is said to be drownp.d or suhnery&l

when the tail water level is above the crest of the weir, as shown in

Fig. 747. The forranlte of the preceding Article
y

may be apxfiied to a drowned W'eir by putting

A^=0 and changing hj. to k.

over the weir is

then the discharge
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Exercises XXvIIIa.

1. A pipe whose axis is horizontal is full of water in motion. At a section A
the velocity of the waiter is 300 feet per minute, and the pressure is 20 lbs. per
square inch. The pipe tapers gradually from 6 inches diameter at A to 4 intdies

diameter at B. Assuming that there is no loss of energy between A and B,

determine the pressure of the water at B. What must be the diameter of the
pipe at B if the pressure there is reduced to 4 lbs. per square inch ?

2. A horizontal tube is tapered slowly from a diameter of 15 inches to a
diameter of 6 inches. Neglecting friction, calculate the difference in the
pressures in lbs. per sqiiare inch at the two sections when the discharge is

00,000 gallons per hour. [Inst.C.E.]

3. The diameter of a pipe gradually changes from 8 inches at a point A, 40
feet above datum, to 5 inches at a point B, 20 feet above datum. The pressure
at A is 30 lbs. per square inch, and the pipe delivers water at the rate of 5 cubic
feet per second. Neglecting friction, find the pressure at B.

4. A conical pipe varying in diameter from 4 feet 6 inches at tiie large end
to 2 feet at the small end forms part of a horizontal water main. The pressure
head at the large end is found to be 100 feet, and at the small end 9G'5 feet.

Find the discharge through the pipe. [Inst.C.E.]

6.

A Venturi water meter is 15 inches diameter in the main and 6. inches
diameter in the throat. The difference between the pressures of the water in

the main and in the throat is 9'2 inches of mercury. Find the discharge in

gallons per minute. (Specific gravity of mercury, 13'5o.)

6. In a particular Venturi water meter the diameter of the main is 3 feet,

and the diameter of the throat 1 foot. Q is the number of gallons of water
delivered per minute, and k is the effective head, in inches of mercury, in the
gauge showing the difference between the pressures in the main and in the
throat. Taking the specific gravity of mercury as 13'56, find the numerical
value of the constant c in the formula Q = c^Jk for this meter.

7. Define and describe “forced ” and “ free ” vortices. A glass tube 2 inches
diameter, open at the top, containing a liquid, rotates about its axis, which is

vertical, at 700 revolutions per minute. What is the depression of the lowest
point of the surface below the surface of the liquid when at rest ? [U.L.]

8. A glass tube, internal diameter 2 inches, and length 12 inches, has its

axis vertical
; it is closed at both ends, and contains a liquid which fills three-

fourths of the volume of the tube. The tube is made to revolve about its axis.

Find the speed of the tube in revolutions per minute (1) when the top of the cup
formed by the liquid is at the top of the tube, (2) when the bottom of the cup
is at the bottom of the tube. Construct the speed scale, the gradations to show
speed increments of 10 revolutions per minute.

9. A glass tube 3 feet long, of uniform cross section, bent into the form
of three sides of a square (Fig. 748), and half filled with water,
rotates uniformly about the axis of oue of the parallel limbs,

which is vertical. Find the angular velocity if the other
vertical limb is half full of water.

10. Neglecting the effect of friction, with what velocity

will water flow through an orifice in the shell of a steam
boiler at a point 30 inches below the water level when the
steam pressure gaiige indicates 40 lbs. per square inch ?

’

,, ^ „ „
11. Water under a pressure of 7 lbs. per square inch is fed

.

into a tank containing water to a depth of 15 feet through an orifice in the bottom
of the tank. Neglecting friction, find the velocity of flow througii the orifice.

12. A jet of water under a head of 3 feet enters a condenser where the
absolute pressure is 5 lbs. per square inch. If the pressure of the atmosphere
is 14‘7 lbs. per square inch, find the velocity of the jet, neglecting friction.

13. A vertical pipe of 3 inches bore contains water which runs out through
an orifice at the bottom of the pipe. The diameter of the issuing jet is J inch.
Neglecting friction, determine the velocity of the jet, in feet per second, when
the head of water in the pipe is 10 feet, (i.) neglecting the velocity of approach,
(ii.) taking the velocity of approach into account. Construct a curve showing
the relation between the vdocity of the jet and the head of water over it,
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neglecting tlio velocity of approach, for values of the head between 10 feet and
1 foot.

14.

The following results were obtained during an experiment to determiruj

the quantity of water which would be discharged through a small circular orifice

in the side of a tank. The diameter of the orifice, which had sharp edges, was
1 inch

Number of experiment . 1 2 3 4
Duration of experiment minutes 15 15 15 15

Actual discharge . . . lbs. 576 660 733 827
Head of water above centre of orifice inches 1-5 « 2-5 3-27

Number of experiment . . . . 5 6 7 8

Duration of experiment . minutes lo 15 10 10

Actual discharge . . . . . , lbs. 916 1011 737 788

Head of water above centre of orifice . inches 4-01 5-0 6-0 7'0

Plot on squared paper a curve to show the relation between the discharge

in lbs. per minute and the head of water above the centre of the orifice. From
your curve determine the discharge in gallons per hour when the head of water
was inches.

Plot also on squared paper a curve to show the relation between the discharge

in lbs. per minute and the square root of the head of water above the centre

of the orifice. From your curve, what would you consider the relation to be
between the quantity of flow and head ?

Determine for each of the experiments in the above table the “ coefficient of

discharge ’’ for this orifice, and plot a curve to show the relation between
“ coefficient of discharge ” and head of water. [B.E.]

15. Water flows through a sharp-edged circular orifice 0’3 inch in diameter

in the side of a tank. The head of water above the centre of the orifice is 4 feet.

The jet passes through a ring whose internal diameter is slightly larger than
that of the jet, and the centre of this ring is found to be 48 inches horizontally

and 13T inches vertically fiom tlie centre of the vena contractu. In e minutes the

weight of water discharged is 90'2 lbs. Calculate the coefiicients of discharge,

velocity, and contraction for this orifice.

16. "if the miner’s inch is defined as the flow through an orifice 1 inch square,

in a vertical plane, under the head of inches measured to the centre of the

orifice, and if the flow is found to be 1^- cubic feet per minute, w'hat is the

coefficient of discharge ?

17. A tank 10 feet square and 10 feet deep has a circular orifice 4 inches

diameter in the bottom, which may be regarded as a thin plate. Water is

admitted to the tank until it is full, and is then shut off. In how many seconds

will the tank be empty 1 [Inst.O.E.]

18. A rectangular chamber 120 feet square contains 15 feet depth of water,

which is allowed to flow out through a vertical rectangular orifice 2 feet by 1

foot, the top of which is level with the floor of the reservoir and tail-water.

Calculate the time it will take to empty. [Inst.C.B.]

19. Two chambers with vertical sides, each 50 square feet in area, are

connected by means of a rectangular sluice, 3 feet by 2 feet, near the bottom.

One chamber contains water to a depth of 25 feet, and the other a depth of

10 feet. If the sluice is opened, find how long it will be before the water is

at the same level in the two chambers. [Inst.C^E.]

20. Find the answer to the preceding exercise when the chamber in which
the depth of the water is 10 feet has an area of 80 square feet instead of 50

square feet, the other particulars being the same.
21. A hemispherical cistern is 20 feet in diameter, and it is full of water.

How many minutes will it take to lower the depth of the water 6 feet, if the

water escapes through a 8-inch diameter sharp-edged hole in the bottom of

the cistern 1 The coefficient of discharge for the hole is O’GO. [U.L.]

22. A cylindrical tank 2 feet in diameter and 6 feet high is full of water.

On opening an orifice 1 inch in diameter in the bottom of the tank it is found
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tihafc the wat.er level is lowered 4 feet in 4 minutes. What is tlus coefficient

of discharge ?

23. A weir 20 feet long has a head of I."! inches above the crest. Taking the
coefficient calculate the discharge in cubic feet per second.

24. Assuming that tlie weir of the i)receding exercise has two end con-
tractions, (jalculate the discliargo, in cubic feet per second, by Ifrancns’s formula.

26. A rectangular weir with one end contraction is required to discharge

500,000 gallons of water per hour with a still-water head of 10 inches. lOeter-

inine the necc;s.sary length of the weir. Use Francis’s formula,

26. Find the quantity of water which will flow through a notch 9 feet
long, the head of water over the sill being 10 inches, and the area of the approacli
channel being .30 squai'o feet. [Tnst.O.E.]

27. Water flows from a potid over a weir 10 feet long, in a depth of 10 inches ;

it then flows along a level rectangular channel 8 feet broad, and over a second
weir the width of the channel, its crest being i foot above the bottom. Find
the depth of the water over the 8-foot weir. ’ [Inst.C.E.]

28. What are the advantages and disadvantages atlendiiig the use of Ihe
V-gauge notch, and for what purposes is it .specially suitable? The still-wafer

surface level is at a height of 1.5'5 inches above the bottom of a right-angled
V-gauge notch. Calculate the discharge in oid)ic feet per second, taking O-fl as
the Goefiicient of dischargo.

29. A measuring weir is constructed with a 90“ angular notch, the edges
being bevelled to 45° on the outside to a nearly sharp edge. Give the formula
you think best for the dischargt^ over such a weir, and apply it to calculate ihe
dischargo in gallons per minute when the water depth above the apex of the
angular notch is 9-3() inches, and the water level 5 feet back from the weir
is found to be 0'93 inch above that of the weir. [Inst.C.E.]

30. A triangular notch, having an angle of 90 degrees, is used to measure
the flow of a stream. Read-

Reading

Head, in inches

ings at intervals of 1 hour
are taken, as shown in the
table.

Draw a curve showing
|

Head, in inches
|

4 1 5 I 0
the rate of discharge at any
time, and show how you
would determine the discharge between the time of the first and last readings.

[Inst.C.E.]

31, Water flows over a rectangular notch 3 feet wide to a depth of G inches,

and afterwards passes through a triangular right-angled notch. Find the depth
of water through this notch. The coefficients of discharge for the notches are

to be taken as 0'62 and 0-59 respectively.

32. A weir at the edge of a pond is 6 feet wide. The cro.st of the weir is

6 inches below the water level of the pond, and 3 inches below the tail-water

level. Compute the discharge over this weir, in gallon.^ per hour, if the co-

efficient of discharge ^=0*58.

395. Loss of Energy or Head due to Sudden Enlargement of

Pipe.—Let a straight horizontal pipe (Fig. 749) suddenly enlarge in

cross section from an' area a, at A'B' to an
area a. In i)assing from the smaller to the

larger [lart of the pipe the stream lines will be

disturbed, and eddies will be formed as shown,

but at some distance forward in tbe enlarged

])art of the pipe the motion will again become
steady and the stream lines parallel. Where
the eddies form there is a churning of the

water, and a consequent loss of energy.

Consider a portion of water between the

sections AB and CD, the motion being steady

at these sections. Let this mass of water move forward to the position



expands and Alls the remainder of the pipe, as shown. In passing

from AB to CD there is a loss due to the sudden ejilargement, as

in the case considered in the preceding Article. Using the formula of

the preceding Article, the loss of energy or head between AB and CD is

“I _ 1Y = • If h is the coefBcient of contraction at AB,

then — = The coefficient h varies with the ratio of a to where Uq is

tij k

the area of the section of the larger part of the pipe. If is very large
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A'B'D'C' in t seconds. Let the pressure and velocity at AB be and fj.

and let the pressure and velocity at CD be P and t’. Experiment has

shown, that in the enlarged part of the pipe where it joins the smaller

part the pressure is the same as in the smaller part, namely, P^.

The forces urging the mass of water ABDC forward are, PjCij at AB,
and l\{a~a^ on the annular surface between A'B' and EF. The force

retarding the forward motion is Va at CD. Hence the resultant force

on AB-DC in the direction of motion is Pjaj + Pi(a - Uj) -- Pa = (Pj - P)a.

The impulse of this foi-ce is (Pj - P)aiS, which must he equal to the change

in the momentam of the mass of water ABDC in the time ^ seconds.

But since there is no change in the momentum of the mass of water

between the sections' A'B' and CD, the change in the momentum of

ABDC must be equal to the difference between the momenta of the

masses AA'B'B and CC'D'D, that is, the change in the momentum of

a mass equal to = vat. Hence

(Pj - V)at =- — - Vj), therefore -
-P

from which it follows that -1 + =I + £1 + ,

w 2g w 2g 2g

But if there had been no loss of energy in passing from the smaller to

the larger part of the pipe, Bernoulli’s theorem shows that ?? + wmnld

2

have been equal to — + ^, therefore the loss of energy due to the sudden
to 2(1

i<l) —
. y

enlargement of the pipe is per lb, of water passing.

In the foregoing discussion no account has been taken of the effect of

friction, but in the short length of pipe considered the effect of friction

would be very small.

396. Loss of Energy or Head due to Sudden Contraction of Pipe.

—

In passing from the larger to the smaller part of the -pipe (Fig. 750) the

stream follow^s the contour of the larger part

almost right up to the smaller part, and then

contracts to a cross section of area aj at a

section AB within the smaller part, being

less than a, the area of the section of the

smaller part of the pipe. The only loss up

to AB is due to friction, and may here

be neglected. After passing AB the stream

expands and Alls the remainder of the pipe, as shown.
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compared with a, the value of is about 0*45, which makes /c = 0-Q. If

= 10a, the value of w is about 0*36, which makes /i: = 0*625,

397. Loss of Energy or Head due to Obstructions in Pipes,—An
obstruction in a pipe, in the form of a diaphragm having a central hole,

as shown in Fig. 751, is a case of sudden contraction in a pipe, and the

expression for the loss of energy or head obtained in the preceding

Article, namely, —f— - 1 ) ~ ,
may be used, where a is the area of

2f/\ai ) 2(j

the section of the pipe, v the velocity of the *v\-ater through it, and the

area of the section of the contracted stream as it passes through the

hole in the diaphragm. If is the area of the hole in the diaphragm,

the ratio will depend on the ratio of to a. Values ol‘m

corresponding to various values of a^ja are given in the following table

on the authority of Weisbach ;

—

The above values of m ai’e also approximately true for a sluice partly

open (Fig, 752),

For a cock in a cylindrical pipe (Fig. 753), the loss of energy or head

is also given by the expression “nb---. Weisbach gives the following
2g

values of a^/a and m for various values of 0, a being the area of the

pipe, and the effective area through the cock when turned through the

angle Q \

—

Og/a 0*1 0*2 0*3 0-4 0*5

m 226 47*8 30*8

1

7*80 3*75

398. Plow tbrough. a Cylindrical Mouthpiece.—A short pi]>e or

mouthpiece AF (Fig. 754), having a length of from two to three times
its diameter, projects from the side of a tank, as shown. The water on
entering the pipe converges, as in sharp-edged orifices, to a jet of sectional

area at AB within the mouthpiece, and then exjtands until it has a
sectional area a equal to that of the mouthpiece.

Let P and v be the pressure and velocity of the jet at EF, and let Pj

10“ 20“ 30“ 40“ 45“ 60“ 60“ 65“

0*85 0*69’ 0*54 0*39 0*32 0*25 0*14 0*09

0*29 1*56
I

5*47
'

17*3 31*2 62*6 20() 486
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and Vj be tlie pressure and velocity of the jet at AB. P, the ])ressure of

the water at EF, will he the same as that of the atmosphere.

The coefficient of contraction at AB is

Between AB and EF there is a loss of energy

or head (Art. 395) equal to

(?q /j y

If c is tlie coefficient of velocity at AB,

then 1)^=^ c. and tlie energy at AB is

c^2yA o;

Tlie energy at EF is — . Hence c-h = ~Jr
' ^9 2y

it follows that

V = ^ Q where C

Froni wdiich

is the coefficient of velocity and also the coefficient of discharge at EF,
since the jet fills the pipe at EF.

Taking c = 0‘97, and k — 0'63 for a sharp-edged orifice,

n 0-97

Experiments with mouthpieces having lengths from two to tliree times

the diameter gave C = 0'82. It should be noted that in the foregoing

investigation the effect of friction in the pipe has been neglected, but

the pipe being short, this effect will be small.

By Bernoulli's theorem Li q. + . Hence

- - - ^
^

-
1
y . Inserting for v its value C,y2r/A, ~ ^

‘

If a vertical titbe be inserted into the mouthpiece at B, and its low'or

011(1 be placed in a vessel open to the atmosphere and containing water,

Avater will rise in this tube to a height A', given by the equation

Taking c=0-97, and A = 0"63 ,as before, the above reduces to

A' = 0-82A. By experiment h! is about which corresponds to C = 0-82,

and A = Q‘6

'
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leaking tho height of the Avater haroineter at IM- feet, thou, Avlieu

K = 34 feet, tliere Avill he a perfect vaciAum rouiid the jet at Al^, and for

this condition h — — = 45;^ feet. I’or a greater valne of h than

tliis the jet will brciak up, and tiu; luoiithpiece will n(»t discharge full

bore.

399. Borda’s Mouthpiece.—The rea.sou for Ihe contraction of a jc4

issuing from an orilice being that the Avater enteiiiig the orifice floAvs

towards it in various directions inclined to the axis of the orifice, it is

obvious that the greater the angle bet\A'(;en the extreme stream lines, the

greater the contraction of the jet. in the case of a simple orifice in a

fiat plaf.e the angle betAvoen tho extreme .stream lines is lb0°. Evidently

the maximum contraction Avill occur Avdien the

angle between tho extreme stream lines is

860°, Avhich is the case in Borda's vioKth-

‘pieoe. This mouthpiece consi.sfs of a thin

tube pi’ojecting into a tank, as shown in

Fig. 755. The jet contracts Avithin the

luouthpieco to a (liameter LN. Let A be

tho area of the section of the mouthpiece, and
a the area of the contracted section of tho

jet. Lot XX, the free surface of the Avater

in the tank, be at a height li above the axis

of the mouthpiece. Idle entrance to the

mouthpiece being removed from the Avails of

the tank, it may bo assumed that the motion of the AA'ater does not

affect tho pressure on the walls, which Avill therefore folloAv the hydro-

static laAV, and, excepting the portion EF of the A\’all exactly oppo.site to

the mouthpiece, the horizontal pressures on the Avails aaiII balance one
another. The resultant pressure on EF is whK, and this will also Ije tho

resultant horizontal force on tho water entering the mouthpiece.

Consider the mass of Avater between XX and LN. Let this mass
move into the position X'X'L'N' in t seconds, then since the momentum
of the mass X'X'LN does not alter, the change in the momentum of the

mass considered is the difference in the momenta of the masses XXX'X'
and LNN'L'. But the momentum of XXX'X' is entirely vertical, therefore

the change in momentum in a horizontal direction is equal to the momen-
tum of LNN'L', and this Is due to the action of the force whK.

Tho mass of LNN'L' is
,
and its momentum is —— ,

Avhere ?> is

the velocity of the water in the contracted jet. The impulse of the

force wliA. is wliKt. Hence equating impulse to change of monientuin

icTiKt— --i, therefore ^ = But very nearly, therefore
p A j j

^ = I ,
or the coefficient of contraction for Borda’s mouthpiece is

Various authorities have obtained values of a/

A

by direct experiment
A^arying from 0‘515 to 0'555, which confirms the foregoing theory.

400. Fluid Friction.—Fluid friction is the resistance experienced

Avhen a body moves through a fluid, or when a fluid moves over the

Fiq. 755.
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surface of a body. The following laws of fluid friction have been
establisbcd on the results of numerous experiments by Fronde* and
otlicrs. (1) 'riie frictional resistance is independent of tlie fluid pressure,

(2) The frictional resistance depends on the amount of surhice of

contact between the fluid and the body, and in general it may be taken

as pi-oportional to the area of contact surface. (3) The frictional re-

sistance is proportional to the wth power of the relative velocity of the

fluid and body, where n is equal to 1 for very small velocities, but for

velocities which occur in practical - hydraulics n varies from about 1'7 to

about 2-2, and has an average value of 2. (4) At very small velocities

the frictional resistance is independent of the nature of the surface of the

body, but at ordinary velocities the frictional resistance increases very

rapidly with the roughness of the surface of the body. (5) The frictional

resistance is proportional to the density of the fluid.

401. Wetted Perimeter—Hydraulic Mean Depth.—That part of the

boundary of the cross section of a channel or pipe which is in contact

with the water in it is called the

weitad perimeter, and the area of the

cross section of the stream divided by
the wetted perimeter is called the

hydraulic mean depth, or the hy-

drauUe mean radius, or the hydratdic

radius. In this work the hydraulic mean depth, or hydraulic mean
radius, will be denoted by ni. For example, in a channel of rectangular

section (Fig, 756), having a breadth h and depth of water d, nis

Pig. 756. Fig. 757. Fig. 768.

In a circular pipe (Fig. 757) of diameter d, running full, w. =

hd

fc-t-2cr

In the same pipe, running half full (Fig. 758), as for the

full pipe.

Some writers restrict the term hydraulic mean depth to channels, and
apply the term hydraulic mean radius to circular pipes.

402. Usual Velocities of Water in Pipes.—The usual velocity in

water mains is less than 5 feet per second. Unwin gives the formula

i; = l-45d-|-2 as the expression of a fair rough rule for the velocity of

water in pipes used in town’s supply, where v is the velocity of the water

in feet per second, and d is the diameter of the pipe in feet. A velocity

of 10 feet per second is fairly common in the pipes of centrifugal pjumps.

Velocities greater than 15 feet per second are very unusual in jjipes.

High velocities involve great loss of enei’gy in friction when the pipes are

long, and since the loss of energy per lb. of water delivered is greater the

smaller the pi[)0
,
the velocity should be lower the smaller the pipe.

403. Critical Velocity of Water in Pipes.—Professor Osborne

Reynolds made most interesting experiments on the flow of w^^ter in

pipes witli aipiaratus I'oughly shown in Fig. 759, AB is a tank 6 feet

long, 18 inches deep, and 18 inches widej containing Avater. CD is a

glass tube provided with a trumpet-shaped mouthpiece at C, and pro-

* For the results of Fronde’s experiments see ^British Assooiatim Eep&'is,

1875.



jocting liorixuntally into thti tank from an iron pipe EF at one end,

Water lio\v.s from the tank throngli tlie glai-;s lube and thence thi'(jng!i

tlio iron i>i]:»e. The iron pipe deseomls

vertically to about 7 feet below the

tardv, and at its lower end it is pro-

vided with a cock, by means of which

the rate of flow through the glass tube

C.)D may be regulated.

A glass tube HK communicates

with a reservoir containing deeply-coloured water and terminates at its

lower end in a pipette, the axis of which coincides with the axis of the

tube CE). A jet of coloured water may thus be sent into the glass

tube CD to flow with the water going through that tube.

At' velocities below a certain velocity, called the critical velocity, the

jet of coloured water travels in a straight unbroken stream along the axis

of CID, but when the critical velocity is exceeded the coloured stream
breaks up wdthin CD, and when photographed with an electric spark it is

seen that the coloured water is whirling and eddying, showing that the

motion of the water within the tube is no longer steady and in parallel

stream lines, but sinuous or turbulent.

In the exj)eriments described above, the water is still before entering

the experimental tube. Profes.sor Osborne Reynolds experimented with
other apparatus, in which he caused turbulent water to flow through a

long smooth pipe, and he found that below a certain critical velocity the

turbulent motion became non-sinuous, but this critical velocity was much
lower than the critical velocity first referred to. The first critical velocity

is called the higher critical velocity, and the second is called the lower

entical velodiy. For example, in a smooth pipe 1 inch in diameter, with
the water at 0° C., the higher critical velocity is about 3 feet per second,

while the low’-er critical velocity is only about foot per second.

The critical velocities vary inversely as the diameter of the pipe, and
they are lowered by raising the temperature of the water.

For further particulars of 0.sborne Reynolds’ researches see the

Transactions of the Royal Society, 1884, or Dunkerloy’s Hydraulics,
vol. i. chap. vii.

404. Loss of Energy or Head due to Friction in a Pipe.—At
velocities below the critical velocity, the motion being non-sinuous, the

experiments of Osborne Reynolds showed that the loss of energy was
directly pi’oportional to the velocity, directly proportional to the length of

the pipe, and inversely proportional to the square of the diameter of the

where h' is the loss of head, the velocity of the water.

length, and d the diameter of the pipe. But when the critical

velocity was exceeded, the .motion being then sinuous or turbulent, the

loss of energy was proportional to the D72 })ower, or nearly as the

square, of the velocity, directly proportional to the length, and inversely

}>roportioual to the diameter of the pipe, or h' oc

In practical cases the velocity is greater than the critical velocity, and
the pipes in use have varying and uncertain degrees of roughness, so that

APPLIED MEOHANKJH
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the amount of turbulence in the water is a varying and uncertain

quantity. The consequence is tha.t there is no exact theory of the loss of

energy in practical eases, and the Tormulm in use are therefore to a large

extent empirical.

Experiment has shown that in practical cases the loss of energy is

approximately proportional to the square of the velocity of the water and
to the amount of the wetted surface, and inversely proportional to the

area of the cross section of the stream. The wetted surface is si, where s

is the wetted perimeter, hence the loss of energy is approximately pro-

portional to Avhere A is the area of the cross section of the stream,

: i is the reciprocal of the hydraulic mean radius.

The head or energy due to the velocity v is, and the loss of head

and ---

A

may be written Ji' =f ‘ ~ where/ is a coeflScient to be determined by

experiment, and is called the coefficient of friction for the pipe. This co-

efficient / is not simply a coefficient of friction betw'een the water and

the surface of the pipe, but includes a coefficient of resistance due to

eddying motions in the wmter itself.

For a circular pipe running full m — dji, hence

If A and B (Fig. 760) are two sections of a pipe at a distance I apart,

the heights of A and B above datum being and h., respectively, and

the pressures and Pg. If the pipe be of uniform section, then the

velocity v will be the same throughout. The total energy or head of the

2s-

water at A is

P„

+^ + and the total energy or head at B is

0
^

-
1

- -f h„. The loss of energy or head between A and B is

m 1g
Hence ii -h 1 ^

p _p
and - -2

-t- (7q - Ay), which suggests the experime7ital method of

finding 7t!. Knowing 7//, if v is determined, / can then be found for the

particular pipe experimented with.

405. Darcy’s Formula.—Darcy found from numerous and careful

experiments on the flow of water in pipes up to 20 inches in diameter

that the coefficient / varied with the velocity of the water, and also witli

the diameter of the pipe. Since the variation in the velocity in ordinary

cases is comparatively small, its effect on the value of / may generally be

neglected, but the range of pipe diameter in practice being considerable,

Darcy allowed for it in the formula

pipes, where d is the diameter of the
,
pipe in feet. For old and incrusted

pipes Darcy found the value of/ to be double that for new clean pipes.

406. Hydraulic Gradient.—Referring to Fig. 760, A and B are

two sections of a straight uniform pipe at a distance I from one another,
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and li.^ ai’e tlie heights of A and B above datum, and Pj and ar

the pressures at A. and B. If pressure tubes, called piezometer.

he inserted in the pipe at A
and B, the water Avill rise in these

tubes to height Pj/ot and Pg/w’,

as shown. The line CD join-

ing the tops of the water-

pressure columns is called the •

hjidraulic gradient or virtual '

do2')e of the pipe, and h', the

difference between the levels of

0 and D, is called the viHual

fall of the pipe AB. The hy-
'

draiilic gradient or virtual slope

is measured by the ratio h'jl, and is denoted by i.

The virtual fall h' is evidently given by the ecpiation

JMwn

and is equal to the loss of head between A and B. In Art. 404 it was

shown that h' is given by the equation 7i'-f- .m 2g
Since the loss of head is proportional to the length of pipe, it follows

that for a straight uniform pipe the hydraulic gradient is a straight line.

When the pipe is not straight, points in the line of hydraulic gradient

may be determined from the equation hf f . L . ^ taking successive
• m 2g

values of f, the length of pipe, between the points considered.

In water mains the curvature in the direction of the length is generally
small, and its effect on the hydraulic gradient is generally neglected. For
example, in Pig. 761 is shown
a pipe AEB leading from a
tank or reservoir at A to E
another at B at a lower level.

The hydraulic gradient is

shown straight, and with the

amount of curvature shown on
the pipe, this will be found
to be approximately true. It _ -

wull be noticed that the upper ^ ' ’

end of the line of hydraulic gradient is below the lovtd of the water

in the tank A, which is accounted for by the loss of head at the

entrance to the pipe at A.

Another point illustrated by Fig. 761 is that a part CD of the pipe

is above the hydraulic gradient, which shows that in that part of the

pipe the pressure is less than atmospheric. If there is a leaky joint in

CD air will rush in, and while the pipe from A to E will run full with

a hydraulic gradient FE, the pipe from E to B will nob run full, and the

discharge will be reduced. Water pipes should therefore be arranged, if

possible, so as to lie below the hydraulic gradient.

When a valve or other obstruction occurs in a pipe there is a sudden
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fall in tlie hydraulic gradient at the obstruction, due to the loss of head
caused by it. .

407. Oh^zy’s Formula for Flow in Fipes.--Erom the ciiualiou

/?/=/• “ of Art. 404,
.
^7}ij = e Jmi,m

where c stands

This formula, v — e is generally called the Chezy formula for the

flow in pipes.

408. Examples on Flow of Water in Pipes.—The following ex-

amples show the application of the formulae which have been dis(;ussod

to practical cases.

(1) A pipe IS inches in diameter and 6 miles long connects a storage

reservoir A with a service reservoir B. The difference between the levels

in the two reservoirs is 100 feet. It is required to find the rate of dis-

charge through the pipe and the hydraulic gradient.

Let 2) = velocity of w'ater through the pipe in feet per second.

The loss of head at the entrance to the pipe is 0’45^^ (Art. 396).

The loss of head due to friction in the pipe is

d 2g \ 12x1-5/

4 X 6 X 5280
44.-3

.87'^'^

1-5 ~'2g ' ig’

The head equivalent to -- is lost at the outlet into the lower

reservoir.

Total loss of head = |-\o-45 -f- 445-87 -P 1) = 447-32|? .

Hence 447-32:^ = 100, from which 2;= 3-79.

2y

Discharge in cubic feet per sccond= ^
x 1-52 x 3-79= 6-697.

Discharge in gallons per day

= 6-697 X 60 X 60 X 24 X 6-23 = 3,604,808.

/Applying the equation of energy to 1 lb. of water at the surface of

the W'ater in A and to the same quantity at a point in the pipe near to

the entrance, and taking the level of the water in B as the datum level,

100 = -+.f +0-45
0 Ig 2g

Hence 100 - ?= - ---- - 0-32 foot.
w 2g

The hydraulic gradient may now be drawn as a straight line joining

a point in the surface of the water in B immediately over the outlet end

of the pipe, w'ith a point immediately over the inlet end of the pipe and

0-32 foot below the surface of the water in A,

It is obvious that in examples of this kind, where the pipe is very

long, the only inqiortant loss of head is that due to friction in the pipe,

and the other losses may generally be r
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(2) Eefj[iiirecl the diameter of a pipe to connect two reservoirs which

ai'e. 10 miles apart. The discharge is to be at the rate of 4,000,000

galhnis per day, and the available head is 350 feet.

, . , . , 4000000 X 10 1000000
Discbargom cubic leet per second = „ MSVMG’
Let d = diameter of pipe in feet, and v — velocity of water through the

pipe in feet per second.

TT ,1, 1000000
1

• 1000000
4"'‘‘’ = 62Tir2Hi’ '’"623754V#-

Neglecting all losses except that due to friction in the pipe, then

10 X 5280 1000000=^

d ‘

%j d 623^ X x 2/7
’

from Avhich d^ - 839/

If / be put equal to ri® = 4’195(^f:Z + -^^,

which is an awkward cepration to solve, and it is simpler to assume a

value for/, say in this case 0‘006, then d<'' = 839 x 0’006 = 5'034, and by
logarithms d == 1 ‘38.

Using this approximate value of d, a more approximate value of/ is

determined, namely, f— O-OOs/^l + —

—

- = O’OOoS.
\ 1 .Q X 1 *oO/

A more approximate value of d is then d — li,/839 x 0’0053 — 1‘35 feet.

(3) Reservoirs A and B (Fig. 762) discharge into a reservoir C
through pipes AD, BD, and DC, as shown. The lengths of the pijies

AD, BD, and DC are 10,000 feet,

6000 feet, and 8000 feet respec-
40 l!

‘

tively, and their diameters are
i
Agjl ^ j

18 inches, 12 inches, and 21 inches
- j
- lOo'

respectively. The Avatcr levels of ' 7 I

B and C are 40 feet and 100 feet
r 1

respectively below the water level

of A. It is required to find the

rates of flow from A and B.

Let Q,, Qg, and % be the

rates of flow through AD, BD, and DC respectively, in cubic feet per

second.

If 7i is the loss of head in feet in a pipe of diameter d feet aiul length
I feet, V the velocity of flow' in feet per second, and Q the rate of discharge

in cubic feet per second, then

- '^~r‘'^n 27VT
An average value of / for the pipes in this example may bo taken at

about 0’0054, then Q==43a/“, and ^



GEN.EKAL PRINOIPLES OF HYDRAULICS

lu ortU'r that the water may flow from B towards D, it is evifhnii,

that if th(^ ]»ipe BD be closed the loss of head k betw(;ei.i A ami 1)

must lie greater than 40 feet.

and =
43'-^ X 1-5“ 43-^ X 1-755’

where Q is the rate of flow through AD and DC -when the pipe BD is

closed. From these two equations, 7i = 73 feet, nearly. Therefore if the

pipe BD bo open, water will flow from B toward.s D.

How let 7^2 ,
and /ig be the losses of head between A and D,

B and D, and between D and C respectively, then

j _10000Qx
1 _ iQ__6000Qg

43=100-7.^ _ a„dQ, + Q,= Q,,.

These equations are sufficient to determine and Qg, but their

solution is somewhat cumbersome, and it is really simpler and quicker

to proceed by approximation, as follows

Select values of (which must lie between 40 and 73) and

calculate the values of Qi, Q.2 ,
and Qg from the equations just given,

until values are obtained which make Qi + Q2 = Q3 * The work may
be tabulated as follows :

—

h
Jh

7's

h

Qi
Qa
Q3

Qi + Qo

60 61 62 68 62-1 62-2 62-25

7-746 7-810 7-874 7-937 7-880 7-887 7-890

20 21 22 23 22-1 22-2 22-25

4-472 4-583 4 -G90 4-796 4-701 4-712 4-717

40 39 38 37 37-9 37-8 37-75

6-325
i

6-245 (5-164 6-083 6-156 6 - 14B 6-144

0-179 9-255 9-331 9-405 9-338 9-346 9-360

2-482
1

2-544 2-603 2-662 2-609 2-615 2-618

;

12 -.321 12 -

J 65 12-007 11-850 11-993 11-976 11-969

!
11 -(561

I

1
11-799 11-934 12-067 11-947 11

-

9(51 11-968

The answers required, as found above, are Q^ = 9-350, and Q2 = 2-618.

For practice, and to illustrate more fully the working of this example,

the student would do well to find the answers directly by solving the

equations already given.

409. Power Transmitted through a Pipe.—Case I. The pipe

(Fig. 763) is provided with a nozzle at its delivery end, as for a Pelton

wheel, and there is a valve by means of which the area through the nozzle
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thei’efore

may be varied. Diameter of pipe = £Z feet, lengtli of pipe =7 feet, total

head at nozzle — A feet, and ?? = velocity of water through the pipe

in feet per second. Neglect the losi of

energy at the entrance to the pipe and at
,

7-13

the nozzle.

Energy delivered at the nozzle per lb. of

U
water per second — li -/ '

' Fig. 768.

Total enei’gy delivered at the nozzle per second

4 \
’ d %g)

Horse-power delivered at nozzle =H = ~ ‘

^
'

V"6/1
‘

To find when H is a maximum
dK mPw
dv 4 X 550'

Hence H is a maximum when 3/-
‘ ^ = when

wd^wh lajid
The maximum horse-power is therefore = *

If there were no friction, the horse-power delivered would be

^ _ irdHloli

i~4x 550‘

The efficiency is therefore ~ = 1

~

Hi hd %g

When H is a maximum, the efficiency is f.

If P is the pressure of the water in lbs. per square foot just before

passing the valve at the nozzle, a the area of the cross section of the pipe,

the area through the valve or through the contracted nozzle, and v-^

the velocity of the water through the contracted nozzle, then

also --P — -p/. -y • „
=

w d Ig

w, and-b==y^
7 a V \2glid -A;flv^J

When H is a maximum, v~ then ~
^ {yft a y ojl

Example.—Let d~0‘5 feet, Z= 400 feet, 7i==300 feet, and /= 0-006.

Then H = 0-0667t<100 - 0-09947;2).
4x550\ ' d %g}

^ '

H is a maximum when 18-31 feet per second.

Maximum horse-power = 0*0667 x 18-31(100 - 0-0994 x 18-31^) = 81*4.

Efficiency per cent. = 100^1 - = 100 “ 0-0994?;2.
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The horse-power and the efficiency per cent, are shown plotted,

velocity base in Fig. 764.

The maximum possible velocity is when the area through the i:

is equal to the area through the •

pipe, then /i -/
d %(j ^ jjj. ^

a. -80^§

w = 30-93 feet per second. At
CO %

this maximum velocity the horse- ^ — — ^
])ower is 1UT7, and the efficiency

4-9percent. — --5r2oi
When the horse-power de- g

livered is a maximum, a-, the 4 a 12 16 20 24 28 32

necessaryarea through the nozzle, VelocibfV (Feet per Second,)

is ci^g'L^O-iei a. Fig. 764.

Case II. The pressure energy of the water is so great compared

with the kinetic energy that the latter may be neglected, also the effect of

variation in the level of the pipe may be neglected.

Let.^q and j? denote the pressures in lbs. per square inch at points Aj

and A in the pipe at a distance I feet apart. Let = horse-power enter-

ing the portion AjA of the pipe at Aj, H = horse-power delivered at A,

«; = velocity of water in feet per second, and = diameter of pipe in

feet.

Loss of energy between A^ and A per lb. of water passing

144(m ~p) ,, 4Z .1 ^

w d ^ 144 d 2g

\^4^p-^TrdHH - ^ and H - ™ -- 1 44?n - wf • -

,

" 4x550 ’ '4x 550 4x550\ d %j)

To find when H is a maximum,

144u, - 'dwf> - • hence H is a maximum when
dv 4 X 550\ d 2p/

The maximum value of H is therefore = 0*483,

All the power is lost in friction in the pipe, and H -- 0, when

.4.1 I72p,gd
.„_=1442,,.or. =y-^-.

The efficiency is -- = 1 - .

Hi 72p^gd^

When H is a maximum, the efficiency is f.

Example.—

L

et j^i
— 1 120 lbs, per square inch, ? = 1 mile = 5280 feet,

if?= 0*5 foot, and/— 0*006,

H = |-^=»(57-68-0-0876d2).
4 X o50\ * d 2gJ
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where 7 is a coefficient depending on the roughness of tlic channel The

unit of length in the formula is the foot.
_

The formula may he written «? = c ijmi, where e is the quantity in the

large bracket above.

1-1 is a maximum when v — ~ second.

eft

Maximum value of H— 14'8(57‘58

11 is zero when w— 0
,
and when

V = A /— = 26-6 feet per second.
\ wft
Efficiency per cent.

== lOof1 - - 100 -0‘152u2
\ 72p^gdJ

The horse-power and the effici-

ency per cent, are shown plotted on

a velocity base in Fig. 766. In

hydraulic mains the velocity of the

water seldom exceeds 5 feet per

second, and in the example just

-0*0876 X 14-82) -568.‘

20 24
smexty V (Feet -per Second.)

Fig. 76.5.

considered the efficiency at this velocity is 96-2 per cent.

410. Flow of Water in Channels.—When water flows in an open

channel, or when it flows in a pipe or closed channel without filling the

pipe or channel, the water will have a free surface, and the hydraulic

gradient will be the longitudinal slope of the free surface, and, since in

most cases the depth of the water will be uniform in the direction of flow,

the hydraulic gradient will be the same as the longitudinal slope of the

channel.

Eeasoning as in Art. 404 on the loss of head due to friction in a pipe,

it follows that for a channel (Fig. 766) the loss of head lif ==/

It must be kept in mind that the coefficient

of friction f and the coefficient c, which is a

function of f, depends on the roughness of the

surface of the channel, and also on the form and

slope of the channel

411. Bazin’s Channel Formula.—The eminent French hydraulic

engineer Bazin examined the results of a very large number of experiments

on the flow of winter in channels of varied forms and dimensions, and in

1897 he published a formula based on these results.

The Bazin channel formula is

r i57’(157ffi
"

y
Jm ^
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A few examples of tlie value of y are given below

Character of the Wetted Surface^

Very smooth .—Smooth cement or planed wood
Smooth.—rianks, brick, or cut masonry . ,

—Rubble masonry . . . .

Very rouyh .—Ordinary earth canals

0-109

0-290

0-833

2-355

412. Kutter’s Channel Formula.-—Two Swis.s engineers, Ganguillet

and Kutter, devised a formula, generally knowm by the name of the

latter, which has been largely used, notwithstanding the fact that it is

somewhat cumbrous. The use of the formula is, however, facilitated by

published tables. The formula is

"4i-6+l:^U^^ ^

1\ n

J sj'tti..

where n is a coefficient depending on the roughness of the channel.

A few examples of the value of n are given below :

—

Character of Wetted Surface.

Well planed timber . . . . . . . .

Smooth cement, or coated clean pipes . . .

Rough planks , .... . . .• .

Ashlar, good brickwork, or iron pipes in ordinary condition

Rough brickwork, or incrusted iron pipes .

Rough rubble in cement, canals in very firm gravel .

Rivers or canals in good order . .

413. Depth for Maximum Discharge in a Channel of Circular

Section.—Let ?• = radius of section of channel (Fig. 767), and 9 =

subtended at the centre by the Arctted perimeter.

Assume that c in the formula v — c Jmi is constant for

different depths of stream.

Wetted perimeter =

Area of section of stream ==^ (0 - sin 9).

Therefore =

And the discharge = ^(6* - sin

J{9 - sin rH jri

^9 ;"2V2' .

The discharge will be a maximum -when is an



y (d - sin 6)^0 ^

-~{0 — sin ^)“(1 - cos 0)0 ~ ~~0 '(6* - sin 0)^

u is a maxinmm Avhen ^ = 0, that is, when
' d0

-j(l-o„«tf) =^
which reduces to sin ^ = ^^(3 cos 0 - 2).

The value of 0, found by trial or by plotting, which satisfies this

equation, is 308“ to the nearest degree.

The depth of water in the channel is then

r + r cos (1 80 - = r(l + cos 26°) = 1 *899r,

or practically 0'95 of the diameter.

Exercises XXVIIIb.

1. A horizontal pipe 3 inches in diameter suddenly enlarges to a pipe 4 inches
in diameter. Water is flowing from the smaller to the larger pipe at the rate

of 90 gallons per minute. What is the loss of energy at the enlargement, in

ft.-lbs. per minute ?

2. If the water flows through the pipes of the preceding exercise at the same
rate as before, but in the opposite direction. What is the loss of energy at the
sudden contraction, in ft.-lbs. per minute ? Assume that the coefiicient of.

contraction (&) of the sti’eam on entering the smaller pipe is 0'7.

3. A pipe of 3 inches diameter conveying water is suddenly enlarged to
5 inches diameter, A U-tube containing mercury is connected to two points,

one on each side of the enlargement, at points where the flow is steady. Find
the difference in level in the two limbs of the U when water flows at the rate of

J cubic foot per second from the small to the large section, and vice versa. The
specific gravity of the mercury is 13’6. [U.L.]

4. State briefly the laws of fluid friction deduced from, the experiments of
Fronde. Taking skin friction to be 0‘4 lb. per square foot at 10 feet per second,
find the skin resistance in pounds of a ship of 12,000 square feet immersed
surface, at 15 knots. Also the horse-power to overcome skin friction.

[Inst.C.E.]

6. The friction of a thin plate when moved edgewise through water is found
by experiment to be J lb. per square foot of surface in contact with the water,
when the velocity of rubbing is 600 feet per minute, and that it varies as the
square of the velocity of rubbing. How many ft.-lbs. of work per minute will

be expended in overcoming the skin friction in the case of a ship steaming at

18^ knots, i£ the immersed surface of the ship when floating at her load line is

27,620 square feet? If this skin friction is 70 per cent, of the total resistances

encountered by the ship, what is the total horse-power usefully expended in

propelling the ship ? [B.E.]

6. Calculate the hydraulic mean depth, for (1) a channel having a bottom
width of 6 feet, side slopes of 2 vertical to 1 horizontal, and a depth of water
5 feet

; (2) a channel whose section is an arc of a circle of 4 feet radius, the
greatest depth of water being 2 feet.

7. In a water main 3 feet in diameter the velocity of the water is 3 feet per
second. '!^ind the head lost in friction in feet per mile, using 0-005 as the
coeflioient of friction.

APPLIED MEOHANIOS
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8. Find t,hft head lost in friction in a pipe 15 inches in diameter and 4
long when the diKoharge is 2,000,000 gallons in twenty-four hours. Take 0'00r»4.

as the Goeiiicient of friction.

9. Aset of pumping engines has to force 3,000,000 gallons of water per day
through a pipe 18 inches in diameter and 5 miles long to a heiglit of 210 feet.

Taking the coefficient friction as O'OOoS, what is the effective horse-powf^ of the
engines?

'
10. Two reservoirs, 10 nailes apart, are connected by a pipe 3 feet in

diameter, the difference in their water levels being 40 feet. If the inlet valve
to the lower reservoir is partially closed, so that the water rises in a vertical
tube let into the pipe on the inlet side of the valve 20 feet above the level of the
water in the reservoir, what would be the discharge of the pipe ? [lust.C.B.]

11. Assuming a coefficient
_

of friction equal to O’OOG, what must be the
diameter of a pipe 12 miles long to discharge 40,000 gallons of water per hour,
the available head being 600 feet ?

12. A pipe, 9 inches diameter and 1 mile long, eonnects two reservoirs. The
pipe has a slope of 1 in 80. The level of the water is 25 feet above the inlet

end, and 6 feet above the outlet end. Neglecting all losses except skin friction,

find the discharge, and draw the hydraulic gradient. Determine the pnassure
head in the pipe at a distance of half a mile from the inlet. The coefticient of
friction may be token as 0'007. [Inst.C.E.]

13. A pipe 30 inches in diameter branches into two pipes of equal diameter
whose combined area equals that of the SO-inch pipe. Compare the loss of head
in a mile of the latter pipe with that in a mile of the two pipes, the rate of flow

being 4 feet per second.
^

fInst.C.E.]

14. Two reservoirs are connected by a pipe 1 mile" long and 10 inches
diameter, the difference in the water surface levels being 25 feet. The value of

0 in the formula v~ 0 sjmi is 120, feet and seconds iieing the units. Determine
the flow through the pipe in gallons per hour, and find by how much the
discharge would be increased if for the last 2000 feet a second pipe 10 inches
diameter is laid alongside the first and coupled to it so that the water flows

equally along the two pipes. [U.L.'J

16.

A pipe consists of half a mile of 12-inch and half a mile of 6-inoh pipe,

and slopes at 1 in 100. The discharge is 2 cubic feet per second. Find the
difference in pressure head at the two ends of the pipe. [Inst.C.E.]

16. A line of piping has, in the upper portion of its length, a diameter of 15

inches for a length of 5000 feet, and an inclination of 4 per 1000. A tapering

pipe then reduces the diameter to 12 inches, which remains constant for a length

of 2000 feet, throughout which length the inclination is 3 per 1000. Find the

rate of discharge in cubic feet per second when the pipe is fully charged and is

delivering fre^ at its termination. The equation of discharge may be assumed

as Q=:42
/y/^3 where Q denotes cubic feet per second, A the head lost in

length I, and d the diameter in feet.
_

[Inst.C.E.]

17. A pipe AB is fully charged with water at A. Two smaller pipes BO and
BD conve)’- the water from B to two points C and D. The length and diameter

respectively of AB are 10,000 feet and 15 inches; of BC, lO.OCO feet and 12
inche.s ; of BD, 10,000 feet and 9 inches. Points C and D are respectively .50 feet

and 80 feet below A. At all points tho piping is under pressure except at C and
D, where the water issues freely. Find the discharge at C and D, using the

equation of discharge in the preceding exercise.
_

[Inst.C.E.]

18. A reservoir A supplies water to two other reservoirs B and C (Fig. 768).

The difference of level between the surfaces of A and B is 75 feet, and between

A and C 97 'o feet. A common 8-inch cast-iron ruain

supplies for the first 850 feet to the point D. ,
A 6-inoh

{)

main of length 1400 feet is then carried on in the same
straight line to B, and a 5-inch main of length 630 feet

.

branches off at D and goes to 0- The entrance to the \c
8-inch main is bell-mouthed, and losses at the pipe

exits to the reservoirs and at the junction of the 768.

pipes may be neglected. Find the quantity of water

discharged per minute into the reservoirs B and O. Take the coefficient of fric-

tion as O'Ol. [U-R]



19. A 4-incli fire aiaia is connected to a storage tank, tlie length of the pipe

being 800 feet. If the main ends in a nozzle inches in diameter, and if the

liead of water in the storage tank is 150 feet above the nozzle, to what height

will t.h(’. nozzle be able to deliver water? The coefficient of friction is 0-000.

[U.L.]

20. A ihpe 8 inches in diameter and 1000 feet long leads from a reservoir, and
terminates in a nozzle open to the atmosphere. The nozzle is 600 feet below
the free .surface of the water in the reservoir. Determine the diameter of the
nozzle when the kinetic energy of the jet is a maximum. Take the coefficient

of friction as O’OOG.

21. Referring to the preceding exeroi.se, calculate the velocity of the water in

the pipe and in the jet, also the horse-power of the jet and the efficiency, for

nozzles of 1, 2, 3, 4, 5, 6, 7, and 8 inches diameter, and plot the results on a base

representing the diameters of the nozzles.

22. Prove that when power is transmitted liydraulically through a pipe the

maximum horse-power is transmitted when one-third of the original head is

wasted in friction. You may as.sume that the loss of head due to friction is

proportional to the square of the velocity.

What will the maximum horse-power be if the diameter of the pipe is 6

inches, its length 1200 feet, the original pressure 700 lbs. per square inch, and
the coefficient of friction 0’0075 ? [U-L-l

23. Calculate the percentage loss of horse-power per mile, when power is

hydraulically transmitted in cast-iron pipes, 6 inches in diameter, for velocities

of flow of 120, 160, and 180 feet per minute, and for pressures of 260, 750, and
1250 lb.s. per square inch,

Draw curves to show the results of your calculations, and from your curves

obtain the total loss of horse-power when the 6-inch pipe is 4600 yards in length,

the velocity of flow 175 feet per minute, and the pressure 1000 lbs. per square
inch. Use the formula—loss of head = 0'03iw®/27£? (feet second units). [B.E,]

24. One hundred horse-power i.s to be transmitted to a distance of 5 miles

with a loss of 16 per cent, of the head due to an accumulator pressure of 750 lbs.

per square inch. The beginning and end of the pipe are at the same elevation.

Find the diameter of the pipe. The equation of discharge in Exercise 16 may
be used in this case, but with a coefficient of 36 instead of 42. [Inst.O.E.'j

25. Some hydraulic machines are served with water under pressure by a pipe

1000 feet long, the pressure at the machiues being 600 lbs. per square inch.

The horse-power developed by the machines is 300, and the friction horse-power
in the pipes 120. Find the necessary diameter of the pipe, taking the loss

of head in feet as 0-03- , and 0-43 lb. jjer square inch as equivalent to 1 foot

head. Also determine the pressure at which the water is delivered by the pump.
What is the maximum horse-power at which it would be possible to work the

machines, the pump pressure remaining the same? [U-E.]

26. The cross sections of four channels are shown in ITig. 769. They are all
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Fia 769.

equally smooth, they have the same slope and the same rate of discharge. Find
the dimensions s, rf, and &.

27, If the faces of an open channel are plane and they are tangential to

the surface of a cylinder whose axis is in the free surface of the water in the
channel, show that the hydraulic mean depth is equal to half the radius of the
cylinder.

28, A semicircular channel 10 feet in diameter flows full of water. Compare
its discharge with that of a rectangular channel of the same cross sectional area
9 feet wide, lined with the same material, and having the same inclination.

[Inst.O.E..]
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29. A channel, with a bottom width of 30 feet, and side slopes of 2 hori-

zontal to 1 vertical, flows full of water to a depth of 7 feet. Find the velocity

of flow in, and the discharge of, the channel, the inclination being 1 in 5000,

and c in the Chezy formula 100. [Inst.C.E.’l

30. A channel with cement sides is 4 feet wide at the bottom, and its .sides

slope at 2 vertical to 1 horizontal.. The slope of the channel is 1 in 500.

What will be the depth of the water for a discharge of 12,000 gallons per
minute. Take the coefficient of friction as 0’006, [U.L.]

31. A channel in which the water is to run 3 feet deep has to di.scharge

60 cubic feet per second, the velocity of flow being 2‘5 feet per second. The
sides slope at 1’6 vertically to 1 horizontally, and the value of c in the formula

v—GsJmi may be taken as 110, feet and seconds being units. Find the width of

the channel at the bottom, and the hydraulic inclination necessary. [U.L.]

32. Apply Kutter’s formula to find the rate of discharge in ’cubic feet per

second of a channel having a bed width of 20 feet, side slopes of 1J horizontal

to 1 vertical, depth 6 feet, and longitudinal slope 1 in 6000. Take w, the co-

efficient of roughness, =0'02.

33. Water flows in a pipe without filling it. Show that the velocity of flow

for'a given slope is a maximum whan the wetted perimeter subtends an angle d

at the centre given by the equation 0=tan 6, and that 6>=267J degrees nearly.

34. The cross section of a closed channel is a square with a diagonal vertical,

s i!3 the side of the square, and y is the depth of the water line below the apex.

Show that for maximum discharge y=0T27», and that for maximum velocity

y= 0'414s.

36. A cast-iron pipe 18 inches in diameter is laid with a slope of 1 in 1000.

Water flows through this pipe with a depth of 13’5 inches. Taking o in the

formula v= 0 s/mi as 126, find the discharge in gallons per hour.

414. Impact of a Jet on a Flat Vane.—Case I. Direction of fet

pe7'pendm(lar to vane. Vane at rest (Fig. 770).—A = sectional area of

jet. = Telocity of jet before impact. weight of liquid reaching

vane per second. = weight of unit of volume of liquid. P = total

normal pressure on vane due to impact of jet.

Since the motion of the liquid in the direction

in which the jet is moving is entirely destroyed, the

loss of momentum per second in that direction is

and therefore

g

2g

where Ti is the head due to the velocity v. But wkh is the static

pressure on an area A due to a head Ti. Therefore the total dynamic

pressure due to the impact of the jet on the vane is equal to twice the

static pressure on an area A due to a head Ti. In

other words, the total dynamic pressure of the jet

issuing under a head 7i will balance a static

pressure on an area due to a bead 2Zi. This may
be demonstrated by the apparatus shown in Fig.

771, where E is a tank containing water to a

constant height h above the axis of a tube pro-

jecting from the side of the tank. 0 is another

tank containing water to a height above

the axis of a projecting tube of the same size and

shape as that projecting from B. A flat plate D is suspended loosely

against the mouth of the tube on 0, and is held there by the force of

the jet from B, as shown. Experimentally, the head in C t^I be slightly
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less than 274 on account of the doss of energy in the jet from B due to

I’rietion.

As to the distribution of the pressure on a Jlat plate stnu'k norinally

by a jet, this is shown approximately in Fig.

772, where the intensity of the pressure due to

the impact of the jet is plotted on the back
of the plate. At the centre the pi-essure /i, in

feet of water, is slightly less than the head due
to the velocity v, that is to say, h is slightly less

than

Case II. Same as Case I., except that the

vane is moving in the same direction as the jet

loith a velociip Vy—Loss of momentum of

water impinging on vane per second in direction

W
of motion of jet =—(y - 1\), therefore

P = ™ (?;-??,).

g

But \Y= wA(’v-vj), therefore P = ~(y-yj)2.

Useful work done per second = P/tj

g

Kinetic energy of jet per second =
2

.
4/

Efficiency =
g ^ 2g ya

'For a given value of v the efficiency will be a maximum when
- yj)2 is a maximum.

Let 7/ = yi(y- y])‘^ = yYy2_

one-third of the velocity of the jet for the highest efficiency.

%-hY
8 V 8/ 8 „„ „

: — =: -^ ,
or 29 -6 per cent.

, 27 '

:
Case III. Direction of jH m-a1f.es an angle B

loith vane. Vane at rest (Fig. 773).—Loss of

momentum per second in direction of normal to

W
vane — —ysin^.

0

Therefore P =s sin 6.

g
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Case IV. Same as Gase IIL , except that the vane is moving yaraJlei

to itself v)ith a velocity v-^ in a direction making an angle cf) with the

iTOifi (Fig. 774).—Loss of motaenttira per

second in direction of normal to vane

= (y sin 6 - sin c/>) = P.

Let tliG vane .BC move to B'C' in 1

second. OD =
'y^, and OE = velocity of

vane in direction of jet.

OE sin 0 = OD sin </>. Therefore

OP —
sin 6> sin 0 ’

Relative velocity of jet and vane in direction of jet = w -
sin 6*

’

Therefore W - wA(

v

- =— J/o sin 6 ~ lu sin eft),

\ sm 0 J mi 0 ^ '

and P = —^--^(?;sin0-'Visin<^)2. ,

(/sin (9

Useful work done per second

T) • I ?yA?;i sin c/>/ . ^ • j\o- Py, sin 6 1—^ (v sm 0 - v. sin d))2

,

'
17 sin

^ '

Kinetic energy of jet per second “

. wAvifdnib/ . A . wAv^

p sin ^ ^ 1 A"/ 2p

= sin 0 -i/, sin ,# sm 0 I r ,

In the same way as in Case II. this efficioncy can be shown to be
, vsin^

a maximum when y, =
3sin ^

The maximum efficiency =~ sin^ 0.

Case IV. is the general case from which the others may easily be

deduced. For example, Case II. may be deduced from Case IV. by
putting ^ and each equal to 0.

In the foregoing demonstrations the losses due to friction and the

production of eddies have been neglected.

415. Impact of a Jet on a Succession of Vanes.—In the preceding

Article the jet was supposed to impinge on a single vane, and it was seen

that the amount of water arriving at the moving vane was less than the

amount delivered by the nozzle. If, however, a series of vanes come in

turn in front of the jet, each vane entering the jet at the same point,

the vanes will receive the whole of the water discharged by the nozzle,

and the useful work done will be increased, and the efficiency therefore

raised. For example, consider Case II. of the preceding Article with a

succession of vanes instead of one»
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a vane travels the distance x. Hence

of vanes in action at one time

The weight of water reaching the vanes is now W==swAi’, and the

total pressure on the vanes is P= ~('i! — v;^)
—

Useful work done per second =P/7j = -

Kinetic energy of jet per second = wAw

Efficiency

For a given value of v the efficiency will be a niaximuin when

is a maximum. Let y — v^^iv — Pi), then ^ ~ ~ therefore

the efficiency is a maximum when v = 2?;^, and the maximum efficiency is

^(z? — -|?j) = or 50 per cent.

The action of a series of vanes will perhaps be better understood
by reference to Fig. 775. This does b

not represent a practical contrivance, p- a —

H

and it is designed to illustrate the

principle only. A frame, carrying

a series of vanes at intervals // apart,

travels parallel to the jet, and each

vane in turn is swung into the jet

at the same point. The vanes are

perpendicular to the axis of the jet.

At (a) the first’ vane has just come
in front of the jet. At (?>) the

second vane has just come into

action, cutting the jet in two. The
forward part of the jet will continue

moving until its rear end B overtakes

the vane in front of it. At (c) B,

which is moving faster than the

vanes, is overtaking the vane in

front of it, and at (d) B has over-

taken the vane in front of it, and
that vane therefore ceases to act.

Keferring to (b), let x be the dis-

tance which the front vane will have
to travel before it ceases to act

after the second vane has come into .

action. Then // -f a; is the distance travelled by a point iij the jet while

5

q + x
,

and the number

The total pressure on one vane is, by Art. 414, —{'u - Therefore
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, , n j-i- • VO
"0 wAv.

tiie total pressure on all the vanes is—(v - v-,)^ x = (v - vA as
^ g ' V — v^ 9-

already shown in another way. Fig. 775 is drawn for the case where

It is easy to show that in the general case, Case IV. of the preceding

Article, but with a succession of vanes instead of one, the total iionnal

pressure on all the vanes in action at one time is

wAv
P = sin 6 ~v^ sin ^),

and that the efficiency is sin 0 - Vj sin ^), also that the maxi-

mum efficiency is sin^ 6 when sin d sin
(f>.

416. Impact of a Jet on a Cup.—The axis of the jet is supposed

to coincide with the axis of the cup,

and the effect of friction will be

Fig. 776.

Case I. Cup at rest.—^The water will

leave the cup in a direction tangential

to the surface at the lip of the cup, as

shown in Fig. 776, and the velocity of the

water as it leaves the cup will have the

same magnitude v as the velocity of the

jet, but its direction will have been turned through an angle 180° - 6°.

Loss of momentum of water per second in the direction in which it

Yfv
is moving before striking the cup~— (1 + cos 6).

wAv^,.,
=: (l-t-cos0).

W?;
Therefore P =— (1 -f- cos 6

If d = 0,P =
2wAv^
~9~'

Case II. Clip moving in same direction as jet with velocity Vy—
Relative velocity of jet and cxip~v — Vy and this will be the relative

velocity of water and cup as the water leaves the cup. Hence the loss

of momentum of water per second in the direction in which it is moving
'

. W
before striking the cup is (v — -Wj) (1 cos 0), and this is equal to P.

But W = wA{v ~ vj), therefore P= (1 + cos 0).

Useful Avork iier second = Pwj = —v-jf (1 + cos 0).

Efficiency == -f cos 6) -r wAo >= -^(y - ^
1 )
2(1 + cos 0).

The efficiency will be a maximum when y= 3y,.

8. /.v 16 0 ^Maximum efficiency == ^,^(1 + cos u) —^ cos®
2 ‘

417. Reaction of a Jet,—^When a jet of cross sectional area A issues

from a vessel with a velocity v, the momentum given to it per second is
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— a,ji4 tMs requires that a force P = ~—— shall act on the ?et

<J g \ ^ \ 9'
, .

in the direction of its motion. As a consequence of th)s there must be

anotlier force F equal and opposite to P acting on
the vessel, as shown in Fig. 777, and unless an
external force be applied to the vessel the latter will

move under the action of the force F.

If the vessel ihoves under the action of the

force F in the dii’ection of that, force wuth a velocity

the magnitude of F and P remain the same,

namely,
g

Useful work done per second = Fv?,

V 1/

Total energy = useful work + lost work

g :^g

Efficiency = wApt+A „
g 2i/ +

418. Deviation of a Jet in one Direction hy a Vane without
Shock.—In the examples on the impact of a jet on a vane which have
hitherto been considered, the jet has struck the vane and been deviated

abruptly. A conseciuemce of this abrupt deviation is a shock, and there-

fore a loss of energy in agitating the water. Tlie full force of tlie

impact may, however, be obtained and the shock avoided hy so shaping

the vane that the jet on meeting it glides along its surface and is

deviated gradually.

Case I. Vane at rest (Fig.778).—At B,where the jet first meets tlie vane,

the direction of the surface of the vane coincides with the direction of the jet,

that is, the jet meets the vane tangentially.

The jet is then gradually deviated hy the

curved surface of tlie vane, and leaves

it in a direction tangential to the vane
at a.

.

The velocity of the water at B is equal
to V in the direction BD, and the velocity

at C is equal to v in the direction of the

tangent to the vane at C. Draw BE
parallel to the tangent to the vane at 0,

and make BE and BD each equal to r.

Join DE. Thou I)E is the change in the

vfilocity of the water, in magnitude and direction, while it passes over
the vane. If 6 is the interior angle between the tangents to tlie vane at

B and C, then DE = 2 vcos The change in the momentum of the

\V 2W-a 0
water per second m passing from B to G is • DE = cos ^ , and this

is equal to R, the resultant force on the vane due to the impact of the

FlO. 777.



GENERAL PRINOIPLES OF HyDRAELIOSGENERAL PRINOIPLES OF HYDRAELIOS 481

jet. The line of action of R passes through' O, the intersection of

axes of the jets at B and C.

The foregoing result may be. obtained in another way. At B the

Wv
impulse of the jet on the vane is P = in the direction BO. At C

W'/.
reaction of the jet on the vane is F =~ in the direction CO. The resultant

of these two forces, obtained by the parallelogram of forces OHKL, is

2Wv e
li= - cos 2*

Case II. Vane moving parallel to itself in a given direction wiffi a
velocity v^ (Fig. 779).—The jet moving in the direction BD with velocity

V meets the vane BC at B. The vane is

moving in the direction BE with velocity

Make BD.= dJ, and BE = z;i. Corn-

Thenplete the parallelogram BEDH.
BH = y^ is the direction and magnitude

of the relative velocity of the water and
vane

;
therefore in order that there may be

no shock at entrance, BH must be the

direction of the tangent to the vane at B. \ -w
The water moves over the vane with \

the relative velocity y,., leaving the vane at

C, where it has a velocity Vj. in the direction

CK tangential to the vane at C, and a

velocity in the direction CL parallel to jja

BE. Make CK=y,,, and CL = 'yj. Com-
plete the parallelogram CKNL. The diagonal CN = v^ is the direction

and magnitude of the absolute velocity of the water leaving the vane at C.

Draw BS parallel and equal to CN. Join DS. Then DS is the

change, in magnitude and direction, of the velocity of the water while

passing over the vane. If R is the resultant force on the vane due
W —

-

the impact of the jet, then R = — . DS, where W is the weight of

impinging upon the vane per second. Draw ST perpendicular to and
meeting DH produced at T. Then if P is the component of R in the

W -
direction of the motion of the vane, P = — • DT.

.

.
ff „

CN, the absolute direction in which the water leaves the vane, should

be perpendicular to CL, the direction of motion of the vane. CN has

then no component in the direction CL. The component of CN in the

direction CL in the case of a revolving vane is called the velocity of whirl

at exit, and for maximum efficiency this should be zero.
•'

. . - , ..i .
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Direful work per second — P6’^ = cos cos

Energy of jet per second — ioAv
• ^

_ ^vAo^

^~W'

Efficiency = ^(y - cos cos /3 ~ /^) ^os /S.

For given values of y and yS tlie efficiency will be a maximum %vhen

'/?j(y ~ Vy cos fi) is a maximum, that is, when "
' Hence the

maxiuium • efficiency is J, or 50 per cent. It is obvious that -when

It is evident that unless y8 is a small angle a single vane of limited

length BC could only remain in action for a very short time, and while

the vane is receiving water, that part of it upon which the jet is imping-

ing must be straight and parallel to BH in order that there may be no
shock at entrance.

For a succession of vanes, with ON ijerpendicular to CL, the total

W
pressure on all the vanes in action at one time is P = v cos /3, whereW
is now the total weight of water delivered by the jet |3er second, and is

cos ^
equal to tvAv. Therefore P = useful work per second

wAvxV^ cos /? -

is Py^ = —— . It would therefore seem that the useful work in-

creases indefinitely with but if the vanes are driven by the jet, the
useful work cannot exceed the energy of the jet. Hence the maximum

useful work = j the efficiency is then unity, and '

419. Action of a Jet on a Eevolving Vane.—A case of great im-
portance in connection with turbines and certain forms of water wheels
is that in which the vane upon which the water impinges is jmrt of

a revolving wheel. Beferring to Fig,

780, O is the axis of the wheel which
is perpendicular to the plane of the

figure
;
the acting surface of the vane

is also perpendicular to that plane.

The inner and outer edges of the vane
are at distances and from the

axis ’ of the wheel. In what follows

the wheel is assumed to be moving
with uniform angular velocity. The
linear velocitie.s of the inner and outer

edges of the vane are and Cg ’'c-

spectively. Evidently

At entrance the axis of the jet makes
an angle The absolute

velocity of the water at entrance is v^. Completing the parallelogram
of velocities at B^, the relative velocity of the water and vane at

A
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outvaiico is found, and its direction determines the direction of the

tangent to the vane at entrance, so that there shall he no shock there.

At exit the relative velocity ^2 is in the direction of the tangent to the

s ane at that point,
,
the absolute velocity of the water at exit, is the

diagonal of the parallelogram, having 6-2 and Wg for adjacent sides. The
angle between V2 and C2 is 02*

Consider a small portion of the water of mass m. At entrance the

velocity of this mass in the tangential direction c-j is Vi cos 0-^

;

this is the

velocity of 'whirl at ent-ance. At exit the velocity of wdiirl is ^.'gcos 6^2*

Taking moments about O, the angular momentum of the mass at entrance

is cos 6*j, and at exit its angular momentum is ?n??2’’ij ^^2* Honce
the loss of angular momentum of the mass in passing over the vane is

m{vi't\ cos - ?.'27’2 cos Of), If W is the weight of w'ater impinging on

the vane per second, then the angular momentum lost by the water per

W
second is

—
-( 7;j?*|C0s^i - If there is a succession of vanes,

then W is the weight of water supplied by the jet per second, and the

turning moment on the wheel, due to the ac-tion of the water on the vanes,

W
is j\[ = ^2)5 since the angular momentum gained

by the wheel is equal to that lost by the water. In the foregoing discus-

sion the effect of friction has been neglected.

If w is the angular velocity of the wheel, then the work imparted to

the wheel per second is

W W
]\Ia) =— cos 9

^
- V2^2^ cos Of) = cos 0

-^

-
^>2^2 cos

Exercises XXVIIIc.

1 . A jet of water 2 inches in diameter, and having a velocity of 30 feet per
second, impinges upon a fixed flat plate. Find the total pressure on the plate

due to the impact of the jet, (a) when the plate is perpendicular to the axis of

the jet, (6) when the plate is inclined at 30° to the axis of the jet.

2. A jet of water 3 inches in diameter, and having a velocity of 40 feet per
second, strikes a flat vane which is perpendicular to the axis of the jet. Deter-

mine the total pressure on the vane, (a) when it is fixed, (6) when it is moving
in the same direction as the jet with a velocity of 15 feet per second.

3. A fixed nozzle discharges 2 cubic feet of water per second. The jet, which
has a cross section of 10 square inches, impinges on a flat vane which is moving
in the same direction as the jet with a velocity of 10 feet per second. Find the
work done on the vane in horse-power.

4. A series of fiat vanes come in turn into a jet of water 4 inches in diameter.
The vanes when in action are perpendicular to the axis of the jet, and they are

driven foi'ward by the jet with a velocity feet per second. The velocity of the
jet is 50 feet per second. On a base representing values of Vi'from .O to 50, plot

the horse-power delivered to the vanes. State the value of the maximum horse-

power, and the corresponding value of Vy
6. A jet of water has a sectional area of 20 square inches, and delivers 1869

gallons of vvater per minute. The jot impinges at right angles on a flat vane,
which is driven in a direction inclined at 30° to the axis of the jet with a
velocity of 12 feet per second- Find the work done on the vane in ft.-lbs.

per second, and the efficiency. , .

6. Taking the data of the preceding exercise, except that the jet impinges
on the vane at an angle of 30° to its normal, fibd the work done on the vane in

ft.-lbs, per second, and the efficiency-

7, Same as Exercise 5, except that there is a succession of vanes at equal
distances apart.

.
,
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8. A jet of water I inch in diameter, coming from a reservoir at a Iieight of

200 feet, strikes a fixed hemispherical cnp so that the direction of its motion is

reversed. Find the force it exerts upon the cup, assuming that the jet has

90 per cent, of the full velocity due to its head. [lnst.C,E.]

9. A jet of water 2 inches in diameter, moving with a velocity of 40 feet per

second, strikes the interior of a cup. The axis of the jet coincides witii the axis

of the cup. The interior surface of the cup is part of the surface of a sphere

whose radius is 6 inches, and the depth of the cup is 3 inolies. Find the total

pressure on the cup, {a) when the cup is fixed, {&) when the cup is moving in

the same direction as the jet with a velocity which makes the work done per

second on the cup a maximum.
10. Taking the data of the preceding exercise, except that there is a succes-

sion of cups instead of one cup. Find the work done on the cups in ft. -lbs. per

second when the efficiency is a maximum, and determine the maximum efficiency.

11. A small steam-boat is provided with two jet propellers, one on each side

of the vessel. The combined area of the two jets is 2 square feet. The water

for the jets is taken from the sea and driven astern, below the water line, by a
centrifugal pump. The velocity of the jets in relation to the vessel is 25 feet

per second, and the speed of the vessel is 9 knots. Determine the resistance to

the motion of the vessel, also the horse-power develoijed in the cylinders of the

pgine, as.suming that the useful work done by the jets in propelling the vessel

is 40 per cent, of the work done in the cylinders. Take the weight of 1 cubic
foot of sea water=04 lbs., and 1 knot= 6080 feet per hour.

12. The cross sectioJi of a jet of water is a rectangle 6 inches wide and 1 inch
deep. This jet impinges ujicn a vane without shock. The cross section of the
vane is a quadrant of a circle. The velocity of the jet is 30 feet per second.
Find the component of the total pressure on the vane in the direction of the
motion of the jet, (a) when the vane is fixed, (b) when the vane is moving in the
same direction as the jet with a velocity of 15 feet per second.

13. AB and AC are two lines inclined at 30°. A jet of water moves in the
direction AG with a velocity of 24 feet per second, and a vane in the direction

AB with a velocity of 12 feet per second. Show how to find the form of a vane
so that the water may come on it tangentially, and leave it in a direction per-

pendicular to the direction of motion of the vane. Determine the pressure on
the vane in the direction of motion due to each pound of water striking the
vane. [Inst.C.E.]

14. Indicate how a vane, moving with a velocity of 25 feet per second in a
horizontal direction, must be shaped in order to abstract the maximum amount
of energy from a jet of water impinging upon it at an angle of 45° to the
horizontal with double the above velocity. What pressure would be exerted
on the vane per cubic foot of water impinging per second ? [Inst.C.E.]

15. A jet of water, area 1 square inch, velocity 160 feet per .second, has its

axis inclined at 15° to the direction of motion of a bucket upon which it

impinges, the velocity of the bucket being 70 feet per second. Find the
direction and magnitude of the total pressure and the pressure in the direction
of motion, if there is no loss due to shock at entrance, and no velocity of whirl
at exit from the bucket. Find the maximum possible hydraulic efficiency of a
wheel provided with such buckets, and find also the speed corresponding. [U.L.]

16. The rim of a turbine is going at 60 feet per second
;
100 lbs. of fluid

enter the wheel each second, with a velocity in the direction of the rim’s motion
of 60 feet per second, leaving it with no velocity in the direction of the wheel’s
motion. What work is done per second upon the wheel ? [B.E.]

17. A wheel having curved vanes is driven hy a jet of water delivered on
to the vanes, as shown in Fig. 780, p. 482. r^-'Z feet, j'2= 2|- feet. The jet
delivers 2 cubic feet of water per second. The absolute velocities of the water
at entrance and exit are 100 feet per second and 10 feet per second respectively.
If ^1=20°, and <>2=85°, what tangential resistance will this wheel overcome
at uniform speed and at a radius of 10 inches, neglecting friction?

18. A locomotive going at 40 miles per hour scoops up water from a trough.
The outlet to the tank is 8 feet above the mouth of the scoop, and the delivery
pipe has an area of 160 square inches. If half the available head at entrance
is wasted, find the velocity at which the water is delivered into the tank, and
the^ number of tons lifted in a trench 600 yards long. What, under these con-
ditions, is the increased resistance to the motion of the train

;
and what is the

minimum speed of the train at which water can be delivered to the tank ?



WATER WHEELS AND TURBINES

420. Water Wheels and Turbines are prime movers, which utilise

the potential and kinetic energy of water. In one class of water wheels

the wheel acts by the direct weight of the water delivered to it. In a

second class the wheel acts partly by the weight of the water and partly

by the impulse due to the weight and velocity of the w^ater striking the

wheel. In a third class the action is entirely by impulse. In a fourth

class the action is entirely due to the reaction of the moving water on

the wheel.

In a water wheel there are usually a considerable number of buckets

or vanes placed round the periphery, and the water is delivered to the

wheel on a part of its cir-cumferenee, filling or striking one or a few

buckets only at one time.

In a turbine the revolving wheel has numerous buckets or vanes,

which are all supplied with w'ater simultaneously. Turbines have
almost entirely superseded the slow-moving and cumbrous vertical water
wheels. Turbines occupy less space, and are cheaper to construct than

the older vertical wheels of the same power; they are also highly

efficient, and suitable for large or small falls.

. 421. Overshot Wheels.—An overshot water wheel is shown in Fig,

781. The water is led to the wheel by a head, race, and the quantity

entering the buckets is regulated by a

sluice A, wdiich is operated by hand, or

controlled by a governor driven by the

wheel. The water enters the buckets at •

or near the top of the wheel, and acts

almost entirely by its weight, descending

in the buckets on about one half of the

wheel. The buckets empty themselves,

when near their low'est jiosition, into the

tail race. A small part of the effort on

the wheel is due to the impulse of the

water as it enters the buckets.

If Ti is the total fall in feet, and Q the

number of cubic feet of water delivered

to the Avheel per second, and to the weight

of 1 cubic foot of water, then the avail-

able horse-power is >

To utilise as much as possible of the available power an overshot

wheel must have a diameter nearly equal to the fall h, but to obtain



velocity of water the top of the wheel requires to he about

feet belcnv the head race. Hence for high falls the overshot wheel is

f large diauroter. Wheels over 70 feet in diameter have been used.

The velocity of the buckets is from 3 to 6 feet per second, or about

velocity of the entering water. The elEciency of overshot water

is from 70 to 85 per cent, when well designed and properly

constructed. It is interesting to notice that the hydraulic efficiency of

the overshot wheel is greater at lower loads when the buckets carry less

because then the hiickets do not begin to empty until a greater

of the descent has been made.

122. Breast Wheels.—The feature which gives its name to the

wheel is the casing, apron, curb, or breast between the head race

tail race, which enables the

buckets to retain the water for a

lose to the Avheel as \ // \
is consistent with security from — \ // \
actual contact. Wheels with breasts

\
are also termed Inghrhremt, breast,

| j

and hw-hraist wheels, according as I

the water is delivered to the w'heel
// / /

above, at, or below the middle level // ^ J
of the wheel. Fig. 782 shows a /
high'breast wheel as made by Fair-

bairn. The regulating sluice and
'

its seat are curved, so as to fit close

to the wheel. The water passes over Bko. 782.
the top of the sluice through guide

passages designed to deliver the water to the buckets without shock.

The sluice is operated by a rack and pinion under the control of the

taken from the wheel by a pinion gearing with a large

wheel attached to the rim of the wheel, as shown. The
pinion is such that the downward thrust, due to the

weight of the water in the buckets, is taken by the pinion without being
transmitted to the axle of the wffieel, and no torque is carried by the

arms, which have only to carry the weight of the wheel. The arms are

comparative slender rods, and are in tenvsion like the spokes of a bicycle

wheel.

The buckets are of iron, and it will be observed that they stand out
a little way from what is called the sole of the wheel, permitting a free

circulation of air over the water in the buckets, which facilitates the

discharge of the water from them when they reach the lower end of the

breast. With this arrangement for the admission of air to the buckets,

are said to be “ ventilated.”

high-breast wheel, like the overshot wheel, acts almost entirely

veight of the water, and its efficiency is about the same,
in low-breast wheels the water acts on the wheel partly by impulse

and partly by weight.

Breast and low-breast wheels have efficiencies varying from 60 to 80
per cent., being greater for large than for small wheels.
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423. Undershot Wheels.—The undershot wheel acts entirely by the

impulse of the water on its vanes. The older undershot wheels had
radial vanes, as shown in Eig. 783, and on

account of the loss of energy, due to shock, the

etliciency of these wheels was only from 20 to

30 per cent., the maximum theoretical efficiency

being only 50 per cent., the velocity of the

vanes being then half that of the impinging

stream (sec Art. 415, p. 477).

The undershot wheel was greatly improved

by Poncelet, who curved the vanes, as shown
in Fig. 784. In the Poncelet wheel the water

enters without shock, leaves it with a small

velocity in a nearly vertical direction, and during the Avhole time that

the water is in the wheel it exerts an impulse on the vanes. The
supply of water is regulated by a

curved sluice A. The theory of

the form of the vanes has been

discussed in Articles 418 and

419, pp. 480-483, and the obser-

vations there made apply to Fig.

785, which shows the vanes of a

Poncelet wheel in action, with the

parallelograms of velocities as tho

water enters the wheel at B and
leaves it at C. BD = 'y is the direction and magnitude of the velocity

of the water in the impinging stream. BE is tangential to the wheel at

B, and equal to ?q, the velocity of the

outer circumference of the wheel.

Completing the parallelogram BEDH,
the vane at B must be tangential to

BH. The water glides up the vane

with the relative velocity v^, and re-

turns, gliding down tho vane, leaving

it at C. At C the water has a velo-

city in the direction CL tangential to the wheel at C
j

it also has a

velocity in the direction CK tangential to tho vane at C, and slightly less

than
,
on account of loss by friction. Neglecting this loss, if CL be

made equal to '!q = BE, and CK = ‘yy = BH, and if the parallelogram

C.KNL be completed, then CN is the absolute velocity of the water as

it leaves the wkeel at C.

The efficiency of the Poncelet wheel is about 60 per cent.

Common undershot wheels with radial vanes should not be used

for falls greater than 5 feet. Poncelet wheels are suitable for falls up
to 7 feet.

A suitable diameter for undershot wheels is from two to four times

the head due to the velocity of the impinging stream, and the linear

velocity of the tips of the vanes shoidd be , about half that of the

impinging stream.

424. Pelton Wheel.—The Felton wheel is a development of the old

hurdy-gurdy, which was introduced into th© ioining districts of California

Fig. 785.



FlO. 786.

wMch the buckets are attached. The jet issues from a nozzle at the end
of a pipe and strikes against the buckets, as shown. The form of the
PelUm huelcet is shown in Fig. 787, from which it will be seen that the
jet is divided by a sharp ridge in

the bucket, and is then gradually

deflected through an angle slightly

less than 180°, Tt is necessary to

make the angle through which the

jet is deflected less than 180°, in

order that the returning stream
may clear the bucket which
follows. The Dohle Jmeltet, shown
in Fig, 788, is an improvement
on the Felton bucket. The im-
provement consists in making the

two compartments of the bucket
of ellipsoidal form, and in cutting

pvay a part of the outer lip to clear the jet as the bucket comes
into action.

The disc of the wheel may be of cast-iron or steel, and the buckets
may be of cast-iron or hard bronze.

Assuming a complete reversal of the jet, it is evident that if the
velocity of the buckets is half that of the jet the absolute velocity of the

about 1805. The hurdy-gurdy was a vertical wheel, having flat radial

vanes, upon which a jet of water with high velocity impinged. The
maximum theoretical efficiency of the hurdy-gurdy is only .50 per cent.,

and its actual efficiency from 25 to 35 per cent.

The substitution of curved buckets for the flat vanes was the great

improvement which converted the hurdy-gurdy into the Felton wdieol,
-

Fig. 786 shows a Felton wheel consisting of a disc, to the periphery of

488 APPLIED MECHANICS
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water on leaving the buckets is zero, and the hydraulic efficiency is unity.

The actual efficiency of Felton wheels is from 70 to 90 per cent.

The Felton wheel is suitable for situations where a comparatively smiill

amount of water at a high yjressure or under a great head is available.

There are difficulties connected with the governing of Felton wheels

which may be here referred to. The opening through the nozzle may be

varied by a curved stopper at the end of a screwed rod, which works in a

nut, as shown in Fig. 7 86. The area through the nozzle, for a given

energy of jet, depends, however, on the friction of the supply-pipe as well

as on the head of water, and is determined in the manner discussed in

Art. 409, p. 467. The central stopper, or needle as it is sometimes called,

may be operated by a governor driven from the shaft of the wdieel. A
sudden throttling of the jet due to the action of the governor when there

is a sudden redirction in the powmr required causes a sudden check on the

flo'w of the water in the supply-pipe, and if this pipe is long the result is

a water-hammer action, wffiich may unduly strain the pipe. This difficulty

may be got over by providing a spring-loaded relief valve. In another

system of governing the nozzle is at the end of a short pipe, so jointed as

to permit of the jet being deflected so that only part of it strikes the

buckets. A difficulty with this system of governing, however, is that a

very considerable force is required to deflect a jet moving at a high velocity.

The power of a Felton wheel may be increased by having tw'o or

more nozzles, instead of one, directing jets in tangential directions at

different parts of the circumference of the wheel.

425. Girard Impulse Wheel.—One form of the Girard impulse

wheel is shown in Fig. 789. This wheel is mounted on a horizontal

shaft A. The water enters through a pipe B, which bends over and

termina.tes opposite to one or more guide passacres C, which direct the

water on to the vanes D of the wheel. The quantity of water entering
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tlie wheel is regulated by a sluice E, which has teeth on its upper face

gearing with a pinion P, which is secured to the shaft H. A worm K
gears with a -worm wheel L, which is fixed to the shaft H. The worm K
is fixed to a shaft operated by a governor or by hand.

The rim of the particular wheel illustrated runs at a high speed, over

100 feet per second, and it is strengthened by steel hoops jSI shrunk on.

In some wheels of this type these steel hoops are made of much larger

section than shown in Fig. 789, in order to increase the fly-wheel action,

preventing a too rapid change of speed with change of load.

Owing to the greater obliquity of the vanes at exit than at entrance, the

distance d between two consecutive vanes at exit is less than the distance

between them at entrance, and to prevent the choking of the passage by
the water the passage is widened transver.sely towards the circumference

of the wheel, as shown in the left-hand view in Fig. 789.

In impulse wheels the water flows over the vanes under atmospheric

pressure, and to ensure free access of air ventilating holes e are made
through the sides at the back of the vanes, as showm. ,

426. Speed, Power, and EABLciency of Girard Impulse Wheel.

—

Referring to Fig. 790, rj and 7*2 are the inner and outer radii respec-

tively of the w'heel.

is the tan- /
gential velocity of the

wheel at radius 7q.

C2 = ®2^2
gential velocity of the

wheel at radius 7
*

2 .

Obviously Ci/7-i
=

= is the ab-

solute velocity of the

water as it enters the

wheel. Ug =
the absolute velocity

of the water as it ™ „„„

leaves the wheel.

01 = angle GiBiVi. 02= angle CaBaVg. BiCiViUj and B2G2V2U2 are

the parallelograms of velocities at entrance and exit respectively.

7q = BiUi is the relative velocity at entrance, and BiTJi is the direction

of the tangent to the vane at entrance, u.^= B2U2 is the relative velo-

city at exit, and B.2U2 is the direction of the tangent to the vane at exit.

<)!)i
= angle CiBiXJi. (l>2— th.e supplement of the angle CgBalla*
As the water in entering and passing through the wheel is under

atmospheric pressure, the velocity depends only on the effective head

at Bi, and is to be calculated from the formula v^— where
Hj^ is the effective head.

IfW is the weight of water entering the wheel per second, then, neglect-

ing friction, the energy given tq the wheel per second is

But by Art. 419, p. 482, the energy given to the wheel per second is

also equal to cos 0^ - cos 02).
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Therefore == cos cos 6^.

But vi = c'f + u\ +2q% cos

and v;| - c.f + " ScgMj cos <}>2 t

also cos = Cj^ + Mj cos

and ^2 cos d2 = (!2 — ?^2 cos •

Substituting these equivalents in the equation

vl -- vl = ^v^Ci cos Q^-v^e^, cos ^2)1

the result is wf — ?^| = cf ~ t|.

It is evident that the efficiency of the wheel will be greater the

smaller ?J2 is, and v.^ will be smaller the smaller ^2 i®* since there

must be a sufficient area of passage between the vanes at exit, (fi^ cannot
be made indefinitely small. For a given value of ^2 velocity % will

have nearly its minimum value when is equal to C2 j
and if u.^ be made

equal to C2 >
leads to very simple relations between the various

quantities. For since =cf - el, it follows that if then

% = Cl, and (f>i
- 2^1. Hence and the angular speed of the

wheel is oi-^ =
7\ 2ri cos dj’

The energy given to tha wheel per second

—

v|), but since
2(/

M2==C2> iy2 = 2tJ2Sini

.
Wvf

-A
,
therefore energy per s

i

and the horse-power of the wheel is this

expression divided by 550.

The energy in the \vater per second as it enters the wheel is •

Hence the efficiency of the wffieel is 1
\r, cos 0^/'

The efficiency is
cos ^1/

therefore greater the smaller the angles (jfcg and
In practice the angle dj is generally between 20° and 25°, and

is generally between 15° and 20°. The ratio of to jq is generally

between 1'15 and 1-25.

Taking friction into account the efficiency is about 80 per cent., and
the efficiency is not reduced by diminishing the sluice opening when
there is a reduction in the load.

The axis of the wheel may be either horizontal or vertical.

427. Jet Reaction Wheels.—The simplest form of the jet reaction

wheel is that generally known as, BarhePa mill.
,
Fig. 791 shows a

Barker’s mill constructed of ordinary wrbught-iron or steel tubing. The
vertical central tube AB has jointed to it two horizontal tubular arms

CD and EF, whicli are opi^osite to one another. These arms are closed
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at tlac'ir outer ends. A “’bend” H leading from the tank K enters a
sliort distance into the tube AB, and serves as a bearing for AB^
permitting the latter to rotate freely. A
footstep bearing is arranged at the lower

Olid of AB, as shown.

Water flows from the tank K through

11 into AB, and thence into the arms CD
and EP. In CD and EF are orifices L
and M, through which the water issues

in jets perpendicular to the arm.s and
horizontal, as shown. The reactions of

the jets on the arms cause, the latter to

rotate, driving the central tube AB. The
power developed may be taken off at the

pulley N, which is secured to AB. Leak-

age at the joint at the upper end of AB
is prevented by a simple gland and
stuffing-box, as shown.

In Whitelav/s Uirhine^ sometimes called

%\iQ Scotch instead of the straight

arms of the Barker’s mill, there are casings

of a more or less spiral form leading the

water to the orifices, tlie casings contract-

ing as they approach the orifices.

Jet reaction wheels are not now in practical use, but they are

interesting from the student’s point of view.

The theory of the jet reaction wheel is as follows. Eeferring to

Fig. 791, let

/i = static head of water at orifices.

?’== distance of orifices from axis of wheel.

=3 linear velocity of arms at radius r.

«.= velocity of jets relative to arms.

W= weight of water passing through wheel per second.

The ]wessure exerted by the water in the neighbourhood of the
orifices is due to the static head h and to the centrifugal force of the

revoking water in the arms. The head, due to the centrifugal ju'essuro

at the orifices, is ~ ,
and the total head at the orifices is therefore

7i -I- . Plence «= -i- c^, neglecting losses.

The reaction of the jets on the arms at radius r is — (m — c), and the

work imparted to the wheel per second is ~ (^i - c)c.

The efficiency is — clc -i-WA = .

0 gh
^2 — ^2

If u = + c2, then h = -
, and the expression for the

efficiency becomes ----- .

V, + G
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A loss wliicli is inevitable is the kinetic energy in tlie water as it

leaves the wheel, and tliis amounts to per second.

428. Classification of Turbines.—^A turbine consists of two main
parts, the wheel, or 7'unne7', (md the stationary guides. The Avheel consists

of two plates or rings called between which lie numerous vaneH.

The guides direct the water on to the vanes of the wheel.

TurbinevS may be divided, according to the manner in which the

water acts on the moving vanes, into t-wo classes, namely, impulse

turhmes and reaction hvrhines. In impulse turbines the water does not

fill the passages between the wheel vanes, and there being free access of

air to these passages, the velocity of the water as it enters them is that

due to the head. Also the energy of the water as it enters the wheel is

entirely kinetic. In reaction turbines the water completely fills the

passages between the guides and between the wheel vanes, and the

velocity of the water at the entrance to the wheel may be, greater or less

than that .cbve to the head there. Also the energy of the water as it

enters the wheel is partly kinetic and partly pressure energy.

An impulse turbine must discharge into the atmosphere, and
must therefore be clear of the tail race, Imt a reaction turbine may be

completely immersed or drowned.

Another classification of turbines is according to the direction in

.

which the water flows through the wheel. This leads to four classes.

(1) Oidioard flow turbines, in which the direction of flow is radial and
outwards. (2) lomard flow turbines, in which the direction of flow is

radial and inwards. (3) Parallel flow or axial flmo turbines, in which

the direction of floAv is parallel to the axis of the wheel. (4) Mixed flow
turbines, in which the direction of flow is

partly radial and i)artly axial, changing

from one to the other on the vanes inside

the wheel.

The various types are also frequently

referred to by the names of the engineers

who were identified Avith their introduction

or improA’^ement, as the Foimwjprm turbine

(radial outAvard tloAv), tbe F/'aneis turbine

(radial iinvard IIoav), and the Jonval turbine

(parallel flow). Mixed flow turbines, in

Avhich the Avater enters in a radial inward
direction and leaves in an axial dmection, 792.
are largely used in America, and this typo

is often called the American turbine. Fig. 792 show's the w'heel or

runner of the Victor (American) turbine.

The Girard turbijies are impulse turbines, and they may have either

radial or axial flow.

429. Formulae for Reaction Turbines.—The notation to be used in

this Article is partly shoAvn on Figs. 793, 794, and 795, which rejn-esent

outAA'ard Aoaa', iinvard flow, and parallel flow turbines respectively, and
is the same as Avas used for the impulse Avheel, Art. 426, p. 490,

Values of the Angles.—The angles 0^ and are' assumed in desig-ning

a turbine. 6^^ ''^aries from 10° to 25° in inward floAV turbines, and from
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25" in outwiird Aoav and parallel How tiirbiueti. (j).-, varies from
to 2o“.

of Poi^mges.—A, and Ao — areas of guide passages and wheel

OUTWARD
FLOW

INWARD
FLOW

Wheel

PARALLEL FLOW.

at Mean, Raduis.

guides!

VANES

WHEEL

! ^WHEEL

WMeanRadius^r.-

-SHAFT ^2

PILLAR

Fia. 796.

passages respectively at exit, measured at right angles to direction of

If w is the number of passages, and h the distance between the
crowns, then, referring to Fig. 796, the area of
the passages referred to above is A^^ndK If t ^
denotes the thickness of the guides or vanes,
then, approximately,

= sin 6, and A = (Stt?- sin 6 ~ nt)}).

Ihe ratio A-j-fA2 may be assumed in

of a^turbine. Aj-^-Ag varies from 0-5 to 1 inoutward flow turbine^ and from 0-6 to 1*5 in inward flow turbines.In parallel flow turbines Aj-i-Ao is usually about 1.
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Ratio of Radius to Radius .-—The ratio -f j-g is also assumGcl.

For outward flow J'l-f ?'2 varies from 0 '7 to 0'85, and for inward flow

from 1*2 to 2. In paralier flow turbines take = ? ^
== /*, the mean

radius.

Residt of Continuity of Floio.—Since the water completely fills the

passages in flowing through them, it follows that VyAi=u.2k.^

.

Velocities of Whirl.—At entrance to wheel the velocity of whirl is

cos and at exit v^eosO^-

Work Impaded to Wheel.—If W~ weight of water passing through

the wheel per second, then by Art. 419, p. 482, the work imparted

to the wheel per second is

W

Efficiency.—The energy available per second is W7^, where h is the

available head of water. Hence the efficiency is

E = ~
*^2^2 ^

2)*

The efficiency varies from 75 to 86 per cent., and may be taken,

when unknown, at 80 per cent.

Velocity of Flow from Guide Passages —Eirst assume that the

velocity of whirl at exit cos ^2 = 0.

The angle 9^ is then 90°, and —v-

.

Also =^u.2= ,
but Cg =

.

^
Ai Ai cos ^2 ’ ’’1

Therefore =

Ai' r^' cos

'

-
,
and CjL

= :^ . cos <1

9,
Ao Tn

Work imparted to wheel per second = cos 9^.

1 A r
Efficiency E = . (\v^ cos (9^

= -^ . -J . J.
. cos 9^ cos <^2 *

gh gh A^

\/2gh:=K^j2gh,Hence^)i= / Ai
! j- • cos 9^ cos <^2A2 ^2

where == \J 2^^ . A cos cos (j>2 may be called the coefficient ofvelocity.
V Ag ^2

If instead of assuming that assumed that then

it may be left as an exercise to the student to show that
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WMel Bj>eed.—AssunuTig 6
^ — 90°, it lias been shown that

(5
j

, U . 'Uj cos</).j,, therefore r, — " - . cos </>oK;l J'^Cjh.
Ag. “ Ao To

where Ko =^ , -1. cos ^o\/ 2^^ - — • cos 0 .

*“ Ag ?2
“ ^ -^^2 ^2

cos c^2

—
. / . llcos f/>o may bo called the coeliu'ienf of ichepl

\ 2 cos Oi Aa ?’2

If instead of assuming do = 90° it be assumed that U2= e.^, then it

i-iizi:
follows tliat Ko

WE/i
Effective or Brahe Hoi'8e-2)Ower~--^^.

430. Use of Suction Tube for Reaction Turbines.—Since a reaction

turbine works full of water, it is not necessary that it should be placed

at tile level of the tail u'ater in order to utilise the full head. A reaction

turbine may with advantage be placed at a height, less than the height

of the water barometer, above the tail -water, provided that it discharges

into a piiie ivhi<di, running full, opens under the tail water. The advan-

tages of this arrangement are that a shorter shaft is necessary, and the

turbine is more accessible.

Exercises XXIX.

1. The effective hor.se-power of a vertical water wheel is 28, and its efficiency

is 70 per cent. IE the total fall is 20 feet, how many gallons of water must be
delivered to the wheel per minute ?

2. The head race of a vertical water wheel is 5 feet wide, and the water in
it is 6 inches deep, and has a velocity of 10 feet per second. The total fall is

30 feet, and the efficiency of the wheel is 75 per cent. What is the effective

horse-power of the wheel ?

3. The stream impinging on the vanes of a common undershot water wheel
passes through a sluice opening 6 inches deep and 5 feet wide. The head of
water is 4 feet 0 inches. Taking the coefficient of discharge for the sluice
opening at 0'62, and the efficiency at 30 per cent., what is the useful horse-
power of the wheel ?

4. If in a Poncelet wheel the water entens in a direction bisecting the
angle 0 be,tween the tangents to the wheel and vane at the tip of the lat ter,

and if the points of entrance and exit are at the same level, show that, so far
as the action of the water on the vane.s is concerned, the efficiency is equal to

1 - tan® the friction of the water on the vanes being neglected.

6. The centres of the buckets of a Pelt on wheel move in a circle 3 feet in
diameter. The actual head of water for the jet is 2000 feet, and the diameter
of the jet is J inch. The wheel makes 1000 revolutions per minute, and develops
80 horse-power, using 28 cubic feet of water per minute. Determine, (a) the
resultant efficiency, (6) the loss of head estimated at the jet, and (c) the ratio
of the mean velocity of the buckets to the actual velocity of the jet.
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6.

in n Kfiiies uf brake tests of a small Felton wheel the following tabulated

results were obtained :

—

w .

,

6 '5 5'7 ' 5-4 4-7
'

4 '4'1 3-5 2-9 2-1 1-0 0-0

N ,1 960

1

1360 1480 1800 1900 2240 2520
,
2800 3280 3580

where W = elfectivo load in lbs. on brake lever at 12 inches from axis of wheel,

and N = speed of wheel in revolutions per minute. The weight of water used
in each tcist was 41-5 lbs. per minute, and the pressure of the water was 700 lbs.

per square inch in the pipe behind the orifice. The diameter of the orifice was
O'OSlh") inch. Complete the above table by adding the brake horse-power and
the efficiency per cent. Plot the brake horse-power and efficiency on a speed

base. Scales.—Horse-power, 2 inches to 1 horse-power; efficiency, 1 inch to

20 per cent. ;
speed, 1 inch to 500 revolutions per minute. State the maximum

brake horse power and the maximum efficiency.

7. Show that the efficiency of a Felton wheel is a maximum, neglecting

frictional and other losses, when the velocity of the cups equals half the velocity

of the jet. 25 cubic feet of water are supplied per second to a Felton wheel
through a nozzle, the area of which is 44 square inches. The velocity of the

cups is 41 feet per second. Determine the horse power of the wheel, taking a
reasonable value for the effloiencj’. [Inst.C.E.]

8. A Felton wheel is to run at 900 revolutions per minute. The head of

water is 720 feet, and the maximum water supply is 15 cubic feet per minute.

Determine the diameter of the wheel, the diameter of the nozzle, and the

maximum power developed, assuming an over-all efficiency of 0*8. [UL.]
9. Explain why it may happen that when the opening through the nozzle of

a Felton wheel has a certain area the power of the wheel may be diminished by
increasing and also by decreasing the opening.

10. The following particulars relate to a Girard impulse wheel. Using the
notation of Art, 426, p. 490, = 9^1= 86°, r^— 4 feet, r2=:4'6

feet. Total head =500 feet. Absolute velocity of water at entrance= 85 per

cent, of theoretical velocity due to total head. Volume of water entering wheel
per socond=S cubic feet. Determine the velocities v^, Cj, Cg, otj, Wg, and in

feet per second, also the angle the speed in revolutions per minute, and
the horse-power of the wheel, neglecting losses in the wheel itself.

11. In a Girard impulse wheel, using the notation of Art. 426, p. 490,

(?i
= 20‘’, 9^1=40°, 9!>a=15°, ri = 2 feet, r2=2'5 feet, Vi= 80 feet per second, and

water passing through wheel per second= 25 cubic feet. Determine the velocities

Cl, Ca, Ml, and in feet per second, also the angle speed in revolutions

per minute, and the horse-power of the wheel, neglecting lo.sses in the wheel
itself.

12 A simple reaction wheel of the Barker’s mill type is supplied with water
at a head of 10 feet. The combined areas of the orifices amount to 40 square

inches, and the velocity of the centres of the orifices is 24 feet per second.

Find the horse-power if the net efficiency is 60 per cent., and find also the

hydraulic efficiency. ' [II.L.]

13. Cerlain experiments with a jet reaction wheel showed that the maximum
efficiency was obtained when c= (using the notation of Art. 427, p.

491). Taking the coefficient of velocity for the orifices as 0"95, calculate the
maximum efticiency and the percentage of the energy due to the head A which
is carried away by the water leaving the wheel.

14. A parallel flow impulse turbine works under a head of 64 feet. The
water is discharged from the wheel in an axial direction with a velocity due to

a head of 4 feet. The circumferential speed of the wheel at its moan diameter
is 40 feet per second. Neglecting all frictional losses, determine the mean vane
and guide angles. [U.L.]

16. The rim of an inward flow tirrbine moves at a speed of 30 feet per second,

and the vanes are there at right angles to the rim. Water enters the rim with
a radial velocity of 5 feet per second. If the water is to enter without shock,

what must be the angle between the rim and the guide blades? Find the
weight of water entering per second if thp circumferential area of all the open-

ings of the rim is 2-4 square feet. [B.B.]
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16. In an inward flow turbine the water enters the inlet circnmfcronoo,

2 feet diameter, at tiO feet per second, and at 10° to the tangent to the circum-
fereni'e. The water leaves the inner ciroutnferenoe, 1 foot diameter, with a
radial velocity of 5 feet per second. The peripheral velocity of the inlet surface

of the w’heeris .50 feet per second. JTind the angles of the vanes at t,he inlei.

and outlet surface. [Inst.C.E. j

17. An inward flow turbine wheel works under a head of 60 feet, and makes
380 revolutions per minute. The diameter of the outer circumference of the
wheel is 24 inches, and of the inner circumference 12 inches. The velocity of

the water entering the wheel is 44 feet per second, and the angle it makes with
the tangent to the wheel is 10°, Assuming the radial velocity of flow through
the wheel to be constant, and that the water lea,ves the wheel in a radial direc-

tion, determine the direction of the tangent to the vane of the wheel at the
inlet and outlet. Sketch a suitable form of vane. Determine the hydraulic
efficiency of the turbine.

18. Using the notation of Art. 429 and the result proved in Art. 446, p. 516,

apply Bernoulli’s theorem to show that in a radial flow reaction turbine

where h is the available or effective head at the inlet surface.

Show also that in an axial flow reaction turbine

where fij is the depth of the w'heel.

19.

The supply of water for an inward flow reaction turbine is 500 cubic feet

per minute, and the available head is 40 feet. The vanes are radial at the inlet,

the outer radius is twice the inner, the constant velocity of flow is 4 feet per
second, and the revolutions are 350 per minute. Find the velocity of the wheel,
the guide and vane angles, the inner and outer diameters, and. the width of the
bucket at inlet and outlet. [U.L.]
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used for packing
;
tlie pressure of the water acting on the inside of the cup

presses the leather outwards against the cylinder.

A hucket (Fig. 798) is a piston provided with one or more valves

which permit of the fluid passing through it in one direction.

Kiilunger (Fig. 799) may be looked upon as a piston having the same

diameter as its piston-rod.

432. Bucket Pump —Eeferring to Fig. 800, AB is a cylinder or

barrel, in which is made to reciprocate a bucket C. A pipe DE, called

the suction 'pipe, leads frc n the lower end of the barrel and dips into the

water which the pump is re [uired to raise. A pipe FH, called the delivery

pipe, leads from the top of the barrel to the vessel into which the water

is to be delivered. There are three valves, all opening upwards, one in

the bucket, one at the top of the suction pipe, called the suction valves

and one at the bottom of the delivery pipe, called the delivery valve.

The action of the pump is as foHovs. The bucket being at the

bottom of its stroke, and the barrel and pipes full of air at atmospheric
499 .
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431. Distinction between a Piston, a Bucket, and a Plunger.—

A

piston is generally a cylindrical piece which slides backwards and forwards

inside a hollow cylinder. A piston may be moved by the action of fluid

pressure upon it, as in a steam-engine or as in certain types of water

pressure motors. A piston may, howeveiy be used to give motion to a

fluid, as in certain types of pumps. A piston is usually attached to a

rod called a piston-rod. Numerous forms of packing are used to prevent

leakage past the piston. In the piston shown in Fig. 797 cup-leathers are

/ si—

f

I BUCKET. 1 i|

=#^1 1mli_
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prossnrc, tlie 'bucket is pulled upwards, the valve in it being kept shut by
its own weight and the excess pressure of the air above it. As the space

bc3tweun the bucket and the suction valve increases,

the air in that space expands and its pressure falls.

This euable.s the pressure of the air in the suction

pi2>e to lift the .suction valve, and a portion of that

air tht'u flows into the barrel below the bucket.

The pressure of t]ie air in the suction pipe there-

f(3ro falls below the pressure of the atmosphere,

and in consequence water is forced into the suction

pipe from below by the pre.ssure of the atmosphere

outside until the water stands at such a height that

the pressure at E due to that column of water, and
the pressure of the air above it, is equal to the

pressure of the atnio.sp]iere. During the dowii-

ward stroke of the bucket the air beneath it is

compressed, the suction valve having closed, and
when the compression is sufficient, the bucket valve

opens and a portion of the air beneath the bucket

passes through it into the space above. In the

next upward stroke the air bcncatli the bucket is

still further rareticd, and the water is forced by
tlie pressure of the atmospliere to a gj’eater height

in the suction pipe. Tliis goes on until the water

gets into tlio Iwrrol. T'he budcet in de.scending

then enter-s the water, part of which pas.ses through

the bucket to the space above. The whole space below the bucket within

the barrel iind suction pipe is now full of water, and subsequent up strokes

of the bucket lift the water liiglier and higher, until it reaches the toj* of

the delivei'y pipe. After this, during each up stroke, a volume of water

equal to the volume swept through by the bucket is discharged througli

the delivery pipe.

Since the water beneath tlie bucket is held up by the pressure of the

atmosphere it is evident that tlie bucket in its highest position must not
be at a greater height above E than the height of the water liaroniotcr,

For a pre3.suro of 11-7 lbs. per square inch the height of the water
barometer is ,34 feet. Tlic height of the bucket above the level of tlie

water at E is called the surtion head. In practice the suction head is

generally not more than about 26 feet.

It may bo observed that in the pump just described the delivery
valve is not absolutely necessary, but during the down stroke of the
huckef it acts as a check on the suction valve ifi holding up the column
of water. ,

433. Force required to Work a Bucket Fsimp.—-Once the bari’el and
pipes of the pump are fully charged with water it is e^ddent that, neglect-

ing the volume of the pump-rod, the volume of water dcli-surod during
each up stroke of the bucket is equal to the volume swejit through by the
bucket in one stroke. Lot a = area of bucket in square feet; length
of stroke in feet

;
h = total height through which the water is raised, in

feet
;
P = force fin lbs.) required to lift the bucket, neglecting friction and

the weight of the bucket and bucket-rod.

Fig. 800.
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SecUon at CD.t^IInd Elevahn

Section cit AB.

Fig, 802.

tine pipe, is shown in Pig. 802, The two plungen;

Weight of water raised in one up stroke>=62-3a.L

Work done in one up stroke— 62-3aZi^“PZ.

Therefore P — 62'3fl7i. That is, the pull on the pump-rod is equal to the

Aveig'ht of a oolumn of Avater, whoso base is equal to the area of. the buclccf,

and whose height is the total head. Hence when friction is neglected,

P is independent of the diameters of the suction and delivery pipes.

During the downward stroke no water is raised, and only friction .has to

be overcome. Strictly speaking, a volume of water is discharged during

the down stroke equal to the additional volume of pump-rod entering the

barrel, Init in the pumpunder consideration this may be neglected.

Considering the eftect of the pump-rod, if aj = effective area of bottom
of bucket = 0‘7854cZ^, W'here d is the diameter of the barrel, — effective

area of top of bucket (a^ is less than a, by the area of the section of the

rod), 7ii = suction head, Zijj^delivery head, then P = 62-3(ai7i, +a5,7/o).-

434. Plunger Pump.—Fig. 801 shows a short stroke plunger pump
provided with ball valves. S is the suction valve, and D the delivery

valve. The action of this pump
during the out or suction stroke is

the same as that under the bucket

of the bucket pump when the bucket

is ascending. During the in or de-

livery stroke the air within the pump
is compressed and a portion of it is

discharged through the delivery valve,

and wliexi the pump becomes charged

with water a volume of w^ater equal

to the displacement of the plunger

is discharged through the delivery i

valve during each delivery stroke.

By the displacement of the plunger is

meant the volume equal to the area

of the cross section of the plunger

multiplied by the length of its iriG.. soi.

stroke.

A duplex pump, consisting of two plunger pumps side by side and
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11 are driven so that the delivery

stroke o£ the one takes place

during the time of the suction

stroke of the other. The result

is a continuous flow of water in

the main delivery lupe. The
particular pump shown in Fig.

802 is used for delivering water
at a high pressure, such as is

required by hydraulic machines.

Another form of high pressure

pump is described in Art. 437,

p. 503.

435. Double-Aeting Piston
Pump.—Pig. 803 shows one
form of doiQjle-acting piston

limip. There are two suction

valves Sg, and two de-

livery valves and Dg . The
action of this pump will be
readily understood by an in-

spection of the illustration.

There is -a continuous flow of
water through the suction pipe,

and also through the delivery
pipe.

436. Combined Plunger
and Bucket Pump.—A plunger
pnmp is single-acting, discharg-
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ing water during the imoanl stroke. A bucket jjump is also siugie-acting,

discharging water during the outward stroke. By combining these two a

double-acting pump is obtained, and this has two valves only. Fig. 804
shows a compact form of combined plunger and bucket pump,* designed

by Mr. Arthur Bigg. P is the plunger, and B the bucket. 1.) and S are

the delivery and suction air chambers respectively. The valves are of the

annular seated ring type, provided with rubber-packed atop sockets.

The area of the cross section of the plunger is half that of the barrel.

Hence, during the up stroke, half of the water raised by the bimket goes

to fill the space left by the plunger, the other half going to the delivery

pipe. During the down stroke the plunger displaces the other half of

the water raised by the bucket.

437. Continuous Delivery Pump for High. Pressures.—For charging

Sectim at XX,

\Plan and Sectim through CylMer.\



resistance” above MIST _ represents tlie additional pressure rfjquired to
overcome the friction in the delivery pipe. Suppose that the pump
starts from rest.^ ^The water in the delivery pipe being at j-est, the
pressure of the air in the air chamber is equal to the static pressure of the
water. At the beginning of the ^

first delivery stroke the delivery valve
opens, and the water, flowing through, finds two passages open to it.

Fia. 808.
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generally used. The piston A has an ai-ea twi(!0 that of the piston-rod

13. During the outward stroke the water to the left of the piston is dis-

charged through the passage C and valve D to tiie acmimulator, and
water at the same time enters by the suction valve E and passage F, and
fills the space to the right of the piston. During the inward stroke the
water to the right of the piston is discharged through tliu passage F aiid

valve H into the passage K, but only half of this water goes through the

valve 1) to tlie accumulator; the other half goes by the passage C to the
annular space in the barrel or cylinder to the left of the piston. A volume
of water, equal to half the volume swept through by the piston, is

evidently discharged to the accumulator during each stroke. The valve

I) is not absolutely necessary, but it acts as a check on the others when the
pump is not working. To make the valves close promptly they are loaded
with spring.s, which consist of rubber rings separated by metallic Avashers.

438. Air and Vacuum Chambers.—In a pump of the single-acting

type water is deliA'-ered during alternate strokes only, and the flow
through the delivery pipe is therefore

intermittent. The result of this is

that in the neighl;)Ourhood of the
delivery valve there is a great flixctua-

tion of pressure due to the inertia of

the water, and a consequent series of

shocks. To remedy tliis defect an
air chaniher A (Figs. 806 and 807)
is placed over or near the delivery

valve D.
The theory of the action of the

air chamber is as follows, Eeferring
to Fig. 808, the base line is a time
base. The height of the straight line

MN above the base represents the static pressure of the water due
to the head iii the delivery pipe. The height of the line marked “ total

Fig. sob.
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one leading into the delivery pipe, and the other leading into tl.ie

jur chamber. T(j flow into the delivery pipe the entering water must
exert a pressure greater than that due to the head of water in that pipe

in order to overcome the inertia of the column of water and the friction

in the pipe, but to enter the air chamber the resistance is practically

only that duo to the air pressure in it, and this pressure is only the

static pressure due to the head in the delivery pipe. Hence the water

coming from the pump barrel, taking the path of least resistance, enters

the air chamber. As the water enters the air chamber the air in it is

compressed and the pressure rises gradually. This gradually increasing

air pressure acts of course on the column of water in the delivery pipe,

and sets it in motion gradually without shock. Up to the time A
(Fig. BOB) all the water going into the delivery pipe has come direct

from the pump barrel, but the greater portion of the water coming from

the pump barrel has gone into the air chamber. At the time A the

velocity has increased until the flow through the delivery pipe is equal to

the discharge from the putnp, and after this a diminishing pressure is

sufficient to keep up the delivery. The air now forces water from the

air chamber, and in doing so it increases in volume and falls in pressure.

At the time B the air pressure has fallen until it just equals the resist-

ance. Up to this point the driving force on the water has been greater

than the resistance, and therefore the velocity of the water has been

increasing, and is now a maximum. After the time B the water con-

tinues to flow from the air vessel, although the air pressure is now less

than the resistance, because of the kinetic energy in the moving water.

At the beginning of the second delivery stroke the water from the pump
has again two passages open to it. A quantity sufficient to keep up the

flow at the now reduced velocity will go into the delivery pipe, but to

send a greater quantity would mean increasing the velocity, and there-

fore increasing the pressure above that in the air chamber, hence the

remainder of the water enters the air chamber, and the pressure increases

gradually. At the time C the air pressure is just equal to the resistance.

Between B and 0 the air pressure, which is the driving force, has been

less than the resistance, and the velocity has therefore been diminishing,

and will have reached a minimum at C. Between C and I) the air

pressure increases, and at D the flow through the delivery pipe is again

eqaal to the discharge from the pump. At E the velocity is again a

maximum, and at F the flow through the delivery pipe is again equal to

the discharge from the pump, and so on.

It is seen, therefore, that the air chamber makes the flow of water

through the delivery pipe continuous, and shocks due tq sudden changes

of pressure are eliminated.

The positions of the points A, B, C, etc., will depend on the char-

acter of the motion of the bucket or plunger, the volume of air in the

air chamber, and the friction in the delivery pipe.

The volume of the air chamber varies greatly in practice, being from

two to six times the displacement of the bucket or plunger per stroke,

and sometimes as much as ten times.

An air chamber is not so necessary on a
,

double-acting pump, but it

is still advantageous, because the velocity of tihe piston not being uniform,

the discharge through the delivery valves js not uniform. The capacity
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of tho air chamber for a double-acting pump may, however, be less than
for a Hxngle-a,cling one.

On the auction side of a j)uuip the water in the suction pipe requires

time to acquire, under the action of the pressure of the atmosphere,

sufficient velocity to make it flow into the pump —
barrel and completely fill the S|)ace left by the

|

bucket or ])lunger
;
and when the suction pipe is

long, or when the speed of the pump is high, the

amount of water entering the barrel during the BE^|B
suction stroke may not be sufficient to fill it. iSuAw
Again, at the end of the suction .stroke the suction

valve is sirddenly closed, and the water in the
||
i(^ H'TSir

suction pipe is suddenly brought to rest and a

shock is produced. To remedy these defects a

ramuni chamber V (Fig. 809) is placed on the

suction pipe near to the suction valve S. This

vacuum chamber is not entirely devoid of air. When the water is at

rest the preSvSure of the air in the vacuum chamber, together with the

pressure due to the head of water in the suction pipe, is equal to the

pressure of the atmosphere.

The theory of the action of the vacuum chamber is similar to that of

the air chamber, already disciis.sed, but while the air chamber converts

the intermittent discharge of the pump into a continuous flow in the

delivery pipe, the vacuum chaniber converts a continuous flow iii the
suction-pipe into an intermittent flow in the pump.

Tlie volume of the vacuum chamber may be about half that of the air

chamber.

439. Pump Valves.-~In nearly all pumps in which valves are

essential, the valves are operated automatically by the pressure of the

water passing through them. The valves permit the water to pass freely

in one direction, hut when the actuating force is removed, the valves close

prevent the return of the w^ater. Kinematically, these valves are the

same as the pawl which permits a ratchet wheel or rack to move in one
direction only.

There are many designs of valves in use in pumps, but it will only be
them here. A simple corneal direct lift valve

is shown in Fig. 810. The body of this valve is a slightly arched disc

with a conical edge, which forms the face of the valve. The valve face

beats on a corresponding conical seat^ formed on a bush or on a part of
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the valve casing. The valve is guided as it rises or falls hy means of the

cciiitral stem, forming part of the valve body, which slides in a hole in a

l)ridgo stretching aci'oss the opening below the seat. The amount of lift

of the valve is determined by a stop on the casing above the valve. A
modification of this type of valve is shown in Fig. 811. Here' the body

is made conical so as to direct the flow of water more gradually towards

tlic opening, and thus reduce shock. This valve is guided by three

wings cast on it, which slide in the opening below the seat. In valves

with conical faces and seats, the slant side of the cone is usually inclined

at 45° to its axis.

The valve shown in Fig. 812 difiers from the one shown in Fig. 810,

in having its face and seat flat, and in having the central stem above

instead of below the valve. This stem slides in a guide forming part

tf the valve casing. The interior of this guide is in free communication

with the irrterior of the casing through the small holes sho^^’n at the top,

otherwise the stem w'ould not rise and fall freely in the guide. The final

grinding of the valve on its seat should be done when the guide is in

position. The lift of the valve is limited by the collar on the stem

striking the lower end of the guide.

Fig. 813 shows a hall mice. The ball is guided and its lift deter-

mined by the cage surrounding it.

In the valves just described the width of the seat may be as small as

inch, and it is sometimes as much as inch. The narrower the seat,

the easier is it to make the valve tight, but the area of the seat must be

sufficient to prevent tlie crushing of the material of the valve or seat.

' These valves are generally made of brass or gun-metal.

Eeferring to Fig. 812, where the seat is flat, tl is the diameter of the

valve, and h its lift. The lateral opening through the valve is Trdli, and the

area through the seat is hence when these two are equal, h = \d.

The valve is therefore full open when the lift is one quarter of the

diameter. In practice the lift of single-beat metal valves working oil

metal seats, and actuated by the fluid, is generally cionsiderably less than

one quarter of the diameter, especially when the speed of the pump and
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tlie pressTire of the water are high. In the valves sliown in Figs. 810 and

811, the area through the seat is less than on account of the presence

of the arrangements for guiding the valve. These valves are therefore

full o])en when the lift is something less than \d.

An annular valve which has two seats is shown in Fig. 814. If

and (1.^ are the diameters of the annular opening between the seats, and
h the lift of the valve, then, neglecting the effect of the ribs between the

seats, the valve is full open when that is, when

7i = - f^g). It = —

The india-mbher disc valve is shown in E'ig. 815. The thickness of

the india-rubber is generally f inch to I inch for small valves, and may
he as much as inch in the largest sizes. The area of the seat or grat-

ing in contact with the india-rubber should be sufficient to prevent the

pressure between them exceeding 40 lbs. per scpiare inch. The per-

forated guard limits the angular lift of the di.sc to about 30°.

The Oidenindh valve, &\\o\\n in Fig. 816, is an ingenious form of flap

valve. This valve is made from a sheet of .special bronze of high
tenacity. Part of the sheet forms a spiral coil, the inner end of which is

turned over and enters a .slot in a spindle. The flat or uncoiled part of

the sheet forms the valve proper, and this is thicker than the rest. The
projecting ends of the .spindle are rigidly held in bearing.^, so that the

flap is always in its correct position over the port. Before clamping
down, the spindle is rotated until the spring of the coil is of the necessary
stiffness. The advantages claimed for this valve are, (1) the port is

entirely uncovered with a relatively .small deflection of the metal of the

valve, (2) quite a small force exerted by the water is sufficient to

deflect the valve, (3) the valve closes promptly when the flow ceases.

440. Fluctuation of Delivery in Crank-driven Pumps.—In many
cases the pbrnger or piston of a pxrmp is driven through a crank and
connecting-rod, the crank being fixed to a shaft which has imiform

angular velocity. In other cases the plunger or pi.ston is connected

directly to the piston-rod of a steam cylinder, and there is a crank sliaft

whose crank is also connected to the. i>iston-rocl by a connecting-rod. On
the crank shaft is a heavy fly-wheel, which causes the angular velocity of

the shaft to be fairly uniform.

In all such cases the velocity of the plunger or piston varies during

each stroke in a well-defined manner, and the curve which repre,sents the

variation of the plunger or piston velocity may be constructed as fully

explained in Art. 260, p. 300. The velocity of the water through the

delivery valve at any instant will evidently be proportional to the velocity

of the plunger or piston at that instant. Hence a plunger- or piston-

velocity diagram will also be a rate of delivery diagram. This diagram
may be drawn on a strolce ham or, preferably, on a time ham.

First consider a simple plunger pump having one plunger. During
the suction stroke there is no discharge through the delivery valve, but
during the delivery stroke the variation of the velocity of discharge is

shown by the plunger-velocity diagram. The result for one revolution of

the crank is shown at (a), Fig. 817, on a time base.
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Next consider a double-acting piston pump. Here the delivery from
one side of the piston takes place at the same time as the suction on the

other side, and the variation in the rate of delivery through the delivery

valves for one revolution of the crank is as shown at (&), Fig. 817, on a
time base.

The student should have no difficulty in constructing the rate of

delivery diagrams for cases where there are two or more plungers or

pistons driven from the same crank shaft through cranks making known
angles with one another, there being one delivery pipe for all.

The resultant rate of delivery curve for a three-plunger pump is

shown at (c), Fig. 817. The plungers are supposed to be all of the same
size, and to be driven through cranks A, B, and C, w'hich make angles of
120“ with one another.

At (d), Fig. 817, is showm the resultant rate of delivery curve for a
double-acting piston pump having two pistons driven through two cranks

D and E, which are at right angles to one another. The displacements of

the pistons per stroke are assumed to be equal.

44:1, Direct Driven Steam Pumps.—The shocks and irregularity in

delivery which are almost inseparable from crank-driven pumps are to a

large extent obviated in pumps in which a water piston is driven direct

from a steam piston. In the latter type of pump the steam and water

pistons are at opposite ends of the same piston-rod, and there is no fly-

wheel and no crank shaft. The motion of the pistons being controlled

mainly by the steam and water pressures, the pistons can more readily

follow the moving water, the velocities of the pistons and water adapting

themselves to one another without shock.

In a pump the head of water in the delivery pipe is usually constant,

and therefore wffien the water is in motion with fairly uniform velocity

the resistance is fairly uniform. Hence the pressure of the steam on the

steam piston must not vary to any great extent, unless means are adopted

to store up energy during one part of the stroke and restore it during

another. A fly-wheel will do this effectively, permitting the steam to be
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the water piston nioving together. In the particular engine considered,

the high pressure piston and the water piston are at opposite ends of a

piston-rod connected to a cross-head A. The intermediate and low pres-

sure pistons are connected hy a central piston-rod B. The low pressure

piston is connected directly to the cnws-hcad A by two other piston-rods

which pass through the front end of the low pressure cylinder, but these

rods pass outside the intermediate and liigh pressure cylinders. CC are

the compensating cylinders, which are mounted on trunnions to permit

them to oscillate. The compensating cylinders are ])roYided with rams,

on the outer ends of which are formed gudgeons, which work in bearings
on the cross-head A.



.Detailed illustrations of a compensating cylinder and its ram are

shown in Fig. 819.

The compensating cylinders contain -water, which is in free communi-
cation with ail accumulator under air pressure. During the first half of

a stroke of the pi.stons the excess work done by the steam is used to push
the rams into the compensating cylinders, thereby compressing the air in

the accumulator, and during the second half of the stroke the work done
during the first half in compressing the air is restored, the rams being

forced out, and, as they now slope the other -way, they assist in driving

forward the cross-head.

The action of these compensating cylinders presents an interesting

problem which is wmrthy of careful study by the student. Dimensions

and further particulars relating to the engine just described * will noAv

be given, so that the problem may be fully w’orked out.

The dimensions are as fillows. Diameters of steam cylinders, 14,

22, and 38 inches. Diameter of water cylinder, 10-| inches. Stroke of

all pistons, 24 inches. Diameter of rams of compensating cylinders,

6 inches. Distance between axes of trunnions, 29| inches. Distance

between axes of gudgeons, 13 inches. The pressure in the compensating

cylinders is 515 lbs. per square inch.

The indicator diagrams taken from the steam cylinders are given in

Fig. 820, while Fig. 821 shows these diagrams corrected to show efecHve

pressures per square inch on the several pistons for one stroke. The
dotted lines on the intermediate and low pressure diagrams in Fig, 821
represent the pressures on the intermediate and low pressure pistons per

* Kindly supplied by the Worthington Pump Co., London, ^



square inch of high pressure piston to the same scale as the high pressure

diagram. These various conversions were discussed in Art. 272, }». 314.

Adding together the corresponding ordinates of these corrected diagrams

would give the total effective pressure on the three pist(jns per

inch of high 2^ 1'essure piston.

It remains to construct the. diagram which shall show the liorizontal

thrust on the cross-head due to the action of the compensating cylinders.

This is shown by the dotted curve ^

822) constructed on the
„| ^1 1

To construct the curve 168^ ~—— :

first step is to find the lAAf-

pressure on the rams per square 120 g ^
inch of high pressure piston. l-A

This amounts to
^ ''L I

O-lSSixS^xSU

^“rzzzz5S“Zji
inch for each ram,

j ~J
the effect of the piston- ^ ^ "• ''Q

iiere are two rams, the 24

total effect is equal to 131*4 lbs. 45 I

/

per square inch of high pi-essure

piston on one ram. Referring

now to Fig. 822, 0 is the axis of
"

the trunnion of one ram, and XX 120®--^-—'——L-J
is the line of stroke of its gudgeon.

323
When the gudgeon is at F, the
axis of the ram is OF. On OF make OH equal to 131*4 lbs. to the
pressure scale of the high pressure diagram. Draw the liorizontal lino

HK to meet the vertical line OK at K, tlien HK is the horizontal thrust

exerted on the cross-head by the rams. Make the ordinate FL equal to

L is a point on the curve DE. For the first half of tlie stroke the
horizontal thrust of the rams on the cross-head is reckoned as negative,

since it is opposing the motion of the cro.ss-hoad.

Tlie upper boundary line of the fi.nal diagram, shown shaded in Fig.

822, is determined by laying off the sum of the respective ordinates of

the corrected curves in Fig. 821 above the curve DE in Fig. 822. For
example, ft& =• -f e/-l- p7i.

^

The ordinates of the final diagram represent the resultant horizontal
driving force on the pump piston squao'e inch, of highyresstire yisfon.

The total resultant driving force is of course obtained by multi}>lying the
force shown by tho shaded diagram by the area of the high pressure
piston. Iu_ constructing these diagrams, tho effect of the various piston-
rods in diminishing the effective areas of the pistons has been neglected.

- Direct driven steam pumps arc generally of the duplex type, there
being two sets of steam and water cylinders side by side with one common
delivery pipe.

442- Centrifiigal IPumps.—The ordinary form of centri.fugal pump
consists of a iohseli disc, or runner., provided with a number of vanes,
which revolves within a casing. When fully charged with Avater the
revolving wheel carries the water round with it, and the centrifugal force

APPLIED MEOHAHIOS
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of the revolving water causes it to travel outwards from the centre to the
circumference of the wheel. The suction or supply pipe leads the water
to the centre of the wheel, and the delivery pipe takes it from the casing

at the circumference of the wheel- The centrifugal pump is to a certain

extent a reversed turbine, and the principles involved in the theory of

the centrifugal pump are the same as for that of the turbine.

Pig. 823 shows a type of centrifugal pump made by Messrs. W. H.
Allen, Son, & Co., of Bedford, who kindly supplied the drawings from

w'hich this illustration has been prepared. A is the wheel, which is of

the shrouded type, provided with six vanes B between the shrouds. For
pumping ordinary water the wheel may be made of cast-iron, but for salt

or brackish water a gun-metal wheel is generally used. The wheel is

keyed to a steel or bronze shaft C, which runs in white metal bearings D
carried by the casing. Where the shaft leaves the casing there is a gland

and stuf&ng box to prevent leakage. The water enters from the suction

pipe connected to the pump casing at E, and flows to both sides of the

wheel, entering the latter at its eye or centre opening. Passing through
the wheel the water flow's into tite expanding chambei: .?, and thence, into
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the delivery pipe, which is connected to the pump easing at 11. The
oxi»andmg chamber or volute F, which collects the water from the wheel,

has a varying radial section proportioned to the quantity of water passing

through it in a given time, so that the mean velocity of the water in the

volute is uniform. .

The ol>iect of the volute is to gradually reduce the velocity of the

water after it leaves the wheel, and so convert part of its kinetic energy

into pressure energy.

A centrifugal pump will not act unless it is fully charged with wuter.

A foot valve in the suction pipe will keep the pump charged once it has

been filled with water. A common method of charging large pumps is to

withdraw' the air by means of a steam ejector
;
this requires tliat the

delivery pipe be fitted with a valve, whicli is closed while tlie ejector is

acting.

Comparing the ordinary centrifugal immp with a plunger or piston

pump, the former is much more efficient at low lifts, say under 30 feet.

The centrifugal pump also gives a uniform delivery, and having no
valves, it is much better adapted for pumping dirty water.

443. Design of Vanes of Centrifugal Pumps.—Referring to Fig. 824,

7'i
and are the inner and outer radii of the wheel respectively, In

practice generally lies

between 2r| and 3}q, and ^
18 frequently equal to 2)q.

BjBa repre.sents one vane.

Water enters the wheel at

Bj in the direction B^V^
with an ab.solute velocity

and moving over the

vane, leaves the wheel at

Bg in the direction B^Vg
with an absolute velocity

v^. The tangential velo-

cities of the w'heel at B,

and are and Co re-

spectively. The parallelo-

grams of velocities at B^
and Bjj are constructed

as in the case of tuibines.

Bi^Ui is the relative velocity of the w'ater and vane at Bj^, and f/q is

the inclination of the vane at B^ to the tangent to the wheel at that

point. BjCTg = 7^2 is the relative velocity of the wmter and vane at Bg

,

and is the inclination of the vane at Bg to the tangent to the w’heel

at that point.

B,Sj = 5, is the radial velocity of the W'ater at B,
,
and B^S.^ = is the

radial velocity of the water at Bg. If A, and Ao arc the areas of the

circumferential sections of the wheel at radii and respccti-s'ely, then

SjAo-SjAi. Generally Sg = Si, then A^^A^. If h-^ and A
breadths of the wheel at inlet and outlet respectively, A-, = ^irr-yb

^ ,
and

Ag = . Hence if Ag == A, , hr.y = . If the radial velocity of

the water throughout the wheel is to be constant, then the breadth h at

any radius r is given by the equation hr =
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ef of the weight of water raised,

lie work done in driving the shaft
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% is the velocity c

the wheel, and cos is tljn

as it leaves the wheel.

It is generally assumed that the vj

Avhirl at entrance is zero, that is, the|

of motion of the water at entrance is

shoAvn in Fig. 825. In this case tan

The radial velocity of flow through
may be from 2 to 10 feet per second, ai

monly about 5 feet per second.

444. Work Imparted to the Watejr

Wheel.—The increase in the angular moi'

1 lb. of water in passing through the aI

• 1
centrifugal pump is

i), and t

to T, the turning moment on the wheel,

w is the angular velocity of the AA'hecl

done per second per pound of Avater passiliij

f whirl of the water as it enters

le velocity of Avhirl of the Avater

i “ hlfv
the Asmeel

by the

If la, is zero, then Tw = —^

.

9 .

If H is the maximum theoretical hf

wheel Avill raise the water, neglecti

i (%C2 when w^^ = 0, H
445. Efficiencies of Centrifugal Pulmps.

of the AA'ater as it leaves the delivery
pj

on account of this velocity is ~ per lb.

energy or head in friction in the suetj

computed as in Article 404, p. 462.

pipes be denoted by Ji^, and let h be the

water is raised by the pump, then Hi

head or gross lift of the pump.
The ratio of the gross head Hi to

(see preceding Article) is called the hi/dn
^2 I

Except in small lifts the term — isl

2(7.
I

the term is unimportant. The velocii

the delivery end of the pipe bell-mouthed.

The achtal or commercial ejiciency o|f

of the Avork represented by the produej

and the height to Avhich it is raised to tl^f

of the pump.

The idnetic energy or velocity head-

wheel can only be utilised for lifting the

. Fm. 825.
Hence if

L radians per second, the work

g through the AA'heel is

ipad or the height to which the

ig all losses, then obviously

^^^^2^2

9
'

;.— If -v denotes the velocity

|pe, then the energy or head loss

of water delivered. The loss of

ion and delivery pipes may be
.

the lo.ss due to friction in the

lactual height through which the

Eet
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pressure energy by gradually reducing tbe velocity in an expanding

clianiber or volute. If no part of the velocity head i.s utilised, then the

theoretical lift is reduced from to — .

<J 9

446.

Centrifugal Head Imparted to Water by Wheel of Centrifugal

Pump.—Suppose the i>ump to be fully charged with water, and that the

wheel is rotating with angular velocity w, but that

no water is being delivered. The water within the

wheel will have rotary motion only, and the centri-

fugal force of this water will cause the pressure at

the outer circumference to be greater than that at

the inner circumference.

To determine the difference of pressure at the outer

and inner circumferences of the wheel due to the cen-

trifugal force of the water in the wheel, consider (Fig.

826) a wedge of this water of breadth h and angle y,

as shown. Take an element FH of this wedge at radius r and thickness

(h\ If to is the density of the water, then the weight of the element

FH is wbrddr, and its centrifugal force is , To prevent FH

from moving outwards in a radial direction the intensity of the pressure

on its outer face must exceed the intensity of the pressure on its inner

Fig, 826 .

face by an amount dp, and dp • hr6 .

whrQd/r •

~~9~ or d^r
tmh'dr

The

difference of the intensities of the pressures on the outer and inner ends

of the wedge of water within the wheel is — , iS-Zli andh 9 y 2
’

if he fs the head equivalent to this difference of pressure,

, o)2(r|-r;) cj-cf
*

In order that the pump may discharge water through the delivery

pipe the actual head must be less than the centrifugal head.

447. Turbine Pumps .—

A

greater amount of the kinetic energy of

the water as it leaves the -wheel of a centrifugal pump may be converted

into pressure energy by providing suitably designed guide passages in

the chamber surrounding the wheel. The centrifugal pump then becomes
a turbine, pump. A single wheel turbine pump -will raise water to a much
greater height than an ‘ordinary centrifugal pump.

448. Multi-stage Turbine Pumps.—Water may be pumped to almost
any height by mounting a series of turbine pump wheels side by side on
the same shaft, each wheel being provided with a suitable easing The
water enters the eye of the first wheel, and is delivered through its

casing to the eye of the second wheel, and so on to the delivery pipe,

which leads the water from the easing of the last wheel.

Fig. 827 shows a multirstage turbine pump, as made by Messrs.

W. H. Allen, Son, & Co., of Bedford. This pump is provided with a
balancing arrangement, designed with a view to reducing the leakage of

water through the clearance between the balancing piston A and the
bush B. The cylinder C is attached to the pump casing, and is provided
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with a feeing against winch the radial feeing on the balancing piston Aruns with a small clearance. When the radial facings of the piston andcylinder feuch one another there is a small clearance between the co£sand he facings of the multi-collar thrust-bearing D, thus allowing thespindle a very small axial movement. This movement also giv^s a v!rvsman clearance be ween the two balancing facings mentioned^bove
^

When the leakage water from the periphery of the end wheel orrunner enters from the annular chamber E to the chamber E it L notdrained away directly, but passes between the two radial fecini If
piston A and the cylinder C. The maximum ctate £tZn Wtwo faemgo .a vary small, and therefore only a very small qiS

DISCHARGEA

S*to bTdSe^iway?
In chamber F there will be a pressure which will vary with the headagainst which the pump is working, and also with the clearance betweenae piston A and the bush B, and between the piston A and the cylinderC. Vhon water in tlie ehambor F reaches a certain pressure it willforce the runnere and spindle to move in an axial directioi, thus slightly

eX&r ® fh T'“ ‘h® f“i”gs of fte balancing piston andcylmdei 1 be water in the chamber F will drinn away through themcieased outlet opemng, and the two facings will move away from eachother until the mtensity of the pressruro between them aiid^also in the

hrmgs the lumiers back into their first position, consequently the spindle
'“ovement in an axial directioiC thusmaterially helpmg to ensure perfect balance. .
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Exercises XXX.

1 The diameter of the barrel of a simple bucket pump is 9 inches, and the

stroke of the backet is 2 feet. The bucket-rod is driven through a connecting,

rod coupled to a crank which makes 25 revolutions per minute. The total head

of water is 40 feet. How many cubic feet of water are raised per minute, and

what horse-power must be delivered to the crank if the efficiency of the pump is

50 per cent. 1
, , - p , ,

2. A backet pump works under a mean suction head of 20 feet and a mean

delivery head of 40 feet of water. The diameters of the_ bucket and pnmp-rod

are 12 inches and 2| inches respectively, and the stroke is 3 feet. Taking into

account Hie influence of the pump-rod, what is the pull on the rod during the

up stroke? Also, what is the volume of water discharged during (a) one up

stroke, {b) one down stroke 1

3. The suction and delivery heads of a plunger pump are 20 feet and 50

feet respectively. The diameter of the plunger is 6 inches, and its stroke 10

inches. The plunger makes 48 double strokes per minute. Calculate the force

required to work the plunger (a) during the suction stroke, (b) during the delivery

stroke, assuming that the efficiency of the pump is 50 per cent, for the suction

stroke, and 70 per cent, for the delivery stroke. Find also the horse-power

required to work this pump.
4. In a shale mine, in order to drain one of the pita a treble-rain pump,

driven by an electric motor, is employed. The rams are 9|- inches in diameter

by 12-incli stroke, they each make 34-75 double strokes per minute, the height to

which the water is lifted is 393 feet, and the total length of the 6-inch discharge

pipe is 700 feet. Find: (i.) How many gallons of water are lifted per minute,

(ii.) The useful horse-power when the pumps are running steadily, (iii.) The

efficiency of the pumps if the B.H.P. of the motor is 50. (iv.) How many foot-

pounds of work are done per minute in overcoming the friction in the pipe (the

coefficient of friction is 0-0076). (v.) The B.H.P. required to lift the water and

overcome the pipe friction.
_

[B.B.]

6.

The cylinder of a double-acting piston pump has a diameter of 9 inches,

and the piston-rod has a diameter of 2 inches. The piston-rod goes through one

end of the cylinder only. The suction and delivery heads are 10 feet and 60

feet respectively. Neglecting friction, oaloulate the force necessary to work the

piston during the in” and “ out” strokes. If the mean speed of the piston

is 90 feet per minute, how many gallons of water does this pump deliver per hour.

6. In a duplex Worthington pumping engine (see Fig. 818, p. 510) each of the

two pump-pistons is lOii inches diameter,and the pump-rodsare,3i inches diameter.

The rate of pumping is 1,442,312 gallons per 24 hours. What is the mean speed

of the pistons in feet per minute ? The head i.s 648 feet, including friction.

What is the pump horse-power? The duty of the engine is 183,300,000 ft. -lbs.

per cwt. of coal, and the steam, consumption is 12-1 lbs. per pump horse-power

per hour. What is the weight of steam produced per lb. of coal used ?
_

7. Keproduce the indicator disgrams given in Fig. 820, p. 511, enlarging them

to, say, twice the size shown. Then, taking the particulars of the Worf.hington

pumping engine given in Art, 44-1, construct, on a stroke base, the diagram

whose ordinates show the effective driving force on the immp pist.cn as described

in Art. 441, but allow for the effect of the various piston-rods on the areas

of the pi.stons. All the steam piston-rod,s are 2^ inches diameter. On the flnal

diagram add a horizontal line whose height above the base is the mean height of

the" diagram. Also add the line whoso height above the base shows the resist ance

of the primp obtained from the particulars given in t.he preceding exercise. If

several students in a class should work this exercise, a number of them should

construct the diagram for the forward stroke, and the others for the return

stroke.

8. Show, by drawing the rate of delivery curves, that the fluctuation of

delivery from a pump having two single-acting plungers driven through two

cranks at right angles to one another is considerably greater than for one

plunger .only. .

9. Draw the rate of delivery diagram for a pump of the type shown in Fig.
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805, p. 503, the area of the piston-rod beiner half that of the oistm-.
construct the rate of delivery diagram for two fuch pumps drivSi through cxSlS

to ?lranS
° thl connecting-S eqS

10/ A “three-throw ’’deep well pump has three pistons each 6 inches diameterwith piston-rods 2 inches diameter. Stroke of each, 24 inches. The pistons aredriven through a crank shaft having three cranks making 120" with one anSherThe connecting-rods are so long that the pistons may be assumed to haveharrnonic motion. Draw the rate of delivery diagram for this pump.
^

11. A centnfupl pump with vanes curved back has an outer radius of 10
the tangents to the vanes at outSt beiiiginclined at 40 to the tangent at the outer periphery. The section of the wheelis such that the rahal velocity of flow is constant, 5 feet per second • and it

Mot ‘so that tW?Jhnn ,

Determine, (1) Tlie a?gle of the ’vane at

m
^ theoretical lift of the pump, (3) the\elooity iiead of the water as it leaves the wheel fXJ L 1

which
Oircumferential speed of the wheel of a centrifugal pumpwhich is requ red to raise water to a height of 5 feet, having given that the

through the wheel is 4/ffet per second,and the vanes are curved backwards so that the angle between their directionsand a tangent to the circumference of the wheel is 20°.
pump 4 feet diameter, running at 200 revolutions per minutepumps 5000 tons of water from a dock in 45 minutes, the mean lift beLg 20 feet.’

\ iiiclies, aiid the angle of

t
^Determine the hydraulic efficiency, and estimate the

hln!?nf
lowest speed to start pumping against thehead of 20 feet, the inner radius being half the outer. ° [UL]



CHAPTER XXXI

SOME HYDRAULIC PRESSURE MACHINES

449. Packing for Hydraulic Rams and Pistons.—To prevent

leakage of the water between a ram, plunger, or piston and the

cylinder various forms of packing are used. The K.} -leather packing

shown in Fig. 828 has been extensively used. The water leaks past

the ram as far as the packing, and, entering its interior, presses one side

agaiiist the recess in the cylinder and the other against the ram. The

greater the pressure of the water the greater is the tendency to leak, but

in the U-leather packing the force with which the leather is pressed

against the ram and against the recess in the cylinder to prevent

leakage is proportional to the pressure of the water. This is one great

merit of the U-leather i)acking.

The U-leather packing is made from a disc or flat ring of leather,

which is moulded between two cast-iron blocks, as shown in Fig. 829.

The leather is softened in hot water and placed between the block.s,

which are then pressed together in a hydraulic press or by bolts and nuts,

the bolts passing througli the blocks. The leather is kept in the mould

for about twenty-four hours, when it is removed, and after it is dried, it

is trimmed to the form shown in Fig. 828.

The hat-leatherpacking is shown in Fig. 830. This is more commonly

used for small rams, valve spindles, etc.

The cup-haiher packing is mainly used for pistons. A piston packed

with two cup-leathers is shown in Fig. 797, p. 499. A cup-leather

packing on a ram is shown in Fig. 839, p. 526.

Hat- and cup-leathers are moulded in a similar manner to the

U-leather.

The leather for hydraulic packings should be the best quality oak-

tanned, sole leather. It is planed to a uniform thickness of about

three-sixteenths of an inch. The flesh side of the leather is made the

rubbing side of the j
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An objection to the U -leather packing is that the ram must bn
removed before the packing can be renewed, and this, in many eases,

is very troublesome. In such cases the ordinary stuffing-box is generally

used. The ordinary gland and stuffing-box for hemp or other packing is

shown in Fig, 799; p. 499.

To give a smooth and non-corrosive surface to a ram, it is frequently

sheathed with brass. Cylinders are also lined with brass for the same
reasons and to make them non-poi'ous at high pressures.

450. Joints and Connections for Hydraulic Pipes.— Hydraulic
mains are generally made of cast-iron. For a pressure of 800 lbs. per

square inch the diameter of these mains does not exceed 71 inches.

The form of joint used for cast-iron hydraulic mains is shown, in Fig. 831.

The joint is made water-tight by a gutta-percha ring, which is forced into

the V-shaped recess formed between the spigot and socket.

For smaller pipes, solid-drawn steel tubes are used. A common form
of joint for these tubes is shown in Fig. 832. Strong cast-iron flanges

are screwed on to the ends of the tubes. One of the two flanges has

a shallow socket to receive a spigot on the other. The joint is made
water-tight by a leather or gutta-percha

washer placed between the spigot and
socket. The end of the spigot and the

bottom of the socket in contact with the

leather or gutta-percha have concentric

grooves turned on them, and the leather

is forced into these grooves.

A very convenient form of joint

between a steel tube and a hydraulic

cylinder is shown in Fig. 833. A screwed

recess is formed in a boss on the

cylinder, and into this is placed, first

a leather or gutta-percha washer, and
then the end of the tube, on which is screwed a collar A.

screwed into the recess completes the connection,

451. Hydraulic Accumulator.—Hydraulic pressure machines are

usually intermittent in their action, and their demand for power is

therefore very variable. In an inst^ation of these machines the

pressure water is obtained from puihps, and
.
it is desirable that the,

pumps should be kept, as far as possible, working continuously. This

A gland B
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neoessitatos tlie introduction of a liydraulic acciinmlator, wliicli .slaall

store up tlic pressure water wlien tlie j)umps are delivering more than is

rocpured Ijy the machines, and give it out again when the delivery of the

pumps is less than the machines require. There are two principal type.s

of the ordinary hydraulic accumulator. In the one type there is a fixed

cylinder fitted wdth a loaded ram, and in the other there i.s a fixed ram
on which is fitted a loaded cylinder. An example of the fixed ram type

of accumulator is shown in Fig. 834. A is the ram, and B the cylinder.

When the delivery of the pumps is

greater or less than is required by the

machines, the water enters or leaves the

cylinder at G through the ram, which
is hollow. Besting on the flange at the

lower end of the cylinder is a strong

cast-iron base D, which carries the

remainder of the load. The remainder

of the load may consist of a number of

blocks of cast-iron, or, as in tlie form
showui, ,D carries a cylindrical casing

made of steel plates, which holds scrap

iron, stones, or other suitable heavy
material. When at the bottom of its

stroke, the load rests on the wood blocks

showui. EE are two timber posts sunk
in the concrete fouudation at their lower

ends, and fixed at their upper ends to

the walls of the building containing the

accumulator, or in any other way con-

venient. To the inside faces of these

timber posts are attached steel or iron

channels, in which slide blocks attached

to the load casing, as shown in the

elevation, and more clearly in the cross

section at (a). In this way the load is guided as it rises and falls.

A strong buffer or stop is provided to prevent the cylinder rising

too high, and if there is only one accumulator, there arc levers which
are automatically brought into action at or near the top of the stroke,

and which stop or restart the pumps.
In large installations where one accumulator would be inconveniently

large two or more are used, in which case the second carries a heavier
load than the first, and the third a heavier load than the second. Each
increase of load corresponds to an increase of pressure of about 20 lbs.

per square inch. The second accumulator does not come into action until

the first is fully charged, and the third does not come into action until the
second is fully charged. Only when the last of the series is fully charged
are the pumps stopped.

If = diameter of ram in inches, y) = pressure of water in lbs, per

square inch, W= total moving load in lbs,, and A = stroke in feet, then,

neglecting friction, and the capacity of the accumulator is

W/i==pVi ft.-lbs.
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452. Tweddell’s Differential Accumulator.-—In this accumulator

there is a fixed ram ABC (Fig. 835), the lower part BO being of larger

diameter than the upper part AB. The

lower end of the ram is fixed in the base

shown, and the upper end (not shown) is

rigidly held by a bracket attached to a wall

or in any other convenient way. D is the

cylinder which slides up and dowm on the

ram. The lower and upper ends of the

cylinder fit the larger and smaller parts of

the ram respectively, leakage being prevented

by packings, as showm. The cylinder is

loaded with cast-iron weights as shown, the

amount of the load depending on the water

pressure required. Water enters or leaves

the accumulator by the pipe E, and passes

along a central hole in the larger part of the

ram
;
this central hole communicates with the

water space in the cylinder by transverse

holes in the ram at B. When at the bottom
of its stroke the cylinder rests on the

props F.

If W== total moving load, — larger

diameter of ram, dig == smaller diameter of

ram, and y? == intensity of water pressure,

then, neglecting friction, ^(cii —

From this it will be seen that if the difference

between d-^ and d^ be small,p will be large for

a comparatively small value of W, but the

capacity of the accumulator is small.

If d is the diameter of the ram of an ordinary accumulator carrying

the same load W under the same pressure j), then JidX — d"^^. The
ordinary accumulator would therefore have a much more slender ram
than the dift'erential accumulator.

The differential accumulator is usually comparatively small, say
= 6 inches, d^ = 5 inches, and a stroke of about 4 feet.

The differential accumulator is used in connection with one hydraulic

machine only, such as a hydraulic riveter, where the force exerted at the

beginning of the operation is comparatively small, but at the end it must
be large. The capacity of the differential accumulator being small, the

load descends rapidly and wdth increasing speed, and as the operation of

the hydraulic machine approaches the end, the falling load is brought

quickly to rest, wuth the result that there is a considerable rise

in the pressure of the water, and therefore a considerable increase

in the force exerted by the hydraulic machine at the conclusion of its

operation.

453. Intensifying Accumulator.—An accumulator in- which the

load on the ram is produced by low pressure water, say from the ordinary

water supply, acting on a piston, is shown in Fig. 836. This is called an
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intensifying oGCumulator^ because the pressure of tire water on the

piston intensifies the pressure of the water on the ram. The low preS'

sure water enters at A. The action is obvious, and need not be further

described.

If d is the diameter of the ram, D the diameter of the piston, p the

pressure of the water on the ram, and P the pressure of the water on the
piston, then, neglecting friction, = PD‘‘^.

454. Hydraulic Intensifiers.— When a hydraulic machine, in

finishing the operation which it is designed to perform, has to

exert a much greater force than is required during the earlier part of

the operation, tlie increased force may be obtained by the use of an
inteneifier.

The intensifying accumulator described in the preceding Article may be
used as an intonsifier by first charging the smaller hydraulic cylinder with
water, and then introducing the power water from the pumps into the

larger cylinder at A. The effect of this will be to raise the pressure

of the water in the smaller cylinder and in the pipes leading from it.

Generally, however, the hydraulic intensifier has two rams instead of

a ram and piston.

If d and are the diameters of the smaller and larger rams
respectively, p the pressure of the water supj)liGd by the pumps, and

the intensified pressure, then, neglecting friction, -p-^d^ =pdl.
A hydraulic intensifier, which may be operated to give three

different higher pressures, as required, with the same pump pressure,

is shown in Pig. 837.* A is the smaller ram, and this is stationary.

B is a cylinder fitting over A, but it is also a ram fitting into

G. While 0 is the cylinder for B, it is also the ram for D
;
and

while D is the cylinder for C, it is also the ram for the fixed outer

cylinder E.

On the tension rods PP are placed sleeves HII, which have
lugs KK, which, when brought round into action by turning the

sleeves, prevent D from rising. The sleeves also have lugs LL, which,

when brought into action, prevent 0 from rising. are handles

for turning the sleeves to put the lugs LL or LL and KK into or out of

action.

The cylinder B and the pipes connected with it through the interior

* Jmericrtn lfacAtnts«, Nov. B, 1904..
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of the fixed ram A are charged with the water whose pressure is to he
intensified, and water at the ordinary pump pressure is introduced into
the outer cylinder E. The lugs on

the sleeves are shown in action

in Fig. 837 preventing C and D
from rising.

Let £^i, c?2> ^3

external diameters of A, B, C,

and D respectively. Let_p be the

ordinary pump pressure of the

water, the intensified pressure

when B alone rises, the inten-

sified pressure when B and C rise

together and D is fixed, and p^
the intensified pressure when B, C,

and D rise together. Then, neglect-

ing friction,

Similarly, d^^^dlp^ andcf®Pg= ci!^.

In the particular intensifier

shown in Fig. 837 the ram A and
cylinder B are made of forged steel.

The other cylinders are made of

cast-iron. To diminish the clear-

ance spaces all the cylinders except

the outer one are bored out.

In operating a hydraulic machine
which Avorks in connection with

an intensifier, the machine is first

driven directly by the ordinary

power water, and at the point in

the operation where the greater

force is required the power water
is switched on to the larger

cylinder of the intensifier, and
at the same time the delivery of

the intensifier is switched on to

the machine.

455. Hydraulic Press for mak-
ing Lead Pipes.—Fig. 838 shows
a form of hydraulic press used for

“squirting” lead pipes. A is a
large ram, on the top of which is

the cylinder B, containing the lead.

C is a smaller fixed ram, which is

hollow, and provided with a die at

its lower end. This die has a hole

in it of a diameter equal to the

outside diameter of the lead pipe.
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Attaclied to the large ram there is a straight round. rod having a diameter

equal to that of the inside of the lead pii^e. This rod passes up through

the centre of the die. The lead,

in a molten state, is poured in Air
at D, aiid when it has solidified,

but while still hot, the large Charging ^ m

is squirted through the die on the end of

the smaller ram, coming out at D in the

form of a pipe. An enlarged section of the

part of the apparatus in the neighbourhood

of the die is shown at (a).

456. Hydraulic Lifting Jack.—Fig. 839 shows a hydraulic lifting

jack made by Messrs. Tangyes of Birmingham. The ram is spread out

at its lower end to form a base upon w^hich .the jack stands. To the

top of the ram is attached a cup-leather to form a water-tight joint

between the ram and the cylinder. The pump is screwed into the top of

the cylinder, and is surrounded by a casing attached to the cylinder.

The cover of this casing forms the bed for the load under which the jack

is placed, or the load may be carried on the claw formed on the lower end
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of tlie cylinder. Tlie space round tlie pump in the casing forms a cistern

for the water. A spindle, one end of which passes through the casing,

carries at that end the hand lever, and inside the easing it carries a short

cranlv, the free end of which works in a rectangular slot formed in the

plunger of the pump. By this arrangement the oscillation of the lever

causes the reciprocation of the plunger. The suction valve of the pump
is at the side, and the delivery valve at the bottom of the pump. The
valves are loaded with light spiral springs.

When the lever is worked the pump takes in water from the cistern

and delivers it into the cylinder above the ram, and thus causes the

cylinder and the load on it to rise. During the operation of raising the

load the lowering screw

must be screwed up tight.

The inner end of the lower-

ing screw is conical, and

forms a valve which, when
shut, closes the passage

between the cylinder and

cistern outside the pump.
To lower the cylinder the

lowering screw is un-

screwed, and the water

may then flow freely from

the cylinder to the cistern.

When the jack is in

use the air screw at the

top should be slackened.

Overlifting is prevented by
the hole H in the cylinder

allowing the water to

escape when the proper

lift is exceeded. Rotation

of the cylinder on the ram
is prevented by a key

secured in the cylinder at

the lower end by a set

screw; this key fits in a

keyway extending nearly

the whole length of the

ram.

457. Hydraulic Crane.

—Comparing the principal

part of the mechanism of

a hydraulic crane with

the ordinary “block and
tackle.” In the block and
tackle one force acting on

the “fall” of the rope

overcomes a greater by ’
' Fio. 840.

bringing the two blocks

closer together. In the hydraulic crane the action is reversed
;
the two
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blocks or sets of pulleys are puslied apart by a great force, wbicb is made
to overcome a smaller force at the free end of the chain. One Idock is

attached to the bottom of a hydraulic cylinder, and the other to the ram,

A chain passes over the pulleys in the two blocks in the same inanner as

in the ordinary block and tackle, the free end of the chain ]>assing up the

crane post and oven- guide pulleys to the load to be lifted.

Ileferring to Fig. 840, A is the stationary cylinder, and B the ram.

Fixed to the bottom of the cylinder is the frame C carrying one set of

pulleys, and fixed to the outer end of the ram is the frame D carrying

the other set of pulleys. One end of the chain is attached to the bracket

E on the fixed frame G.

From tlie fixed end at E the chain passes over the pulley F, and then

down and up over the various pulleys, and finally passes up to and over

guide pulleys in the frame of the crane to the load to be raised.

Neglecting friction, the load lifted is equal to the tension in the chain,

which is equal to the total force on the ram divided by the number of

straight lengths of chain which proceed from the pulleys on the ram.

Exercises XXXI,

1. If a hydraulic power company charges 16 pence per 1000 gallons of water
at a pressure of T.'IO lbs. per square inch, what is the cost per horse-power hour
to the consumer 1

2. How many ft, -lbs. of work may be stored up in a hydraulic accumulator
whose ram has a diameter of 12 inches, and a lift of IH feet, when the pressure
of the water is 760 lbs. per square inch?

8. What is the pressure of the water in a hydraulic accumulator having a ram
11 inches in diameter when the total load is 45 tons and friction is neglected ?

4. What must bo the diameter of the ram of a hydraulic accumulator which
is to have a capacity of 100 horse-power minutes with a water pressure of

1120 lbs. per square inch, if the stroke is 14 times the diameter of the ram ?

6.

The ram of a hydraulic accumulator {Fig. 834, p. .^22) is 12 inches in
diameter, and the total moving load is 55 tons. If the force required to move
the cylinder along the ram against the resistance of friction only is 2'5 tons,

what is the pressure of the water, in lbs. per square inch, (a) vdien the load is

ascending with uniform velocity, (!>) when the load is descending with uniform
velocity ?

6, The ram of a hydraulic accumulator is 18 inches in diameter, the stroke is

23 feet, and the water pressure is 1120 lbs, per square inch. If the useful work
given up by this accumulator during one full downward stroke is utilised in

raising W tons to a height of 40 feet by means of a hydraulic crane whose
efficiency is 55 per cent., find W. If this work is done in three minutes, what is

the gross horse-power of the crane ?

7, The ram of a hydraulic accumulator is 4 inches in diameter. The pressure
of the water from the accumulator is to be 1‘5 tons per square inch, and the
water is used to work the hydraulic ram of a testing machine, which is 9'5 inches
in diameter, {a) What total load must be placed on the 4-inch ram if 5 per cent,

of the load is wasted in the friction of the cup-leathers, etc. 2 (i) What total

load is the testing machine capable of applying, if there is a further loss of

5 per cent, in the cup-leathers of the large cylinder? [B.E.J
8. The diameters of the two parts of the rarh of a differential accumulator

(Fig. 836, p, 523) are 6 inches ana 6 inches, and the stroke is 50 inches. If the
pressure of the water is 1500 lbs. per square inch when tlie load is at rest or when
it is moving with uniform,velocity, what load is required, including the weight of

the cylinder 2 How many ft.-lbs, of work may be stored in this accumulator 2

What would be the diameter of the ram of an ordinary accumulator to carry the
same load with the same water pressure 2

9. The -total moving load on a differential hydraulic accumulator is 3 tons.
The diameters of the larger and smaller parts of the ram are 41 inches and
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i inches respectively. Neglecting friction, what is the pressure of the water in

lbs, per square inch ?

10. In an intensifying accunaulator (Fig. 836, p. 524) the diameter of the ram
is i inches, and the diameter of the piston is 20 inches. If the head of water on
the piston is 60 feet, what is the pressure of the water on the ram in lbs. per square
inch ? If the stroke of the ram and piston is 30 inches, what is the capacity of

this accumulator in ft. -lbs. ?

11 . On board ship an accumulator is used in which the ram is 9 inches
in diameter, and the pressure of the water is 800 lbs. per square inch. The load

is produced by steam pressure of 60 lbs. per square inch acting on a piston

connected directly to the ram and working in a separate steam cylinder.

Neglecting friction, whatmust be the diameter of the steam piston ?

12. A hydraulic intensifier is required to increase the pressure of 700 lbs. per
square inch in the mains to 3000 lbs. per square inch. The stroke of the
intensifier is to be 4 feet, and its capacity 3 gallons. Determine the diameters

of the rams. [Inst.C.E.]

13. Deferring to the hydraulic intensifier shown in Fig. 837, p. 523, if the

diameters of the rams are 2|, 4, 6, and 8 inches respectively, and if the pressure

of the water introduced into the outer cylinder is 700 lbs. per square inch, what
are the pressures, in lbs. per square inch, which may be obtained in the pipe

leading from the interior of the smaller ram, neglecting friction 1

14. What would the results of the preceding exercise be if the friction of the

stuffing-boxes is allowed for, assuming that the frictional resistance of one
stuffing-box, in lbs., is equal to 0’05PD, where P is the pressure of the water in

lbs. per square inch, and D is the diameter of the ram in inches ?

16.

In a hydraulic press for squirting lead pipes (Fig, 838, p. 626) the larger

ram has a diameter of 20 inches, and the smaller ram has a diameter of 5 inches.

Find the intensity of the pressure on the lead when the water pressure is 1 ton

per square inch, and the bore of the lead pipe is ^ inch. If the stroke of the ram
is 12 inches, and the lead pipe weighs I’l lbs. per foot of length, find the length

of pipe produced in one stroke if the lead weighs 712 lbs. per cubic foot,

16. The diameter of the ram of a hydraulic jack is 3 inches, the diameter of

the plunger of the pump is | inch, and the mechanical advantage of the lever is

20. If the efficiency of this jack is 75 per cent., what weight will be raised by a
force of 70 lbs. at the end of the lever ?

17. What is the efficiency of a hydraulic crane which uses 70 gallons of water
at a pressure of 700 lbs, per squa're inch in raising a weight of 10 tons to a
height of 27 feet ?

18. In a hydraulic crane the ram is 9 inches in diameter, and the velocity

ratio (or the ratio between the velocity of the lift and the velocity of the ram) is

10. The water is delivered to the crane under a pressure of 1 200 lbs. per square

inch, and the mechanical efficiency of the crane is 52 per cent. Find (1) what
load this crane will lift

; (2) the quantity of water used in gallons per 35 feet

lift. Why do these cranes have such a low mechanical efficiency 1 [B.E.]

19. Calculate the displacement of the ram of a hydraulic crane, whose
efficiency is 55 per cent., in order that, with a water pressure of 700 Ihs. per

square inch, it may raise a load of 6 tons to a height of 30 feet. Find the

diameter of the ram if its stroke is six times its diameter.

20. A hydraulic lift with ram, load, etc., weighs 10 tons, the ram is 9 inches

in diameter, and the friction in the mechanism is equal to 0*05 of the gross load.

The accumulator is half a mile away, and is loaded to 800 lbs. per square inch

;

the diameter of the supply pipe is 3 inches. Estimate the speed of ascent of the

lift, if the loss of head in the pipe is O'OOO^lv^fd, I being the length in feet,

d the diameter in feet, v the velocity of the water in the pipe in feet per

second. [B.E.]



ANSWBES
II. pp. 21-23.

1. ()«; a-TH; 19; 8’2. 2. 210; 1584; 1824; 2952-9.

3. 22-5; ;i5; 19; 29-«a. 4. 31-42; 28-27. 6. GOl-0. 6. 0-0432.

7. Mf. 8. 0*56. 9. 0-449. 10. G seconds. 11. 14 feet per second.

12. 93-9 feet. 13. 22-5 seconds. 14. 0-0675 ;
16-59.

16. 1343; 25-66 seconds. 16. 224; 23*47; 1-91.

17. 26*64 feet per second at 41“ 21' to the vertical.

18. 25“ 37' north of east
;
3*889 milo.s per hour.

19. 48" 15', assuming that the man is approaching the line of flight of the

object. 20. 17-33 feet per second.

22. B, 5-8 feet per second
;
middle point of AB, 3*2 feet per second.

23. 12-42 lbs. 24 . 258*76 feet. 26. 3821 lbs. ; 4631 lbs.

26. 3 minutes 4*6 seconds
;
54*72 miles per hour.

27. 22^ feet per second per second
;
10*23 tons. 28. 8*93 feet per second.

29. i6'-93 lbs. 30. 3*32 feet per second per second.

31. (1) 844-7 lbs.; (2) 1000 lbs.
; (8) 1155*3 lbs. 33. 2020 lbs.

34. 488-13 ft.-lbs.

ma. pp. 28-30.

1. 40-594. 2. 5727-6. 3. 614*3. 4. 366,000. 6. 47,099. 6. 302,467.

7, ItV 8- 130-2 ft.-lbs. 9. 6. 10. 2200 lbs. 11. 992*3. 12. 226,286.

IS. 30-56
; 22,790 ; 170 ;

0-0035. 14. 44-24
; £840.

15, 10*02 lbs.
;
83*3 per cent., 66*4 per cent., 74*2 per cent.

16. 85 ; 112-6
j
0-437

;
15-5 lbs. ;

0-673. 17. See Big. 841.

Big. 841.

18. Q=0-02W-fl. 19,22-45. 20. P=0-162W-l-2-8 ;
maximum efficiency

= 38-6 per cent.

21 . jp
= l*25, g=5; effioienoy=57’14 per cent,
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nib. pp. 32-33.

1.

4489 feet; 209-5 lbs. 2. 10-56 feet. 3. 0-863 lb.

4. 37-51; 261-24. 5. 4445 feet.

6. 59-86 feet
;
result independent of diameter of wheel.

7. 7,339,185 in lb. and foot utiits
; 1250 ft.-lbs.

8 . 54,0 0 ft.-lbs
;
118-6 tons. 9. 260,741 ft.-lbs.

; 237.

10. 305,783 ft.-lbs.
;
increases at the rate of 3-087 revolutions per minute per

minute. 11. 173-5 feet. 12. 78-22
;
0-039.

13. 1,171,780 ft.-lbs. 14. 8-7 feet per second.

16. (a) 6-77
;

[h) 11-4; (o) 2236 in lb. and inch unit.s. 16. 778 feet.

17. 17-3 B.Th.U. 18. 13-6 per cent. 19. 500‘87 ; 171-73 tons.

20. 508-8 lbs.

IV. p. 41.

1. Magnitude, 199 ;
line of action inclined at 23“ 57' to the horizontal,

2. Magnitude of resultant, 3-18
;

line of action inclined at 38° 66' to the
horizontal ;

horizontal force, 2-48 ; vertical force, 2.

3. Magnitude, 50; line of action, 1-2 inches from the force 20 and 0-8 inch
from the force 30.

4. Magnitude, 10 ;
line of action, 6 inches from the force 20 and 4 inches

from the force 30.

6.

Magnitude, 30 ;
line of action, 3-83 inches from A and 0-67 inch from B.

6. Magnitude, 2 ;
line of action midway between A and B.

7. P, 21i ; Q, 23i 8. R^, 3/w
;
R^, 3^-W.

9. Magnitude, 4-17
; line of action inclined at 78“ 17' to AB, and cuts the

latter at a point 1 -4 inches to the right of A.
10. Magnitude of force at A, 6-32; magnitude of force at B, 4-99; lines of

action inclined at 76“ 8' to AB.
11. Magnitude, 3-66

;
line of action inclined at 82“ 42' to AB, and cuts AB at

a point 0'76 inch to the right of A.

12. P, 4-14
; Q, 1-8

;
line of action of Q 1-41 inches above A.

Va. pp. 49-50.

1. 11-25. la. 28-75. lb. Magnitude of P, 20 lbs.
;
line of action is perpen-

dicular to BO, and cuts AO at a point f inch from A.

2. Within the rectangle ABDE, 1-Sl inches from AB, and 1-30 inches from AE.
3. Within the triangle ABO, 1-06 inches from AO, and 0-69 inch from BO.
3a. Within the triangle ABO, 0-96 inch from AC, and 0-61 inch from BO
4. The string cuts CD produced 2'65 inches from 0. '

5. 0-89 inch below AB, aiui 0-39 inch to the left of AC.
6. 0-87 inch above AB, and 0-G3 inch to the right of AC.
7. 9-01 feet to the right of A.
8. 0-89 inch below AB, and 1-13 inches to the right of AC.
9. 0-85 inch above AB, and 2-58 inches to the right of AC.
10. 1-23 inches from OA, and 1-31 inches from OB.
11. 1-61 inches below AB, and 0-98 inch to the right of AC.
12. 1-90 inches below AB, and 1-78 inches to the right of CE.
13. 17-6

; 177,408 ;
centre of pressure, 25 feet from ground.

Vb. pp. '61-63.

1. 265 in inch and lb, units, 2. 2-146 in inch utiits,

3. {a) 56-30, (5) 9*71, both in inch units.

4. 549-1 and 364*5, both in inch units.

6. y= 5-34 inches
;
I = 1 385 in inch units, 6. 3-61.. 7. 15-4.

8.

6-34. 9. 5-96 and 5-24. 10. 0-49. 11. 0-568. 13. 9*66 inches.

14. (1) 8-9 square inches
; (2) 8*1 inches

; (3) 64-6. These answers are the
means of five solutions.



APPLIED MECHANICS53 2

15. 424 lbs.;' 10*23 inches.

16. Bending moment at centre^ 27*5 foot-tons; shearing force at centre,

1*4 tons.

17. 37 '5 foot-tons; 5 tons. 18. Tension in chain, 2640 lbs,

19 , Reaction at C, 12*4 tons ; reaction at D, 17*6 tons ; bending moment at

centre, 43*6 foot-tons ; shearing force at centre, 4*6 tons.

Via. pp. 70-72.

1. (1) 22,282; (2) 0*4456
; (3) 0*0007427; (4) 24-95.

2. {1) 25,133 lbs.; (2) 0*0256 inch. 3. 460*9; 4609.

4. (1) 0*0432 inch
; (2) 4800 lbs. per square inch

; (3) 7248*5 lbs,

6. 9447 lbs. per square inch tensile stress in steel
;
6144 lbs, per square inch

compressive stress in copper
;
0*2182 inch

;
36,55 1 lbs.

7. (1) 19*9882 inches; (2) 24,083 lbs. per square inch; (3) 16,858 Ihs. per
square inch, 8. 21*9875 inches ; 7000 Iba per square inch

;
19*9951 inches.

9.

500 feet; increase in length, 0*18 inch. 10. 0*1055 inch.

11. (a) 6972 ft. -lbs. ; (6) 8 *21 ft. -lbs.
;
(a) -f (5) 849. 12. g.

13. 17,112 lbs. per square inch ;
0*041 inch. 14. 21,231 lbs, per square inch.

16. 12,937 lbs. per square inch; 0*588 inch, 16. 1989 inch-lbs.

17. 13,650 lbs. per square inch
;
0*505 inch.

VIb. pp. 78-79.

E«=tearing effioiencjj* per cent. E,=shearing efficiency per cent, E,f=com.
bined shearing and tearing efficiency per cent.

1. E<, 56*25
; E„ 56*45 ; crushing stress, 36 tons per square inch.

2. Ei, 71*7
; Ej,, 71*7

;
crushing stress, 23*61 tons per square inch.

3. p=3 inches; Ej, 68*75
;
E«, 67*2.

4. =11*5 inches; p=:4| inches; E(, 72*4; E„ 72*9.

5. E(, 75*7; E„ 75*3; E,t, 70*2.

6. cZ=1-i75 inches
; p= 7^ inches

; E^, 79*8
;
E^, 79*8

; Ejt, 79*6.

7. p= 6| inches; E«, 84*9; E„ 86*2; E,«, 86*85.

8. p = 7i inches
; Ef, 86*7 ; E„ 86*0

; E,«, 90*5.

9. Bs, 86*6; E^ 115*2; E^, 87*6.

10. p= 71- inches; (fscinch; B(, 88*9 ; E,, 89*2
; Ejj, 88*9.

11. Ei, 68*2
; E„ 71*8

;
E„ 84*1

;
E„ 89*8

; E,f, 86*1,

12. 81*35 per cent.
;
shearing of outer rivet and tearing between rivets in

next row.
13. d= ^ inch ; inch

; E«, 82*5
; E„ 84*9

;
82*3.

16. 2- inch; 89*8. 16. 140 lbs. per square inch; 2*917 tons per square
inch.

17. 9600 lbs, per square inch ; 5 feet 4 inches. 18. 10,377.

19.200. 20. s=l*bi!; 5=l*.37d:; i=0*38d;.

21. fZ= l*60; ?>= s= l*80; «= 0*G9.

22, £fi = l*24cZ; &=l*65rf; f=0'34t^; D= l*65cZ; Di = 2*48d.

Vie. pp. 84-86.

I. 26,260 ;
2*46 inches. 2, 2941 lbs. per square inch. 3. 3*4 inches.

4. 2886 ; 5557 lbs. per square inch. 6. 6016 lbs. per square inch.
6. 311,953 inch-lbs.; 35*7; 121*2 revolutions per minute. 7. 13,122.

8.

14*39 inches. 9. 0*714
;
50.

10.

(1) 14,181 lbs. per square inch
; (2) 43,607 inch-lbs.; (3) 124*25.

II. 90*8; 15*7, 12, 1*87 inches; 6672 lbs. per square inch.

13. 8*52 inches; 1:1*057,

14. Total twist, 3*7 degrees
; the diameters of the pulleys are not required.

16, n=2'95
; 0 = 11,980,000 lbs. per square inch.

16. 40*9 lbs.; 4*11 inches; 7*0. 17. 4*614. 18. 63*4 inches.
19. 0*226 inch

; 22 inches.
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Fig. 842. Fig. 844.

Vllb. pp. 111-112.

1. 0'G82; 1-484; 2-618. 2. 0-625; 1-484; 1-25.

3. 197-34 inch-tons
;
53 inch-tons. 4. 5-29 inches; 1-92.

6. (a) 127-83 ; (6) 118-44. 12. c7= 7
'59 inches

;
13-72 inches.

13. d=7-61 inches
;

Z = 13-69 inches. 14. 5-02 sq. in.; 8 tons per sq. in.

16. 83-8. 17. 2-693 inches ; 56. 18. 70-76. 19. 3272-6 lbs.

20. 6-71 inches ; 7-89; 13,669. 21. If sq. in. ; 6f inches.

VIII. pp, 133-137.

1, 13-44 inches ;
12-48 inches

;
9-62 inches

;
0-853 inch ; 395 feet 10 inches.

2. Depths in inches, 7-53, 6-35, 4-40; deflection, 0-1G3 inch; radius,

746-23 feet ;
maximum stresses in lbs. per square inch, 7694, 7146, 6028, 4179.

4. 6-476 inches ;
0-0786 inch. 6. finch.

6. 16,394 lbs. per square inch ;
0-874 inch. 7 . 6667; 0-32 inch.

8. 9600. 9, 13,989 lbs.
;
14,961 lbs. per square inch.

10. (a) 1223 lbs. per square inch
; (6) 2-64 inches.

11. (&) 1008 lbs.
;

(c) 12,150,000 ; {d) 388 ;
(e) 43,200 lbs. per square inch.

12., (a) 2-52
; (Z>) 2-10. 14. 0*367 inch. 16.

16. 2636 lbs. per square inch ;
0*47 inch. 17. 0-03 radian=1-72 degrees.

18. Each side beam load 60 lbs,, stress 166f lbs, per square inch
;
centre beam

load 480 lbs., stress 333f lbs. per square inch.

19. 18,000 lbs. per square inch; 68-9.

21. Taking E = 13,000 tons per square inch, maximum deflection= -y- inches,

where I is the moment of inertia of the section of each girder in inch-units

;

maximum deflection at 19-4 feet from left-hand support,

22. 11-2 '2 tons ;
0‘27 inch.

23. Thrust =32i\ tons ; bending moment zero at 2*726 feet, 10*276 feet, and
16 feet from fixed end.

24. 45 foot-tons at ends ; 15 foot-tona at centre ;
zero bending moment at

4*5 feet from ends.
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Eadms in inches.

Fig. 845.

XL pp. 187-190.

3. (b) 29,900,000) (c) 4-4; {d) 4-6; (/) 6040.
6. e = 77-S; 6=19*2; e=26. 6. 1*52:1. 7. a=67*5: 5=40.

8.

c=ll*5. 9. 25*21 tows per square inch
; /i= 0*29.

10. 21*18 tons per square inch
:
/t=0*445. ii. 3*4 square inches,

26. 312*5 foot-tons; +17.5*8foot-tons; 62*5 tons at centre; 18*75 tons at cuds.

27. - inch-ton.s ; inch-tons, where L is the length of each

.span in inohe.s, E is in tons per square inch, and I is in inch-units.

28. 10*.51 tons, or 0*2t>*3 tons per foot. 29. 159f tons
;
44-U|tons; y.5i;- tons.

30. G(j *4(1 tons; 234*84 tons
;
73*7 tons

;
-2104 foot-ton.s.

31. Mjj= -2707 foot-tons ; Mj,= - 1382 foot-tons. 36. 11,}; 100.

IXa. pp. 151-153.

2.1; 0*866. 4. tan 0=

6, p=/ootff; (?=/tan0; s=/(tan 0-GOb ^). 6. 49,672; 12,418,

7. 19,763. 8. 2*876 inches. 9, 3119. 10.338*7. 11. 4 inches ;
2*98 inches.

12. Bending moment, 432 inch-tons ;
twisting moment, 288 inch-tons

;

stress, 0*58 )5 ton per square inch.

13. 3(5,000 inch-lbs. at A ; 3487 inch-lbs. at 0.

14. 36,000 inch-lbs. at A ; 26,368 iiich-lbs, at G.

16. (a) B, 4*4f inches; 0, 5*03 inches ; D, 4*75 inches;

(6) B, 4*68 inches
; 0, 5*05 inches

;
D, 4*77 inches.

16. 345 lbs. per square inch.

17. Maximum shear stress f ton per square inch on each section
;
maximum

direct stresses f and ton per square incli on the respective sections.

19. 4*324 tons per square inch
;

1*0‘’5.

20. (a) 4500
; (5) 3122 ; (c) 6000

;
(d) 4500

;
(c) 4153 ; (/) 2280 ?

Iff) 2068. 21, 0*81.

IXb. pp. 169-161.

1, 12*108
;
4*629 tons per square inch. 2. 20 tons; }.inch. 3. id.

5. 1*72; compressive; 3*298 tons per square
inch.

6. 1*074 a/W ;
compressive

;
4*091 tons per

square inch,

7. {a) 2958; (b) 3471. 8. 0*336 VW,
9. 3*32 tons per square inch

;
3*53 tons

per square inch.

10. 5 5*55 feet.

12. 0*0736 cubic inch, or 0*0077 per cent.

13. 3} tons per square inch
;
— .j-^inch.

14. (a) 0*00033; (b) 0*00029.

IB. B= 29,878, 0(X) lbs. per square inch;
0 = 11,672 00() Ib.s. per square inch

; K= 22,62.5,000 lbs. per square inch
;
Poisson’.?

ratio =0*2799.
16. 5 inches ; 1000 lbs. per square inch, 17. 973. 18. 1*32 inches.
19. 1585 lbs. per square inch ; 2300 ; 1877 ; 1603 ; 1415. 21. See Fig. 845,

X. pp, 168-169.

1. 14*9 lbs. 2. 324*5 tons. 3. 24*13 tons. 4. 42*4. 6. 4*10 inches.

7.

4*11 inches; 37*4. 8. 12*65 inches
;

10*12 inchcis. 9. 6*2 inches.

10. 62, 112 lbs. 11. \/7*66 inches
;
220*6 tons.

12. 106*3 tons, with factor of safety 6. 13. 1*045 inohe.s.

16. 4*7 inches; 0*47 inch.
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4000

5000

5000

Thich underline de-

notes compression.

8(6) continued.—Keaction at top hinge horizontal and =1667 lbs. Reaction

at each bottom hinge =4333 lbs. and inclined at angle
<t>

to vertioal, tan

CK '

2236

DH 2981

EF 5590

FG 2121

GH 1863

HE

1.

BH
EL

OJ
DK

GH
Gl.

HJ
LK JK

1G77 1118 1500

1

559 500
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9. X = 11‘8 outwards; Y=8“0 inwards; Z=6‘7 outwards; force in AB, 3-5

Gouipreasion.

12
20

hrust in top member=71 -67 ; thrust in BJ, DL, EM, and EN = 3o

=20; tension in AJ and HN= ll-78; tension in AK= 2S)-81

and HL= 15*81
; tension in HK= 27*49; tension in AM= 13*74

HM = 14-91 ; tension in AN and HJ= 8*50.

16. Total thrust in top member=67*2; thrust in BF and DK= 8; thrust in
GH = 16 ;

thrust in EL=32; tension in AF, OF, CK, and EK=5*12; tension in
AH and EH = 15*09

; tension in AL= 53*64.

XVI. pp. 278-282.

1 in 7*11. 7. 37,600; 5600. 8. 396; 454*9.

tegleoting difference between length and base of plane.

.93*1 lbs,
;

(h) 197

; (1) E=1260 lbs.
; (2) K=1291 lbs.

616 lbs. 26. 0*84.

29. 128 lbs.

lbs.

feet per second.

.
8*5 Ihs. 34. 0*22.

XVIIa. pp. 294-296.

I. 98 ;
03*91 lbs. 2. 128 ft.-lbs. ;

10*15 feet per second
; 11 feet per second.

3. 14*11. 4, Mean pressures, (a) 99 ; (6) 99*2
;

(c) 9.5*4 for forward stroke,

and 103 for return stroke,

5, 60*5 feet per second, 6,2*48. 7. 2*8. 8. 28*09 feet per second.
9. 1*21. 10, Velocities: 19; 30; 36; 39. Accelerations: 3; 1*4; 0*9; 0*6.

II. When i:=0*075 second, angular velocity=8*3, and angular acceleration
7*4; 8679 ft. -lbs.

I. ; (a) 6.1 ; (b) 2*32
;

{c) 3^ ; {d) 0*644. 11.
:
(a) 10 ; (b) 4*01

;
(c) 5 ; (d)

III, ; (a) 13^ ; (b) 6*55 ; (c) 6||; {</) 4*51.

.J. {«) 10*72
; (5) 4*23

; (e) 4 ; (d) 1 *07.

14. fl: = 10, v=25*43
; a:=30, v=42*15

;
9:=60, 'w=51*5; a:=70, v= 57-54

; from
45 to a;=55, time =0*194 second

; from a5=0 to a;=75, tirue=2*24 seconds.

16. Stops at 18*2 feet ; time from start to stop, 1*92 second.^.

16. Time average of force =262*4 lbs, ; space average of force=267 *9 lbs.

;

srage velocity= 12*73 miles per hour
;
distance =6r33*5 feet,

17. Length of stroke, 9*46 feet ; time for up stroke, 1*12 seconds.

XVIIb. p. 299.

0*495 second. 3. 3*2,5 lbs. 4. 1*107 seconds.
6, 2*06 seconds. 7- 289, 8, 2*972 in lb. and foot units.
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XVIIL pp. 309-312.

1. (1) 7-07
; (2) 8*20; (3)

9 '74.

X vu

6*0
j

1*62 18*94 ... 1*97 19*30

V ^ 5*0

I

5*97 4*03 6*55 5*49 7*24 2*76 7*28 4*93

4. 400 641. 6. 104 and 42 feet per second.

6. (1) 104 ; (2) 117 ; (3) 136. See Fig. 846.

7. (1) 190
; (2) 182 ; (3) 176. See Fig. 847. 8. 218*8.

11. (1) 2-32: (2) 5'36
; (3) 12.

12. Piston, 1148 j shaft, 759 ;
cross-head pin, 126 ; crank pin, 989.

13.

(1) 31*5
; (2) 77-7

; (3) 0. 14. Length of stroke, 16*16 inches.

16. Eadius of crank, 2*806 inches
;
(a) 28*6 by construction

;
(b) 36 '1 by con-

struction ;
1'17 : 1 ;

for curves, see Fig. 848.

16. (a) 1-47
;

(b) 10*88 ;
(c) 420. 17. 6| inches; 1*61 : 1.

18. 1*38:1. 19. Velocities of sliding in feet per minute.—At 0, 125; at E,

109 or 275 ; time ratio of cutting and return strokes, 2’,73.

20. 132 feet per minute.
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XIX. pp. 322-328.

I, assiiming exhawsfc pressure to be atmospberio
;

342. 2. 573.

3. (a) 2.554 lbs. ; (6) 1277 lbs. 4. 1100 lbs.

6. 15'1 and S'l lbs. per square inch of piston, both downwards
;
127 revolu-

tions per minute ;
28-5 lbs. per square inch of piston, downwards,

7. (a) 0-105
; (6) 0-129.

8. Coefficient of fluctuation of energy, (a) ,0-16
; (6) 0-18.

2-42 ;(&) 2-58.
mean torque

9. 42-02 lbs. 5
9*45 lbs.

;
55-43 lbs.

10. Forward stroke : 38-4 lbs. ;
7 '4 lbs,

;
59 '2 lbs. Eeturn stroke ; 46 ’3 lbs.:

11-7 lbs. ;
53-1 lbs.

II. 109,495 lbs.
;
133,390 ft.-lbs. .

12.

0-049. 13. 0-044.

14.

16. (i.) mean of nine solutions, 0-076.

17. (6)

18. 15,258. 19. 284,462 ft.-lbs. 20. 1392. 21. 574-2 lbs. 22. 101-6.

23. 84-879 and 85-121 revolutions per minute
;
2760-5.

24. 27-54. 26. 0-00137. 26. 1118-6
; 60,994 ft.-lbs.

27. 404 ; 606 revolutions f)ei- minute.

28. M=|{ ; 1= 15,377 in lb, and foot units. 29. 30,000 ft.-lbs.

30. 1-2. 31. 41,671 in lb. and foot units
;
207.

»p. 341-343.

3. 0-92 inch; 1*05 inches.

XX.

2. 24“ 35'
;
60“ 60'

; 51'2; 56-7.

6.

6-33; 10-98; 8-18.

6. 6-33
;
11-07

;
3-06.

7. See Fig. 849.

8. 4-93 lbs. ; 196 to 221 re-

volutions jjer minute.
9. 0-82 inch.

10. (1) 3-18; (2) 212, 222,

234; (3) 221, 232, 245; (4) 223
212

,
202 .

11. 1-45.

198 to 22412. 198 and 212; :

revolutions per minute.
13. 6-73 inches; 2

sleeve ;
13-3 revolutions per minute, or 5-51- per cent.

14. 411 revolutions per minute; 100-8 lbs.

16, T=16-84 lbs.
;
Q=696-2 lbs. 16. («) 290; (6)

XXL pp. 361-362.

1. 284-8, 2. 48-4 lbs, 3. 4-61. 4. 60-12 feet.

6. Emergency stop from speed of 60 miles imr hour equals 2-)- 16= 18 seconds,
and the distance covered in that time is 880 feet

;
retardation compared with

gravity=0-171
;
resisting foroe= 383 lbs. per ton. 6. (a) 120-96

; (6) 89-fi.

7. 4-27. 8. 34-86. 9. 5-51. 10. 1-14. 12. 2742,

XXII. pp. 372-374.

;
2*83, '2. 29-2 inches

;
7-3 inches.

;
2-46. 4. 7-~9 inches.

, 6, (a) 182-52; (5) 182-51.

10; (6) 19314; 0-08. Grossed belt; (a) 205-10 ;

9-45; 37-80; 174-40,

4=16-43; D3=13-67; 4=27-14; ?= 164-8; all in
inches.
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10. cZi=10; 02=24; rfa= 16; 03=13^; t7s= 26fj 170*8
; all in inches.

11. 10*25; 12*34; 14*25
;
all in inches.

12. B and c2, 14*20; 0 and c, 12*17
; D and 6, 10*04; all in inches.

13. 183*82 lbs.
;
91*91 lbs. 14. 123*75 lbs. ;

68*75 lbs.

16. (1) H= 14‘91; (2) H= 13*37. 16. (1) H=58’47 ; (2) H=53*96.
17. (1) &=5’13 inches ; (2) 5=5*43 inches.

18. (1) 6= 16*76 inches
; (2) 6= 18*68 inches.

19. (1) /= 302 lbs. per square inch
; (2) /= 344 lbs. per square inch.

20. (1) V= 2514 ft. per minute
; (2) V’= 2710 ft. per minute. 21. 80*9,

22. Maximum horse-power=20*56, when ^;=96*9l feet per second.

26. 19*15; 42*61 lbs.
;
4*29. 26. 125*5, 27. 14 feet 6 inches.

28. Velocity, 170; horse-power, 167.

29. Maximum horse-power =200, when «=176. 30. 1*5; 7*3,

XXIII. p. 387.

1. 23*75 inches
;
0*7854 inch. 2. 0*9425«'; 1*2566»\

3. 4 • 5 ; (1) 7 and 9 ; (2) 29 and 35.

XXIV. pp. 393-396.

I. 14*8 inches, 59*2 inches. 2. 20, 90, 39*39. 3. 450; 1003*5 lbs. 4. 16.

6.

60. 6. (a) 142|; (5) 19*8 seconds; (c) 1465 lbs. 7. 1*573.

8. (1) 0; (2) +49; (3) -51.
9. n revolutions per minute anti clockwise

;
straight line through centre of A j

ellipse, centre at centre of A, major axis equal 3 times distance between centres

of A and 0, minor axis equal ^ major axis. 10. 60 in same direction,

II. (1) +9; (2) -25*2. 12. 62*95 inches. 13. 44.

14. 74 in same, direction. 16. -176. 16. 30 to 1.

17. 62 and 2^4i• revolutions per minute in same direction as arm
;
206*45 lbs.

18. +70. 19. (1) 0; (2) +80; (3) -48.
20. 240 revolutiofis per minute in same direction as E.

21. (1) +21; (2) -22*8,

XXV. pp. 411-413.

6.

(a) 23*66
; (5) 36*34.

XXVia. pp. 417-419.

I. 75 lbs ;
126® 62'. 2. 861*6 lbs. ;

108® 26' to first radius
;
25*3 lbs.

3. 36*1 lbs., 15 lbs. 4. 9*386, 4*614
;
102*8.

6. 572*2 lbs., 381*4 lbs. ;
20 lbs. 6. 24*64 lbs. on A, 20*36 lbs. on B.

7. 641 5 lbs. on the bearing nearest to the crank, and 1480 lbs. on the other

;

541 lbs, in the plane nearest to the crank, and 283*4 lbs. in the other.

8. 201 lbs. each; left-hand balance weight 157° 37' in advance of left-hand

crank
;
right-hand balance weight 202° 23' in advance of right-hand crank.

9. Forces on bearings.—Left-hand, 60*2 lbs.
;
right-hand, 120-5 lbs. Balance

weights.—Left-hand, 12*6 lbs,
;
right-hand, 38*1 lbs. If the 10 lbs. mass leads,

then the 12*6 lbs. mass is 159® 58' ahead, and the 38*1 lbs. mass is 127® 20'

ahead of the 10 lbs. mass.
10. 37*8 lbs. in plane P at 227° 5'

;
34*6 lbs. in plane Q at 34° 1'.

II. a;=83*67 lbs.
;
angle between D and A, 37® 51'.

XXVIb. pp. 428-430.

1. 4 iuoh
;
4087 lbs, 2. 0*004 inch. 3. 382 lbs. ; 2554 ^hs. ; 1264 lbs.

4. 787 lbs.
; (9i

= (92= 23° 12' (see Fig. 692, p. 423h
6. 311*5 lbs.

; 0^= 02=22® 23' (see Fig- 692, p.’ 423).

6. 333 lbs.
; ffT = 05,= 5° 43' (see Fig. ( 93, p. 424).,

7. 162 lbs. in each driving wheel, and 68 lhs,,m each trailing wheel
8. 366 lbs, in each driving wheel, and 108 lbs. in each trailing wheel.

9. 2*46 tons. 10. 5-6 tons. 11. 360 lbs. and 240 lbs.
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12. 385 lbs. and 176 lbs. ; all cranks in same plane, intermediate crank on
oppoisite side of shaft to outside cranks.

13. X, 271 lbs., 19“ 24Ma front of 0, A leading; Y, 560 lbs., 70“ 27' in front
of B, A leading.

14. 0, 6411 lbs., 103“ 58' behind B ; D, 3530 lbs., 52“ 28' behind A.

XXYIL pp. 436-438.

1. 9600 lbs. 2. 9-45; 0-51 lb. 3. 69-2
;
416. 4. 22,670. 6. 8392 lbs,

6. 2534tons; lOJft. 7. 7*30 tons ;
13*04 tons.

8. 3*245 lbs. in each bottom screw, 0*649 lb. in each top screw,
9. 604*5 lbs., 641*5 lbs. ; in horizontal line 0*4 inch below, and equally distant

from, centre of door; 623 lbs. 10. 6*59 feet, 11. 5586 lbs,

12. 444*3 tons ;
8*3 feet. 13. (i.) 61I5 lbs.

;
(ii.) llj-jlbs.

14. 4*2 inches from bottom ;
10*21, 16. 1*798 feet; 1*752 feet.

16. 4300 tons at beginning of voyage. 18. 2“.

XXVIIIa. pp. 454-466.

1. 19*3 lbs. per square inch
;

1*92 inches. 2. 1*22 lbs. per square inch.

3. 81*0 lbs. per square inch. 4. 48*11 cubic feet per second. 6, 1924.

6.2520, 7. 3*48 inche.s. 8. (1) G50 ; (2) 1300,

9. 5*67 radians per second. 10. 78*2 feet per second, ii, 8*7 feet per second,
12. 40*4 feet per second, 13. (i.) 25*38

;
(ii.) 25*39.

15. 0*613
;
0*957

;
0*641. 16.0*622.

17. 1481 with coefficient of discharge, =0*61,
18. 3 hours 6 minutes 40 seconds with coefficient of discharge =0*62.
19. 6^ seconds with coefficient of discharge=0*62,
20. 8 seconds with coefficient of discharge= 0*62,

21. 37 minutes 19 seconds. 22. 0*619. 23. 89*7. 24, 91*9.

25. 8*88 feet. 26. 22*1 cubic feet per second with *=0*6.
27. 10*3 inches with *=0*6. 28. 4*87.

29. 2*64AS cubic feet per second
; 672.

30. Total discharge about 6480 cubic feet. 31. 13*7 inches, 32. 130,489.

XXVIIIb. pp. 472-475.

1. 84*4, 2. 61*8. 3. 0*707 inch; 1*74 inches; when *=0*66.
4, 30,805; 1419. 6. I26,.367,280

; 5470. 6. (1) 2*47 feet
; (2) 1*17 feet.

7.4*92. 8. 61*9 feet. 9, 169. 10. 13*5 cubic feet per second. 11, 0*73 foot.

12. Discharge, 2*33 cubic feet per second; hydraulic gradient, J in 63*1;

pressure head, 15*5 feet, 13. 1 : J2.
14. 4(5,100 ; 8390 gallons, or 18*2 per cent. 16. 158*5 feet.

16. 3*55, assuming that the total loss of head is equal to the difference in the
levels of the two ends of the pipe.

17. 2*12 and 1*52 cubic feet per
second.

18. 59*8 cubic feet to B and 69*3

cubic feet to 0. 19. 70*1 feet.

20. 2*75 inches, 22. 527.

23, The curves are shown in Fig.
850. Total loss of horse-power asked
for=6 *94.

24. 5*50 inches. ‘

26. 4*15 inches; 840 lbs. per square
inch; 303*2.

26. s= 6*5 feet; <i=3*72 feet;
6 = 12*84 feet.

28. 1*062:1.

29. 3*17 feet per second
;
976 cubic yjtj

feet per second.

30. 1*49 feet. 31. 6 feet
; 1 in 3517. 32, 476. 36, 84,790.
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1 . (a) 38 lbs.
; (6) 19 lbs. 2. (a) 153 lbs.

; (^) 59-4 lbs. 3. 0'863.

4. Maximum horse-power =9'59 at 25 feet pier second.

5. 1831 ;
29-2 per cent. 6. 1393

;
22-2 per bent,

7. 2973; 41-1 per cent, 8. 220 lbs. 9. ^a) 136 lbs.; (5) 56 lbs.

10.

12.0; 93-3 per cent. 11. 974 lbs.
; 67'S,

12. (a) 72-6 lbs.
; (6) IS’l lbs.

13. Acute angles between AB and the tangents to the vane at entrance and
exit, 53° 48' and 36° 12' respectively. Pressure on vane, 0*645 lb.

14. Acute angles between horizontal and tangents to vane at entrance and
exit, 73° 41' and 47° 10' respectively. Pressure in direction of motion 68*4 lbs.

16.

Direction of total pressure inclined at 7° 56' to direction of motion of
bucket or vane. Magnitude of. total pressure, 193*7 lbs. Pressure in direction
naotion, 191*8 lbs. Maximum efficiency wheln velocity of buckets is 82*8 feet
per second,

16. 9317 ft.-lbs. 17. 862*6 lbs.

18.

34*7 feet per second ; 25*7 ; 2051 lbs,
;
^1*9 miles per hour.

I. 6600. 2. 63*7. 3, 4*03.

6.

(a) 75*7 per cent.
; (6) 181 feet

;
(c) 0*459,: 1.

6. Maximum B.H.P. =1*61
; maximum efficiency, 79*3 per cent.

7. Taking efficiency at 80 per cent., horse-power =235*6.
8. Mean diameter of wheel, 2*28 feet ; diamleter of nozzle, 0*461 inch

; horse-
power, 16*3.

I

10, ri = 152*5; Ci= 75*9; 02=87*3; «i=84*5; «a=94*9; ^2=24*9; (?o=99°;
revolutions per minute= 181*2

;
horse-power=3ll8*5.

II. Ci=«i = 42*57
; Cg=«2= 53*21

; V2=18’9l; ^2=82° 30'; revolutions per
minute=203*3 ; horse-power =273.

.

|

12.

6*4
;
81*6 per cent. 13. 68*7 per cent. ;i 11*8.

14. (Referring to Fig. 795, p. 494) ffi=41° 13'; angle UiBiCi= 78° 64';
^2=21° 52'.

16. 9° 28'
;
747*6 lbs. 16. Inlet, 48° 54'

; optlet, 11° 19'.

17. At inlet, 63° 9' to the tangent to the periphery
;

at outlet, 21° to the
tangent to the periphery

; 89 per cent.

19.

Velocity of outer periphery of wheel, 35*8 feet per second
;
guide angle,

6° 23'
; vane angle at exit, 12° 37'

; outer diameter, 1*95 feet; inner diameter,
0*975 feet ; widths at inlet and outlet, 0*34 Ifeet and 0*68 feet respectively,
neglecting thickness of vanes.

I

XXX, pp. 618-1519.

I. 22*09
;
3*34. 2. 2851 lbs. ; (a) 2*26 cubic! feet

; (&) 0*102 cubic feet.

3. {a) 489*3 lbs.
; (&) 873*8 lbs.

;
1*65.

4. (i.) 319*7; (ii.) 38*07; (hi.) 76*1 percent.,; (iv.) 39,560; (v.) 39*27.

6. 1638 lbs. ; 1583 lbs.
; 14,496. 6. 141*6

; 196*7
;
10 lbs.

II. (1) 11° 34'
; (2) 104*6 feet

; (3) 47*6 feet. 12. 23*7 feet per second.

13.

60 per cent. ; 260 ;
198 revolutions per minute.

XXXI. pp. 5281529.

1. 1*71 pence. 2. 1,102,700, 3. 1061 lbs. pter square inch. 4. 14*76 inches.

5.

(a) 1139; (&) 1040. 6, 40*24; 66*22.
'

7. (a) 19*84 tons
;

(b) 101*01 tons. 8. 12,960 lbs. ; 53,996 ;
3*32 inches.

9.

2013. 10. 649 ; £0,388, 11. 32*9 inches! 12, 4*70 inches
;
9*73 inches.

13. 1792 ; 4032 ; 7168. 14. 1720 ; 3890 ; 6934.

16. 16*16 tons per square inch
;
87*4 feet. 16. 7^ tons, 17, 63'4 pev* oerii,.

18.

(1) 3970 lbs.
; (2) 9*63. 19. 6*06 cubic feet ; 13 inches.

20.

1*53 feet per second.
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Alasorption dynamometers, 347
Accelerating effect of gravity, 1

Acceleration, 16

Acceleration diagrams, piston, 303

Acceleration, piston or slider, 301

Acceleration-space diagram, 287
Acceleration-time diagram, 286
Aocnmulator, hydra.ulic, 521
Accumulator, intensifying, 523
Accumulator, Tweddell’s differential,

623 .

Addendum circle, 376
Addition of vectors, 13

Air chamber, 604
Algebraical formulse, 2

Aluminium-copper alloys, tests of, 184
American turbine, 493
Analogies of linear and angular mo-

tions, 31

Angle, friction, 261
Angle of repose, 261
Angle of twist of shaft, 80
Angular acceleration, 16
Angular acceleration of connecting-rod,

‘

307
Angular momentum, 21
Angular motion, 15

'

Angular motion diagrams, 290
Angular velocity, 16

Angular velocity of connecting-rod, 305
Annealing, 180
Annular valve, 608
Anti-friction curve, 267
Arc of approach, 379
Arc of contact, 379
Arc of recess, 379
Arch, three-hinged, 197
Arithmetical mean, 3

Arithmetical progression, 3
Artificial head, 433
Autoloo, 411
Axial flow turbines, 493
A.xis, instantaneous, 18
Axis, neutral, 104
Axle, friction of, 270
Axode,, 18

Balancing, 414 et seq.

Balancing of locomotives, 422

Ballast, 244
Ballast guards, 244
Ball, fracture of, 176
Ball valve, 507
Balls, crushing strength of, 189 (Ex. 7)
Band and block brakes, 346
Band brakes, 344
Barker’s mill, 491
Barlow’s curve, 443
Barlow’s formula for thick cylinders,

161 (Ex. 20)

Bath lubrication, 274
Bazin’s channel formula, 470
Beam sections, equivalent, 106
Beams and bending, 87 et seq.

Beams and girders, 214
Beams, continuous, 126
Beams, deflection of, 113 et seq.

Beams of uniform strength, 107
Beams, resilience of, 132
Beams, shear stresses in, 148
Bearings for girders, 221, 239-242
Bearings, methods of lubricating, 273
Behaviour of materials in testing ma-

chine, 170 et seq.

Belgian truss, 203
Belt dynamometer, 362 (Ex. 11)

Belt dynamometers, 357
Belt gearing, 363 et seq.

Belt gearing for non-parallel shafts, 368
Bending beyond elastic limit, 109
Bending by forces in different planes,

101
Bending combined with tension or com-

pression, 163
Bending moment and shearing force

diagrams, relations between, 92
Bending moment diagrams, 59, 88

Bending moment, equivalent, 144
Bending, moment of resistance to,

104
Bending moments on beams, 87

Bending, positive and negative, 88
Bending, stresses induced by, 103

Bending to circular arc, 113
Bernoulli’s theorem, 439
Bevel wheels, 384

'
'

BOvis-Gibson torsion meter, 360
Bibliography, 13
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Binomial theorem, 3

Block brake dynamometer, 347
Block brakes, 343
Bob-weights, 427
Bocorselski’s universal joint, 407
Bollman truss, 200
Bolster plate, 221
Booms of open web girders, 334
Booms or flanges, 217
Borda’s mouthpiece, 460
Bow’s notation, 36
Bow-string girder, 233
Box girder, 216
Braced girders, 231 et seq.

Bracing, overhead and sway, 247
Bracing, secondary, 201, 236
Brake strap, 282
Brakes and dynamometers, 844 et seq.

Brasses, tests of, 183
Breaking load, 68
Breast wheels, 486
Bridge floors, 242
Bridges, cantilever, 131
Bucket, 499
Bucket, Doble, 488
Bucket, Pelton, 488
Bucket pump, 499
Bull engine, 293
Buoyancy, centre of, 436

Oamher and deflection of girders, 223
Cam follower, motion of, 397
Cams, 397
Cams, oyclindrical, 401
Cams, interference in, 404
Cams, rotating, 399
Cams, sliding, 398
Canal lock, time of filling, 450
Cantilever, 89

Cantilever bridges, 131
Cantilever, deflection of, 113, 114
Carnegie Z-bar column, 61 (Ex. 6)

Centimetre, 2
Oenti*e, instantaneous, 17
Centre of buoyancy, 436
Centre of curvature, 9

Centre of parallel forces, 44
Centre of pressure, 47, 433
Centre of stress, 47
Centre, virtual, 17
Centres of gravity, 46
Centrifugal force, 19, 20
Centrifugal force of revolving mass,

414
Centrifugal pumps, 613
Centrifugal tension in belts, 369
Centrifugal tension in revolving hoop,

76
Centripetal force, 19
Centrode, 18
Centroids, 45
Chain gearing, 370
Chain, Eenold’s, 371

Chain, slider crank, 308
Chain, swinging block slider-crank, 308
Chain, turning slider- crank, 308
Change speed gears, 389
Channels, flow of water in, 470
Chezy’s formula, 465
Circle, friction, 270
.Circle of curvature, 9

Circular pitch, 375
Circumferential pitch, 375
Coefficient of contraction, 447
Coefficient of cubical elasticity, 66
Coefficient of discharge, 448
Coefficient of elasticity, 06
Coefficient of elasticity of volume, 66
Coefficient of fluctuation of energy, 320
Coefficient of fluctuation of speed, 322
Coefficient of friction, 260
Coefficient of rigidity, 66
Coefficient of transverse elasticity, 66
Coefficient of velocity, 447
Collars, friction of, 266
Columns and struts, 163 et seq.

Combined plunger and bucket pump,
602

Compensating lever on dynamometer,
349

Composition of forces, 34
Composition of velocities and accelera-

tions, 17
Compound strains and stresses, 138 ei

seq.

Compressibility of mercury, 431
Compressibility of water, 431
Compressive strain, 64, 65
Compressive stress, 64, 65
Concrete beams, reinforced, 109
Conical valve, 506
Connecting-rod, angular acceleration

of, 307
Oouneotiug-rod, angular velocity of,

805
Connecting-rod, distribution of weight

of, 421
Constant of integration, 7
Construction of parabola, 10
.Continuous beams, 126
Continuous delivery pump for high

pressures, 603
Continuous girders, advantages and

disadvantages of, 130
Conversion of space-, velocity-, accele-

ration-time diagrams, 288
Copper-aluminium alloys, tests of, 184
Copper-tin alloys, tests of, 183
Copper-zinc alloys, tests of, 182
Corrugated iron, 204
Cottered joints, 77
Count erbracing, 233
Counter efficiency of a machine, 27
Coupled looorhotives, 435
Couples, 44
Coupling, Oldham’s, 408
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Coupling, universal, 405

Crane, hydraulic, 527

Crank effort. 316

Crank effort diagrams, 317
Cranked shaft, stresses in, 146

Critical load for a long column, 162
Critical velocity of water in pipes,

461
Crossed arm governor, 332

Cross girders, 242
Crushing strength of materials, 186
Cubical elasticity, coefficient of, 66
Cubic equations, 3

Cup-leather packing, 520
Curb roof truss, 198 (Ex. 8)

Current, radiating, 442
Curtain plates, 234
Curvature, centre of, 9

Curvature, circle of, 9

Curvature, radius of, 9

Curve, anti-friction, 267
Cycloid, 11

Cycloidal curves, 11

Cycloidal teeth, 378
Cylindrical cams, 401
Cylindrical shells, thin, 76

Darcy’s formula, 463
Deck bridge, 242
Definite integral, 7

Deflection due to circular bending, 113
Deflection of beams, 113 et seq.

Deflection of cantilever, 113, 114
Detent, 408
Diagram, acceleration-space, 287
Diagram, acceleration-time, 286
Diagram, effort-space, 283
Diagram, effort-time, 284
Diagram, load strain, 69
Diagram of work, 25
Diagram, velocity-space, 287
Diagram, velocity-time, 286
Diagrams, angular motion, 290
Diagrams, bending moment, 88
Diagrams of governor, effort and power,

339
Diagrams, shearing-force, 88
Diagrams, stress-strain, 68, 186
Diametral pitch, 375
Diaphragm plates, 219
Differential accumulator, Tweddell’s,

523
Differential coefficient, 6

Differential gear, 391
Direct driven steam pumps, 509
Discharge, coefficient of, 448
Doble bucket, 488
Double-acting piston pump, 502
Drowned orifices, 449
Drowned weirs, 453
Dynamics, 1

Dynamometers, 347
Dyne, 2

545

Eddy current brake dynamometer, 353
Efficiencms of centrifugal pumps, 515
Efficiency of a machine, 27
Efficiency of inclined plane, 262
Efficiency of riveted joint, 73
Efficiency of screws, 264
Effort, 26, 283
Effort, crank, 316
Effort diagrams, piston, 313
Effort of governors, 338
Effort-space diagram, 283
Effort-time diagram, 284
Elasticity, 66
Elasticity, modulus of, 66
Elastic limit, 66
Elastic strength, 68
Electrical units, 26
Ellipse, momental, 57
Ellipse of stress, 147
Elongation of test piece, 171
Empirical formulse for struts, 166
End posts, 239
Energy, 30
Energy, fluctuation of, 319
Energy of water, 439
Engineer’s units of force and mass, 18
English truss, 202
Epicyclic train dynamometer, 366
Epicyolic wheel trains, 391
Epicycloid, 11

Equations to parabola, 10
Equilibrium polygon, 37
Equivalent beam sections, 105
Equivalent bending moment, 144
Equivalent twisting moment, 144
Equivalent uniform dead load, 93
Erg, 2

Euler’s theory of long columns, 164
Exponential series, 3

Face of tooth, 376
Factor of safety, 68
Fan brake dynamometer, 352
Fast and loose pulleys, 366
Fatigue of metals, 179
Fink truss, 200, 203
Fish-bellied girder, 216
Flank of tooth, 376

Flats, 217
Flitch beam, 135 (Ex. 19)

Floating bodies, 436
Floor plating, 244
Floors, bridge, 242
Flow of water in channels, 470
Flow of water in pipes, 465
Flow through cyolindrioal moutbpieoe,

458
Fluctuating loads, effect of, 178
Fluctuation of delivery in ci'ank-driven

pumps, 608
Fluctuation of energy, 319
Fluctuation of energy, coefficient of, 320
Fluctuation of speed, 322
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Fluid friction, 4(50

Fluids, 431
Fly-whf!Gls, 331
Foot-pound, 24
Foot-ton, 24
Force, 18
Force, moment of a, 20, 42
Forced lubrication, 274
Forced vortex, 443
Forces, composition of. 34
Forces, lettering of, 36
Forces, parallelogram of, 34
Forces, polygon of, 35
Forces, resolution of, 34
Forces, resultant moment of a system

of, 43
Forces, triangle of, 34
li’crmulie for shafts, 82

Forth Bridge, 132
Fottinger’s torsion meter, 359
Foundation bolt, 79 (Ex. 20)
Fourneyron turbine, 493
Fracture by sheai-ing in tension and

compression tests, 175
Fracture by tension in torsion tests,

176
Fracture in tension test bar, rjosition

of, 173
Framed structures, stress diagrams for,

191
Francis turbine, 493
Francis’s formula, 452
Free vortex, 443
French truss, 203
Frequency of contact of wheel teeth,

376
Friction and lubrication, 260 et seq.

Friction angle, 261
B’riction axis of a link, 271
Friction circle, 270
Friction, fluid, 460
Friction of an axle, 270
Friction of band on pulley, 277
Friction of governors, 334
Friction of pivots and collars, 265
Friction of screws, 262
Ifriotion of sliding keys, 275
ITriction ratchets, 410
Function of a governor, 329
Ifuncfeions of Try 1

Funicular polygon, 36, 38

Gt-as-engines, fluctuation of energy
in, 320

.Grase.s, 431
Gearing, belt, rope, and chain, 363

et seq.

Gearing, toothed, 375 et seq.

Gears, change speed, ’389
Geometrical moan, 3
Geometrical progression, 3
Girard impulse wheel, 489
Girder, bow-string, 233

Girder, box, 216
.

Girder, fish-bellied, 216
.Girder, hog-backed, 216
Girder, lattice, 232
Girder, Warren, 231
Girder, wind, 246
Girders, braced, 231 et seq.

Girders, plate, 214 et seq.

Governors, 329 et seq.

Gradient, hydraulic, 463
Gramme, 2
Gravity, accelerating effect of, 1

Gravity, centres of, 45

Guest’s formula for shafts, 145
Gutermuth valve, 508

Hardening, 182
Hardening effect of overstraining, 177
Harmonic motion, simple, 296
Hat-leather packing, 520
Head, artificial, 433
Head raoe, 485
Heat, mechanical equivalent of, 31
Helical springs, 83
Helical teeth, 386
Hog-backed girder, 216
Hollow shaft, 82
Hooke’s joint, 405
Hooke’s law, 66
Hoop tension, 76
Horse-power, 26
Howe truss, 232
Humpage’s gear, 392
Hunting cog, 376
Hurdy-gurdy, 487
Hydraulic accumulator, 521
Hydraulic crane, 527
Hydraulic gradient, 463
Hydraulic intensiflers, 624
Hydraulic lifting-jack, 626
Hydraulic mean depth, 461
Hydraulic press for making lead pipes

:

525

;

Hydraulic pressure machines, 520 et seq.

I Hydraulics, 1

Hydraulics, general principles of, 439
et seq.

Hydrodynamics, 1

Hydroslatios, 1, 431 et seq.

Hyperbolic logarithms, 4
Hypocycloid, 11

Impact of jet on cup, 479

I

Impact of jet on flat vane, 475
' Impact of jet on succession of vanes,

' 477,

Irnpul.se, 19
Impulse turbines, 493
Inch-pound, 24
Inclined plane, cftioiency of, 262
Indefinite integral, 7
India-rubber disc valve, 508
Indicator diagrams, 313
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Inertia curves, 57

Inertia, moment of, 21, 50
Inertia of reciprocating parts, 315
Inertia, principal axes of, 56, 58

Inertia, rotational, 21

Instantaneous axis, 18

Instantaneous centre, 17

Integral calculus, 6

Intensifiers, hydraulic, 524

Intensifying accumulator, 523
Interference in cams, 404
Internal teeth, 382
Inversions of mechanisms, 308
Involute (eeth, 380
Inward flow turbines, 493

Jack, hydraulic lifting, 526

Jack, screw, 279 (Ex. 14)

Jet reaction wheels, 491

Jockey pulleys, 368
Joint, Hooke’s. 405

Joint, tie-bar, 75

Joints, cotbered, 77

Joints for hydraxdic pipes, 521

Joints in boom plates, 235
Joints, riveted, 72
Jonval turbine, 493
Journal bearings, friction of, 272

Keys, friction of sliding, 275
Kinematioal equations, 16

Kinematics, 1

Kinetic energy, 30, 439

Kinetic energy of rotating body, 30
Kinetics, 1

King-rod, 202
Klein’s construction for piston accelera-

tion, 302
Knot, 16

Rutter’s channel formula, 471

Lame’s formulas for thick cylinders,

159
Lattice girder, 232
Law of amachine, 27, 28

Laws of friction, 260
Lead-tin alloys, tests of, 184
Lettering of forces, 36

Lifting crab, 394 (Ex. 7)

Lifting jack, hydraulic, 526 '

Limiting angle of resistance, 261
Linear acceleration, 16

Linear velocity, 16
Link polygon, 37
Linville truss, 232
Liquids, 431
Load, 64
Loaded governors, 333
Loads, fluctuating, 178
Loads, travelling, 93
Load-strain diagram, 69
Locomotives, balancing of, 422
Locomotives, coupled, 425

Logarithmic series, 3
Logarithms, 4
Loss of energy or head, 44S
Loss of head due to friction in pipe,

462
Loss of head due to obstructions in

pipes, 468
Loss of head due to sudden contraction

of pipe, 457
Loss of head due to sudden enlarge-

ment of pipe, 456
Lowell formula, 452
Lubrication, bath, 274
Lubrication, forced, 274
Lubrication, pad, 274
Lubrication, ring, 274
Lubrication, splash, 276
Lubricator, needle, 273
Lubricator, syphon, 273
Luders’ lines, 175

MacHnes, 26
Machines, hydraulic pressure, 620 itztq,

Marlborough wheel, 389
Mass, 18
Maximum shear stress due to combined

twisting and bending, 144
Mechanical advantage of a machine, 27
Mechanical equivalent of heat, 31

Mechanical properties of steel after

heat treatment, 179
Mechanics, 1

Mechanisms, miscellaneous, 397 et seg.

Mercury, compressibility of, 431
Metacentre, 436
Metals, fatigue of, 179
Meters, torsion, 358
Method of sections, 196
Miner’s inch, 448
Mitre wheel, 384
Mixed flow turbines, 493
Moduli of various sections, 105, 106
Modulus of beam section, 105

Modulus of elasticity, 66
Modulus of elasticity of materials, 187
Modulus of rupture, 109
Moment of a force, 20, 42
Moment of inertia, 21, 50
Moment of inertia, fundamental ex-

amples, 62
Moment of inertia theorems, 51

Moment of momentum, 21

Moment of resistance of shaft to tor-

sion, 81
Moment of resistance to bending, 104
Momental ellipse, 67

Moments and centroids, 42 et seg'.

Moments of inertia of various sections,

105, 106
Moments, principle of, 44
Momentum, 19

iitomentum, angular, 21
Momentum, moment of, 21
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Moi’fcioe wheel, 376
Motion and force, 15 et seq.

Motion, Newton’s laws of, 19
Motion, simple harmonic, 296
Mouthpiece, Borda’s, 460
Mouthpiece, flow through cylindrical,

458
Multi-stage turbine pumps, 616

Napierian logarithms, 4
Nautical mile, 16
Needle lubricator, 273
Neutral axis, 104
Neutral surface, 103
Newton’s laws of motion, 19
Nominal and actual stresses, 170
Normal pitch, 381
Notched bars. 174
Notches, rectangular, 461
Notches, triangular, 4.53

N-truss, 231

Obliquity of action between wheel
teeth, 379

Oil hardening, 182
Oldham’s coupling, 408
Open web girders, 231 et seq.

Orifices, largo rectangular, 450
Orifices, partially submerged, 453
Orifices, submerged, 449
Oscillating engine mechanism, 308
Otto cycle, 320
Outward flow turbines, 493
Overhead bracing, 247
Overshot water wheels, 485
Overstraining, hardening effect of,

Packing* for hydraulic rams and pis-

tons, 520
Pad lubrication, 274
Parabola, construction of, 10
Parabola, equations to, 10
Parallel flow turbines, 493
Parallel forces, centre of, 44
ParMlelogram of forces, 34
Path of approach, 379
Path of contact, 378
Path of recess, 379
Pawl, 408
Pelton wheel, 487
Pendulum pump, 309
Pendulum, revolving, 329
Pendulum, simple, 299
Pent roof truss, 198 (Ex. 6)

Periodic time, 297
Permanent set, 66
Phoenix column, 61 (Ex. 8)

Piezometers, 464
Pin wheels, 382
Piston, 499

Piston acceleration, 801
Piston acceleration diagrams, 803

Piston effort diagrams, 313

Piston velocity diagrams, 300
Pit work, 293
Pitch circle, 375
Pitch line of toothed wheel, 375
Pitch of teeth, 375
Pitch surfaces of toothed wheels, 375
Pivot, Schiele’s, 267
Pivots, friction of, 265
Plane motion, 15
Plate girder, worked example, 223
Plate girders, 214 et seq.

Plate girders, riveting of, 220
Plate girders, weight of, 223
Plunger, 499
Plunger pump, 501
Pneumatics, I, 431
Poisson’s ratio, 155
Polygon, funicular, 86, 38
Polygon of forces, 35
Polygon, vector, 13
Poncelet water wheel, 487
Porter governor, 334
Positive and negative bending and

shearing, 88
Potential energy, 30, 4.39

Pound, 18
Power of governors, 388
Power transmitted by belts, 369
Power transmitted by wire ropes, 370
Power transmitted through a pipe, 467
Pratt truss, 231
Pressure, centre of, 47, 438
Pressure energy, 439 :

Pressure, resultant of, 433
Principal axes of inertia, 56, 58

Principal axes of stress, 141
Principal stresses, 141
Principal stresses due to combined

bending and twisting, 143

Principle of moments, 44
Prony brake, 347
Proof load, 68

Proof strength, 68
Proof stress, 68

Proportions of teeth, 376
Pullen’s friction brake dynamometer,

350
Pulleys, stepped, 364

Pump, pendulum, 309

Pump valves, 606
Pumps, 499 et seq.

Purlins, 201

Quadratic equations, 2

Queen-rod, 202

Quick return motion, Whitworth, 308

Rack, 382
Radian, 16
Radiating current, 442
Radius of curvature, 9

Radius of curvature of beam, 103
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Ka<1ins of gyration, 21

Rafters, 201

Rail bearers, 242
Railway brakes, 341i

Railway bridge floors, 242
Rankine-Gordon formula for struts, 166
.Ratchets, 408
Rate of work, 26

Ratio, Poisson’s, 155

Reaction of jet, 479
Reaction turbines, 493
Reciprocal figures, 37

Reciprocating parts, inertia of, 315
Rectangular notches, 451
Rectilinear motion, 15

Reinforced concrete beams, 109
Relations between bending moment

and shearing force diagrams, 92
Relations between o-, E, 0, and K, 156

Relative motion, 15

Renold’s chain, 371
Resilience, 69
Resilience of a beam, 132
Resolution of forces, 34
Resolution of velocities and accelera-

tions, 17
Rest and motion, 16

Resultant moment of a system of forces,

43
Resultant pressure, 433
Resultant vector, 13
Retardation, 16

Reversal of shearing stress in beams,
100

Reversed efficiency of a machine, 27
Reversible ratchets, 409
Reverted wheel trains, 391

Revolving pendulum, 329
Revolving vane, action of jet on, 482
Rigidity, coefficient of, 66
Rims of pulleys, 365
Ring lubrication, 274
Ring, strength of, 154
Riveted joints, 72
Riveting in booms, 235 .

Riveting of plate girders, 220
Rolled joists, 214
Roller for cylindrical cam, 402
Roller, fracture of, 176
Rollers, crushing tests on, 189 (Ex. 8)

Rolling load, 93
Roof coverings, 204
Roof coverings, weight of, 210
Roof trusses, details of, 205-210
Roofs and roof trusses, 201 et sey.

Root circle, 376
Rope brake dynamometer, 351
Rope pulley, 366
Rotary motion, 15
Rotating cams, 399
Rotating guides for sliding piece, 275
Rotational inertia, 21
Rupture, modulus of, 109

Safety, factor of, 68
Saw-tooth truss, 202
Scalar quantities, 12
Schiele’s pivot, 267
Scotch turbine, 492
Screw-jack, 279 (Ex. 14)
Screws, efficiency of, 264
Screws, friction of, 262
Secondary bracing, 201, 236
Section modulus figures, 105
Sections, method of, 196
Sensitiveness of governors, 335
Scries, 3

Shaft, angle of twist of, 80
Shaft, moment of resistance to torsion,

81

Shafts, formula} for, 82
Sharp-edged orifices, flow through, 447
Shear stress equivalent to two normal

stresses, 140
Shear stresses in beams, 148
Shear stresses on planes at right angles,

equality of, 139
Shearing by forces in different planes,

101
Shearing force at concentrated load, 91
Shearing force diagrams, 59, 88
Shearing forces on beams, 87
Shearing, positive and negative, 88
Shearing strain, 64, 65
Shearing strength of materials, 187
Shearing stress, 64, 65
Shock, 69

Silent ratchet, 410
Simple conical pendulum governor, 332
Simple harmonic motion, 296
Simple pendulum, 299
Simple strains and stresses, 64 el

Simple torsion, 79
Slates, 204
Sleepers, 244
Slider acceleration, 301
Sliding cams, 398
Slider-crank chain, 308
Slider velocity diagrams, 300
Sliding friction, 260
Sliding keys, friction of, 275
Slope of bent beam, 114
Soaking, 182
Space average and time average of a

force, 284
Speed, 15

Spherical shells, thin, 76
Splash lubrication, 275
Springs, helical, 83
Statical friction, 260
Statics, 1'

Steam pumps, direct driven, 509
Stepped pulleys, 364
Stepped teeth, 386
Stiffeners, web, 219
Stiffness of a beam, 115
Strain, 64
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Straiii, compressive, 06
Strain, shearing, 65
Strain, volume, 65
Strains ami stre.ises, compoahd, 138

etseq.

Strains ami sf.resses, simple, 64 ei seq.

Straining pulleys, 368
Strength, 68
Strength, elastic, 68
Strength of a ring, 154
Strength of wheel teeth, 107
Strength, proof, 68
Stren^h, ultimate, 68

Stress, 64
Stress, centre of, 47
Stress, compressive, 64, 65
Stress diagrams for framed structures,

191 e«

Stress diagrams for wind pressure, 194
Stress, ellipse of, 147
Stress, pi'iucipal axes of, 141
Stress, shearing, 65
Stress, tangential, 65
Stress, ultimate, 68
Stresses in a cranked shaft, 146
Stresses induced by bending, 103
Stresses, nominal and actual, 170
Stress-strain diagrams, 68, 186
Stringer plates, 234
Submerged orifices, 449
Successive differentiation, 9
Suction tube, 496
Suppressed weir, 451
Sway bracing, 247
Swinging-block slider-crank chain, 308
Swinging slider-crank, 309
Syphon lubricator, 27.3

Tail race, 485
Tangential stress, 65
Teeth, cycloidal, 378
Teeth, helical, 386
Teeth, internal, 382
Teeth, involute, 380
Teeth, proportions of, 376
Teeth, stepped, 386 •

Tempering, 182
Tensile strain, '64 .

Tensile strength of materials; 187'

Tensile stress, 64
Tension test bars, long -uersas short, 174
Theorem of three moments, 126
Theory of long Columns, 164
Thick hollow cylinders, 158
Thin cylindrical shells, 76
Thin spherical shells, 76
Three-hinged arch, 197
Three moments, theorem of, 126
Through bridge, 242
Tie-bar joint, 75
Tiles, 205
Time average and space average of a

force, 284

Time of flow through an orifice, 449
Toothed gearing, 375 et seq.

Torque, 20, 25

Torricelli’s theorem, 446
'Torsion meters, 358
'Torsion, simple, 79

'Tower’s experiments on friction, 269,

272
'Tractrix, 267
Train of wheels, 388
Tramway rail section, 62 (Ex. 14)

Transformation of moments of inertia,

56
'Transmission dynamometers, 347
Transverse elasticity, ooefBcient of, 66
Travelling loads, 93, 98
'Triangle of forces, 34
'Triangles, formul® for, 6

'Triangular notches, 453
Trigonometrical formula, 4
Trough floors, 244
'Truss, Belgian, 203
Truss, Bollman, 200
'Truss, English, 202
Truss, I’iivk, 200, 203
'Truss, French, 203
'Truss, Howe, 232
Truss, Linville, 232
Truss, Pratt, 231
'Truss, saw-tooth, 202
Truss, 'Whipple-Murphy, 231
Turbine pumps, 516
Turbine, Scotch, 492
'Turbine, Whitelaw’s, 492
'Turbines, classification of, 493
Turbines, impulse, 493
'Turbines, reaction, 493
Turning moment, 25
'Turning slider-crank chain, 308
Tweddell’s differential accumulator,

523
'Twisting moment, equivalent, 144

tT-leather packing, 520
Ultimate crushing strength of mate-

rials, 186

Ultimate shearing strength of mate-
rials, 187

Ultimate strength, 68
Ultimate stress, 68
Ultimate tensile strength of materials,

187
Unbalanced effort, 283
Undershot water wheels, 487
Uniform velocity, 15

Universal coupling, 405
Useful load, 64

Vacuum chamber, 506
Valves, pump, 506
Vanes of centrifugal pumps, 514
Variable velocity, 16
Vector, 12



’\’’ector polygon, 13 •

Veolor quantities, 12

Vectors, addition of, 13

Velocities of water in pipes, 461
Velocity, 15

Velocity, coefficient of, 447
Velocity diagrams, piston or slider, 300
Velocity of approach, 447, 452
Velocity of whirl, 483
Velocity ratio in belt gearing, 363
Velocity ratio of a train of wheels, 388
Velocity ratio of a machine, 26
Velocity ratio of follower and cam, 404
Velocity-space diagram, 287
A^elocity-time diagram, 286
Vena contracta^ 447
Venturi water meter, 440
Victor turbine, 493
Virtual centre, 17
Virtual slope of pipe, 464
Volume strain, 65
Vortex, 443

Wall plates, 202
Warren girder, 198, 231
Water, compressibility of, 431
Water, energy of, 439
Water meter, Venturi, 440
Water, weight of, 1, 436
Water wheels and turbines, 485 zt seq.

Web bracing, 235
Web plates, 218
Web stiffeners, 219
Weight, 18

Weight of plate girders, 223
Weight of I’oof coverings, 210
Weight of water, 1, 436
Weirs, 451

Weirs, drowned; 453
Wetted perimeter, 461
Wheel teeth, strength of, 107
Wheel trains, 388
Wheel trains, epicyclic, 391
Wheel trains, reverted, 391
Wheels, bevel, 384
Wheels, pin, 382
Whipple-Murphy truss, 281
Whirl, velocity of, 483
Whirling liquids, 444
Whitelaw’s turbine, 492
Whitworth quick return motion- 308
Wilson-Hartnell governor, 342 (Ex. 16)

Wind girder, 246
Wind pressure, 194, 246
Wind ties, 201
Wire rope pulley, 366
Wire ropes, power transmitted by, 370
Work and energy, 24 ct seq.

Work by an oblique force, 24
Work, (iiagram of, 25
Work in raising a system of weights,

24 .

Work in turning, 25
Working load, 68
Working stress, 68
Worthington pumping engine, 510

Yoxuxg’s modulus, 66
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